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ABSTRACT

This paper describes the design, implementation, and early experiences with a novel agent-based simulator
of online media streams, developed under DARPA’s SocialSim Program to extract and predict trends in
information dissemination on online media. A hallmark of the simulator is its self-configuring property.
Instead of requiring initial set-up, the input to the simulator constitutes data traces collected from the
medium to be simulated. The simulator automatically learns from the data such elements as the number of
agents involved, the number of objects involved, and the rate of introduction of new agents and objects. It
also develops behavior models of simulated agents and objects, and their dependencies. These models are
then used to run simulations allowing future extrapolation and “what if” analysis. Results are presented
on using this system to simulate GitHub transactions. They show good performance in terms of both
simulation accuracy and overhead.

1 INTRODUCTION

In the 20th century, advances in computing enabled significant advances in the understanding and ex-
ploitation of physical systems thanks to faster modeling and simulation capabilities. The 21st century is
widely believed to be the age of information. By interconnecting individuals and endowing them with
unprecedented capabilities for sharing information at scale, a new global information fabric has emerged,
wherein information signals are created, propagated, distorted, and consumed, not unlike signals on physical
media. Yet, the properties of this new information fabric remain poorly understood.

Can advances in cyber-physical computing help uncover the properties of the new information fabric,
the way they helped study laws of physical signals, thereby laying the analytic foundations for understanding
online information dynamics in the 21st century? Information objects on online media are diverse. They
include posts on social networks, such as Twitter, publication entries in databases, such as DBLP, and
software updates on version control services, such as GitHub. Collectively, streams of these continually
created and updated objects comprise a new reflection of reality/beliefs (e.g., on Twitter), innovation (e.g.,
on GitHub), and publications (e.g., on DBLP). What are the fundamental properties of this reflection? Does
it reveal large scale phenomena such as competition (e.g., between ideas/beliefs, software toolchains, or
publication pedigrees)? Does it predict the rise and fall in popularity of the underlying objects involved?
Does it help understand synergies between ideologies, research directions, or innovations? How does the
landscape of synergies and competitions mold the dynamics of online interactions?

A first step towards answering those questions is to develop good simulation tools of information
dissemination on online media. Those tools will advance scientific discovery towards addressing the above
questions, much the way wind tunnel simulators helped create more efficient aircraft, and data center
simulators helped inform energy management policies.



This paper describes a new simulator of online media. The simulator has two innovative features.
First, it is highly retargetable. It can be adapted to simulate multiple different online media that share the
abstractions of agents, (information) objects, and actions. Second, it is self-configuring. While a user can
decide the configuration being simulated, it is possible to generate the configuration automatically from
past traces of the target online medium.

The rest of the paper is organized as follows. Section 2 summarizes the overall architecture of the
simulator. Section 3 describes the modules responsible for agent simulation and clustering. Section 4
presents initial evaluation results. Related work is reviewed in Section 5. The paper concludes with
Section 6.

2 ARCHITECTURE

Our online media simulations rely on three main abstractions: agents, information objects, and actions.
Agents perform actions on information objects. These actions may have dependencies on other actions,
which is how signals spread through the medium. For example, on Twitter, tweets constitute the information
objects. Users constitute agents. Individual tweets can be created or re-posted (retweeted), which constitutes
actions. On GitHub, repositories are information objects. GitHub users are agents. Users can create a
repository, fork it, commit content to it, or express interest in it (“star” it), among other capabilities that
constitute actions.

2.1 Design Objectives

Our simulation architecture supports two novel features; namely, being retargetable and being self-
configuring. These features are introduced below:

• Retargetable simulation: Our goal is to simulate multiple types of online media, centered around the
abstractions of agents, objects, and actions. As described later in this paper, simulated configurations
can be instantiated from data learned from media traces. To make the simulator retargetable, it
is therefore important to convert media traces into a unified set of supported formats. This is the
responsibility of a preprocessing step. Presently, it converts media-specific data structures into
both a MySQL database and JSON files. Later modules can thus pick their preferred input format
independently of the original source.

• Self-configuring simulation: Our online media simulator is novel in that it learns its own agent
and object configuration and models from traces of the target online medium. An agent in the
simulator is defined by a model that features several parameters. These parameters are learned by
the analysis library. This library reads traces of online media (from either the MySQL database or
the JSON files mentioned above) and computes statistics from which agent model parameters can
be determined. Developers are free to implement and experiment with different kinds of machine
learning or data mining algorithms, and integrate them into the analysis library to extract behaviors
of different agents from the input data. These statistics constitute the configuration file needed for
the simulator to operate.

When the simulator starts, an agent builder module reads the configuration files using a proxy that converts
the stored configuration into a run-time instantiation, of agent models. The simulator core module then
runs the agent models and logs the observed behaviors.



Figure 1: SocialCube simulator architecture

2.2 Simulator Architecture

The simulator architecture is shown in Figure 1. Once a configuration file has been generated, the simulation
can start. The statistics proxy in Figure 1 serves as a bridge between the offline phase and the online phase.
The proxy needs to understand the format of different analysis outputs. A new statistics proxy module
needs to be integrated whenever a new type of analysis is implemented in the library. The architecture
makes it easy to extend the simulator with new types of analysis techniques.

The behavior model is a collection of algorithms describing how the agent parameters described in the
configuration file determine agent behavior. It is a place to simulate the behaviors and actions of an agent.
A new behavior model is also needed whenever a new type of analysis (and hence new agent parameters)
are introduced.

The agent model is a class that implements individual agents. Each agent will encapsulate a certain
behavior model. Each agent (instance of the agent model class) also encapsulates the variables that are
specific to the agent. It is essentially a stateful wrapper around the behavior model, whereas the behavior
model describes the algorithm that interprets the variables.

The agent builder is a factory that instantiates agents during a simulation. When the simulator starts,
the agent builder gets a list of agents from the statistics proxy. It then instantiates all the agents of the
appropriate type and behavior model. The agent builder also creates new users on the fly according to a
pattern dictated in the configuration file.

Note that, some agents represent communities. Like normal agents, they have behavior models, except
that the generated actions do not share a single user ID, but rather are distributed across multiple identities.
Communities can be used to cluster similar agents that share the same behavior model parameters.

The event logger records key past events in the simulation. Developers can adjust the depth of the
logger, which in turn will adjust the memory of the simulation. Agent behavior models can condition
behaviors based on events logged.

The simulator core will hold all the agents and communities after the agent builder instantiates them.
The simulator core manages the passage of time, making calls to agents (with reference to current time
and logged events) so they can be concurrently simulated.



3 AGENT MODELS AND SIMULATION ALGORITHMS

The simulator offers duality between agents and objects. In that sense, it can either run in an agent-based
mode, or object-based mode. In the agent-based mode, the main abstraction of the simulator is the agent.
The core simulation loop executes agents in (simulated) concurrency, one time-slot at a time. The model
of each simulated agent is executed, producing the actions the agent will perform on objects during the
simulated time interval. In the object-based mode, the main abstraction of the simulator is the object. The
model of each simulated object is executed, one time slot at a time, producing the actions that agents will
be perform on the object during the simulated time interval.

The duality between agents and objects means that the two simulation modes and underlying data
structures are symmetric. Below, we explain the data structures used in the agent-based mode. The data
structures used in the object-based mode are symmetric and can be described simply by replacing “agent”
with “object” and vice versa in the description below.

In the agent-based mode, an agent model is described by (i) total activity rate (i.e., rate of actions),
(ii) affinities (set of objects it interacts with), and (iii) interaction rates (frequency of interaction with each
object). The total activity rate can also be broken by action type (e.g., tweets versus retweets). A Twitter
user might, for example, have different rates for original tweets versus re-tweets. Users who represent
official entities such as local traffic alerts might post predominantly original tweets. In contrast, propaganda
publicists might predominantly curate and re-post previously published news that favor their viewpoints,
thus primarily posting retweets.

Finally, the above parameters are recomputed at multiple time-scales. The current architecture supports
two time-scales for parameter re-computation, called global and local, respectively. The global time-scale
is slower. It adjusts aggregate parameters such as total activity rate and affinities by extrapolating trends
described by auto-regressive time-series models. The local time-scale is shorter. It adjusts changes in
probabilities of individual action types by extrapolating a more detailed point process model. Below, we
describe these models in more detail.

3.1 Long-term Agent Trends

We predict the long-term trends (e.g., trends in total activity rate and affinities of agents) by applying
time-series analysis models to extrapolate from observations. Here, we use the autoregressive integrated
moving average (ARIMA) for the extrapolation.

We consider the aggregate parameters for each agent (or group of agents) a time series, and use Xt

to denote the data vector at time slot t, where t is an integer. The ARIMA model can be expressed by
“ARIMA(p,d,q)”, where p refers to the autoregressive terms, d refers to the order of differences in the
model, and q refers to white noise terms.

We first introduce the difference (Hamilton 1994) of a time series. Let Xd
t denote the dth order difference

of Xt :

Xd
t =

{
Xt , if d = 0,
Xd−1

t −Xd−1
t−1 , if d ≥ 1.

(1)

Then, the ARIMA(p,d,q) model can be written as:

Xd
t −

p

∑
i=1

φiXd
t−i = c+ εt −

q

∑
j=1

θ jεt− j (2)

where c is a constant, the sequence {εt} consists of independently identically distributed (iid) Gaussian
noise terms with mean zero and variance σ2, and φi and θ j refer to the coefficients of Xd

t−i and εt− j,
respectively.



The parameters of ARIMA can be learned by maximizing likelihood. Assuming, without loss of
generality, that c = 0, the likelihood function for the parameters φ1,φ2, . . . ,φp, θ1,θ2, . . . ,θq and σ is:

L(φ ,θ ,σ |X) =
1√

2πσ2|Σ|2
exp(− 1

2σ2 xT
Σ
−1x), (3)

where φ = [φ1,φ2, . . . ,φp]
T , θ = [θ1,θ2, . . . ,θq]

T , x = [Xd
1 ,X

d
2 , . . . ,X

d
n ]

T , Σ= σ−2cov(x), and n is the number
of the training data samples. The exact form of L(φ ,θ ,σ |X) is too complicated to maximize directly.
Hence, several approximations and modifications were proposed (Anderson 1977; Shaman 1975; Ljung
and Box 1979). After getting the parameters of the ARIMA model, we can predict the value of Xd

t using
Equation (2).

For each agent (or group of agents), the analysis library builds an ARIMA model to predict the rate
of each type of action and the interaction rates with individual objects over time.

3.2 Agent-Agent Influence

In addition to predicting long-term agent behavior trends, we also estimate influence between different agents,
expressed by directional dependencies between their actions on shared objects. Here, we use the temporal
point process model, specifically the Hawkes process model, which is proposed by Hawkes (Hawkes 1971)
to describe dependencies across different event types. Point processes provide the statistical language to
describe the timing and properties of events (Rizoiu et al. 2017). They proved to be successful in many
fields, including financial applications (Embrechts et al. 2011), geophysics analysis (Ogata 1988), and
information propagation on online social media (Zhao et al. 2015).

The Hawkes process is a natural extension of the well-known Poisson process. Instead of assuming that
events happen independently as in a Poisson process, the probability of each coming event is dependent on
the every past event in the Hawkes process (with a decay function that effectively results in finite memory).
A Hawkes process sequence can be completely specified by the distribution of its inter-event times:

f (t1, . . . , tn) =
n

∏
k=1

f (tk|t1, . . . , tk−1) =
n

∏
k=1

f (tk|Htk). (4)

where H (t) denotes the event history before time t and f (tk) denotes the probability density function
(PDF) of the kth event instant. To derive f (t|H (t)), we need to define the conditional intensity λ (t) first,
which is heuristically defined as the arrival rate of new events:

λ = lim
∆t→0

E(N (t +∆t)−N(t)|Ht)

∆t
= lim

∆t→0

P(N (t +∆t)−N(t) = 1)|Ht)

∆t
. (5)

where, N(t) is the number of events up to time t. The relationship between the conditional intensity function
λ (t) and the probability density function f (t|Ht) is given by:

λ (t) =
f (t|Ht)

1−F(t)
. (6)

where F(t) is the cumulative distribution function (CDF) of the given event sequence up to time t. It is
also the integral of f (t|Ht) from the start to time t. Therefore, the conditional intensity function is all we
need in order to define a Hawkes process.

Now let’s come back to our scenario. We want to use the point process model to describe the dependencies
between events of different types. We model it from an object-centric viewpoint, because on online media



the operations by different agents on the same object are usually more interrelated than operations by the
same agent on different objects. For example, agents may influence other agents to retweet their text, cite
their paper, or view their repository update. The object-centric view-point, therefore, captures influence
among agents. For each dimension (event type), i, the conditional intensity function is:

λi(t) = µi +
D

∑
j=1

∑
t j
k<t

φ ji(t− t j
k ), (7)

where the triggering kernel φ ji(t) from event type j to event type i is an exponential decay function with
respect to the time elapsed:

φ ji(t) = α
ji
β

i exp(−β
it)1t>0. (8)

In this definition, for an object with L event types, we have three parts of parameters in total:

• µ: a vector of size L. It represents the base intensity of each dimension. It determines the arrival
rate of events triggered by extraneous factors.

• α: a matrix of shape L×L. It denotes the triggering coefficients within and across each dimension.
• β : a vector of size L. It represents the decay factor of the triggering effect. We have to set the

triggering effect between dimensions as a time decay function, otherwise it will result in an infinite
loop of event triggering.

With the definition of our object Hawkes process model, we are able to derive the log likelihood function
of seeing the observed event time series. We maximize this function with respect to model parameters
using the Broyden-Fletcher-Glodfarb-Shanno(BFGS) algorithm (Liu and Nocedal 1989), a widely used
quasi-Newtons method for unconstrained optimization problems without requiring the computation of a
second-order Hessian matrix. The resulting mode is used to predict future events using Equation (4).

When both the ARIMA and the point process model are jointly used, we use the former to define
long-term trends in total action budgets, and the latter to define action timing within those budgets.

3.3 Communities and Aggregation

Aggregation is a central component for agent-based simulations, as this allows for grouping of both agents
and objects by similarity in behavior, which naturally reduces overhead at runtime and can even capture
behavior of communities more accurately, if insufficient data is present on individual members.

One type of aggregation is the grouping of agents by similarity in temporal behavior. For example,
clear daily cycles exist for a vast majority of users that are well-correlated with their time zones. Some
networks, such as GitHub, also see a significant drop-off of activity on weekdays. The concept of agent
clustering is not limited, of course, to time zone effects. The simulator leaves it open to define meta-agents
that correspond to clusters of agents with similar behaviors. Ideally, such meta agents are used to model
communities of agents when one does not have a sufficient number of data points to derive parameters of
their individual agent model (e.g., per-agent ARIMA model parameters). If agents are grouped by predicted
similarity, the group can collectively have enough data to be modeled accurately. The prediction of similarity
is up to individual routines in the analysis library. For example, it may be based on organization, role,
time-zone, or a combination thereof.

4 EVALUATION

In this section, we present some of the basic results of running components of the analysis library and
simulation on data obtained from GitHub. The dataset used in this section is provided by Leidos. It covers
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Figure 2: Parameters tuning for ARIMA model
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Figure 3: Comparison of MAE for ARIMA and stationary

records from Jan 2015 to Aug 2017. All the records have been anonymized to protect privacy of Github
users. Each record specifies information of actor (user agent), payload, timestamp, action type, as well as
repository id (object id).

4.1 Predicting Activity Rate and Type

In this experiment, we are going to predict the number of different event types for a test period (month) for
each user on Github. On Github, there are about 10 different event types such as PushEvent, ForkEvent,
DeleteEvent and PullRequest. Due to space limitations, we use only the three more common event types,
PushEvent, ForkEvent and PullRequest, as representatives. We compare ARIMA and a stationary method
(where the future prediction is set identical to the current rates). First, we investigate the impact of model
structure (i.e., parameters, p, d, and q) on accuracy of the ARIMA model. We use the data from January
to June in 2015 to train the ARIMA model, then test its performance on the data in July 2015. Fig. 2
shows the mean absolute error (MAE) for different values of parameters p, d, q in predicting PushEvent
rates. From these (and similar experiments), we see that p = 4, d = 1, and q = 0 give best accuracy.

The next step is to predict the number of event types for each user using ARIMA model. It took about
2 hours to train the analysis library to generate models of 2000 agents based on six months of training
data. Fig. 3 shows the mean absolute error (MAE) in predicting the rate of different event types of the top
2000 users using ARIMA and the stationary method (where future is equal to the present). As expected,
we observe that the ARIMA method outperforms the stationary method.



After predicting the number of different event types for each user, we can compute the probability
distribution of each event type. We take one user as an example in Table 1. The second row is the number
of events predicted by the ARIMA model for this user while the last row is the corresponding probability
distribution. This probability distribution would then be part of the configuration file for simulating the
desired epoch of the user.

Table 1: Probability distribution of different events for a certain user
Issues PullReviewComment Push PullRequest IssueComment Create Watch Fork Delete CommitComment

95 197 3796 45 893 25 0 0 4 0
.0188 .0389 .7509 .0089 .1766 .0049 0 0 .0008 0

4.2 Predicting Affinity

In this part, we evaluate our ARIMA model for predicting affinities of the agents, and then compare the
performance with the stationary agent model. We use all the Github events from January to June in 2015
to train our ARIMA model and use the data in July as the test set. Per affinity definition in Section 3, for
Github, affinities refers to the set of repositories a user contributes to. In the evaluation, we build the agent
model for 105 users who are active in June 2015, and predict their interaction rates with their repositories
in July 2015 based on our ARIMA model. We then compare to the stationary model. We use the difference
between the ground truth and the prediction values as the absolute errors, and define the accumulated error
as the accumulation of the absolute errors over users. We run our ARIMA model using two cores of an
Intel i7 CPU. It took less than one hour to train the analysis library to generate models of 105 agents based
on the 6 months of training data.
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Figure 4: Comparison between ARIMA and stationary

Figure 4(a) shows the average absolute error of ARIMA and the Stationary model over the 105 users.
We observe that our ARIMA model generates a smaller absolute error overall. Breaking it down by user,
Figure 4(b) shows that ARIMA gives better error for 78.6% users, while the Stationary model performs
better for the remaining 21.4%). Figure 4(c) shows the cumulative absolute errors, verifying the advantages
of ARIMA-based prediction.

4.3 Understanding Short-term Dependencies

In this subsection, we briefly present the evaluation results for simulated events provided by the short-
term point process model we introduced before. First, we describe the performance of single repository
simulation results. Second, we enlarge the scope of comparison and evaluate aggregate performance on a
set of popular repositories.
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Figure 5: Estimation and simulation results on repository ”JwcbE-owDa9ymJm3D4xhsw”.

In the first experiment, we randomly choose one repository out of the January 2015 event set and
estimate its point process parameters. Then we simulate this model in February 2015 and compare it with
ground truth. The estimated triggering kernels, and the cumulative distributions of number of events over
time are shown in Figure 5. From the triggering kernel map, we can see that the different event types on
this repository are relatively independent because the triggering coefficients are higher in diagonal elements
except for the IssuesEvent. As presented in this figure, our point process model maintains the daily activity
level (i.e., slope of curve) and the burstiness (i.e., smoothness of curve) well in the simulation.

In addition, we compare other statistical metrics in the Table 2. In this table, the diffusion delay
is defined as the time difference between the time of first event on this repository and the time of each
following event. It represents the average offset of all the events in this repository. Our simulation is within
10% error of the groundtruth. The simulation also performs well on the average inter-event time and total
number of events because it is designed to model the triggering effects on inter-event times.

Table 2: Comparison on single repository.

Metric Groundtruth Simulation
Average Diffusion Delay 325.599 h 348.077 h
Average Inter-event Time 1575.643 s 1579.644 s
Total Number of Events 1497 1532

Next, to test the performance of our model on more data, we choose the 1000 most popular repositories
in the first half year of 2015 to perform simulation. In this experiment, we only show the WatchEvent and
ForkEvent, which reflect the popularity of these repositories. The training period is January 2015 to June
2015, and the simulation is conducted in July 2015. We first independently estimate the parameters for each
repository, then perform separate simulation on them, and finally combine the simulated events together to
compare with the groundtruth events on these repositories. The total training time of the analysis library
for the 1000 repositories is about 6 hours on a server with 48 Intel Xeon CPUs@2.50GHz and 256 GB
memory, where the total number of events on these repos is beyond 1.4 million. However, the simulation
of these repositories will only last for 250∼ 300 seconds to generate one month of results, running on a
single core. The comparison results of accuracy are given in Table 3.

Table 3: Comparison on top 1000 repositories.

Metric Groundtruth Simulation
Average Diffusion Delay 372.401191 h 373.485502 h
Average Inter-event Time 83815.010660 s 80263.662305 s
Total Number of Events 242247 275133



In Table 3, since we include more repositories in the comparison, the diffusion delay distribution is
more balanced, resulting the average delay very close to the middle point of a month. We still obtain
good accuracy on average inter-event time (relative error < 5%) and total number of events (relative error
' 12%), which proves the stability of the point process model.

4.4 Trend Aggregation

Here, we evaluate both the efficiency and accuracy of clustering by temporal behavior patterns. In the
simulation, the offline analysis library is fed a data set with a date range of 2016-03-01 to 2016-04-01,
comprising 27803145 individual events. We compute regional predictions of temporal activity patterns
and use them to eliminate agents that are (predicted to be) asleep from simulation at every time step. The
results are detailed in Table 4.

Table 4: Evaluation results for temporal preference clustering

With Activity Level Prediction Full Simulation
Runtime (sec) 42.5 203.3

RMSE 305.4 273.1

The table shows that eliminating users predicted to be inactive based on time zone saves 79.1% of
simulation time, while the percent difference in simulation error (RMSE) in predicting hourly PushEvents
for the simulated month is only 11.2%. Better clustering remains an open challenge and an active area of
development of analysis libraries for our simulator. Regardless, the decrease in overhead is substantial and
the speed-up scales well with the number of agents in the training data.

5 RELATED WORK

A key direction in simulation literature is to empower diverse application domains with agent-based simulators
for in-depth understanding of real-world complexities, and forecasting quantities of interest. Railsback et
al. proposed an agent-based simulation platform for development recommendations (Railsback et al. 2006).
Drogoul et al. design a multi-agent-based simulator for distributed artificial intelligence research (Drogoul
et al. 2002). Bunn et al. use agent-based simulation for electricity trading arrangements of England
and Wales (Bunn and Oliveira 2001). Raberto et al. apply agent-based simulation for understanding the
financial markets (Raberto et al. 2001).

Recently, simulations for online media have attracted a growing interest from the community. Abundant
studies have been made for understanding the influence of social networks on human daily lives and decision
making (Zhang et al. 2015; Lanham et al. 2014), validating online viral marketing (Serrano and Iglesias
2016; Sela et al. 2016), and modelling rumor propagation (Serrano et al. 2015; Kaligotla et al. 2015).
One key link missing from the picture, however, is a flexible and self-configuring simulation framework
that integrates various online media with a modular interface designed for extensibility of data analytics
and prediction functions.

With the proliferation of interconnected users, many studies were made on modelling user behaviour.
Wang et al. jointly model user and object interactions with latent credible status and user dependencies (Wang
et al. 2014; Wang et al. 2015). Yao et al. incorporate time information and compute a fundamental error
bound (Yao et al. 2016; Yao et al. 2016). Shao et al. formulate a nonlinear integer programming problem to
select optimal sources to solicit in order to minimize the expected fusion error (Shao et al. 2017). Zhao et al.
focus on modeling the evolution of popularity on online media by mining big information cascades (Zhao
et al. 2015). Hoang et al. study the online propagation behaviors of micro-blogging content (Hoang and
Lim 2016). From the prospective of online media simulation, it is not easy to design plug-in modules



that accommodate such diverse considerations. To the best of our knowledge, this paper develops a novel
modular framework for integrating models at different scales to address difference micro/macro concerns
while allowing self-configuration and easy retargeting.

The paper describes a novel highly retargetable simulator of online media. With systemically designed
self-configuration modules, we make automatic learning and self-configuration of online media simulators
accessible.

6 CONCLUSIONS

In this paper, we described a new simulator of social media streams. The simulator is novel in that it
does not require manual configuration. Rather, the simulated medium is automatically instantiated from
analysis of past data traces from the target medium. Prediction algorithms allow extrapolating from the
past trace to a predicted future. Preliminary evaluation results show that the predictions are accurate and
scalable. The simulator is extensible. As better prediction and clustering algorithms are developed over
time, they can be integrated as modules in the analysis library and as agent behavior models. Similarly,
as new social media are considered, they can be converted into an agent/object/action representation by
new thin pre-processing modules, allowing existing analysis algorithms to extract parameters of agents
and objects for the new medium. Thus, analysis and simulation code can be reused across different online
media. Future work of the authors will address performance optimization of the simulator, extensions of
analysis libraries and agent behavior models, and support for additional input media types.
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