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Abstract

We analyze the complexity of Node Counting, a graph-traversal method.
On many graphs arising in control problems in Artificial Intelligence,
Node Counting performsas efficiently as other methodswhich are known
to be of polynomial complexity in the number of states (e.g., Learning
Real-Time A* method). We show that complexity of Node Counting on
undirected graphsis Q(nv™), which is not polynomial in the number of
states. This solves an open problem from the literature.

1 Introduction

Node Counting is a simple graph-traversal method that has been used in artificia intelli-
gence to explore unknown environments, either on its own or to accelerate reinforcement-
learning methods. To the best of our knowledge, theterm “Node Counting” wasfirst usedin
[Thrun, 1992]. Later, it has been suggested that variants of Node Counting approximatethe
exploration behavior of ants, that use pheromonetraces to guide their exploration [Wagner
et al., 1997]. Node Counting is also similar to “Avoiding the Past: A Simple but Effective
Strategy for Reactive Navigation” [Balch and Arkin, 1993] with mobile robots.

Node Counting has been often compared to Learning Real-Time A* (LRTA*) [Korf, 1990]
which is probably the best known real-time heuristic search method. It always movesto a
successor state with aminimal approximation of the goal distance of the current state. Con-
trol methods similar to LRTA* include RTA* [Korf, 1990] and methods studied in [Russell
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Initially, the u-values u(s) are zerofor al s € S.
1. s = Sstart-
2. If s € G, then stop successfully.
a := one-of argmin, ¢ 4(s) u(succ(s, a)).
u(s) = 1+ u(s).
Execute action a. This changes the current state to succ(s, a).

s = thecurrent state.

N o g M w

Goto 2.
Figure 1: Node Counting

and Wefald, 1991].

Experimental resultsindicated that Node Counting and LRTA* perform about equally well
in many domains from artificial intelligence, which are typically undirected. LRTA* was
know to have polynomial complexity inthe number of states, thus, it wasexpected that Node
Counting have also asmall complexity on undirected graphs[K oenig and Simmons, 1996].
In this paper, we present an undirected tree on which, perhaps surprisingly, complexity of

Node Countingis Q(nV"(1/6=9)), where0 < € < & isanarbitrarily small constant. Hence,
its complexity is not polynomial in the number of states. We also show how the tree can be
extended to show that complexity of Node Counting on undirected graphsis Q(nv™).

We use the following notation to describe Node Counting: .S denotesthefinite set of states
of the domain, sg+ € S the start state, and ) # G C S the set of goal states. The
number of statesisn = |S|. A(s) # @ isthefinite set of actionsthat can be executed in
state s € S. succ(s, a) denotes the successor state that results from the execution of ac-
tiona € A(s) ingtates € S. We measure the complexity of Node Counting in action
executions and assume that one can reach agoal state from every state that can be reached
from the start state. Domains with this property guarantee that Node Counting reaches a
goal state eventually. We also use two operators with the following semantics: Given a set
X, the expression “one-of X returns an element of X according to an arbitrary rule. A
subsequent invocation of “one-of X can return the same or a different element. The ex-
pression “argmin,cx f(x)” returnsthe elementsz € X that minimize f(z), that is, the
set {z € X|f(x) =mingex f(z')}.

Node Counting is shown in Figure 1. A u-value u(s) corresponds to the number of times
Node Counting has already been in state s. Node Counting always moves to a successor
state with aminimal u-value because it wantsto get to states which it has visited a smaller
number of timesto eventually reach astatethat it hasnot yet visited at all, that is, apotential
goal state. The program for LRTA* isnearly identical, the only differenceisinline 4 which
for LTRA* assigns 1 + u(succ(s,a)) to variable u(s), whereas Node Counting sets this
varigbleto 1 + u(s).
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Figure 2: Node Counting has Exponential Runtime (m = 2,n = 18)

2 Complexity of Node Counting

In the following, we present an undirected tree that shows that the complexity of Node
Counting on undirected graphsis Q(nV"™(1/6=<)) where 0 < € < L isan arbitrarily small
constant.

Consider undirected trees of the kind shown in Figure 2. Thetreeshavem + 1 > 3 levels.
Thelevels consist of nodes of three different kinds. g-subroots, r-subroots, and leaves that
are connected to the subroots. g-subroots and r-subroots alternate. At level i = 0, thereis
one subroot, namely ag-subroot go. At levelsi = 1...m, there are two subroots, namely
an r-subroot r; and ag-subroot g;. Subroot g; hasm + i leaves connected to it, and subroot
r; has one leaf connected to it. Finaly, subroot g, is connected to two additional nodes,
namely the start node and the single goal node. Thetreeshaven = %mz + %m + 3 nodes.

Node Counting proceedsin a series of passesthrough the tree, each passtraversing the sub-
rootsin the opposite order than the previous pass. We call apassthat traverses the subroots
in descending order a down pass, and a pass that traverses them in ascending order an up
pass. We number passes from zero on upward. Thus, even passes are down passes and odd
passes are up passes. A pass ends immediately before it changes directions.

The semantics of “one-of arg” operator in Line 3in Figure 2 allows for a selection of any
element of the operator’s argument set. Hence, we present a selection rulefor this operator
that results in bad performance. The selection is possible only when the current state of
Node Counting isasubroot since all leaves have only asingle successor state. We makethe
selections as follows:

During pass zero, whenever possible, aleaf nodeis selected at g-subrootsand ag-subroot is
selected at r-subroots. The selection of the subroot is unique. In case of leaves, any ligible
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leaf can be chosen. Passzero endsin subroot g after each leaf of subroot gq hasbeenvisited
once. Asaresult, at the end of pass zero each subroot g; has been visited m + ¢ + 1 times,
and each of its leaves has been visited once. Each r-subroot has been visited once, and its
leaf has not been visited at all.

During all subsequent passes, whenever possible, asubroot isselected. If two r-subrootsare
eligible for selection (when Node Counting is at a g-subroot) then that r-subroot is chosen
which extendsthe current pass. If two g-subrootsare eligible (when Node Countingisat an
r-subroot), the g-subroot is chosen in such away asto terminate the current pass and start a
new onein the opposite direction. When only leaves are eligible for selection, one of them
is chosen arbitrarily.

In the sequel, we consider atree with arbitrary but constant number of levelsm + 1. Hence,
in the three functions defined below, an argument m is omitted for the sake of brevity. Let
vp(s) denotethetotal number of timesthat subroot s of the considered tree has been entered
at theend of pass p. By definition, v, (s) isanondecreasing function of p. Our selection of
the successor rulesensurethat all leaves of asubroot have been entered the same number of
timesat theend of each pass, so wewill denotew, (s) the number of timeseach of theleaves
of subroot s has been entered at the end of passp. Finaly, let z,(s) denotethe total number
of times subroot s has been entered from non-leavesat the end of passp. Thesevaluesrelate
asfollows: Thetotal number of timesthat a subroot was entered at the end of pass p isequal
to the product of the number of its leaves and the total number of times that it was entered
from each of itsleavesat the end of pass p (which equalsthetotal number of timesthat each
of itsleaves was entered at the end of passp) plusthetotal number of timesthe subroot was
entered from non-leavesat theend of passp. For example, vy, (g;) = (m+i)wp(g:)+p(g:)-

Lemma 1 Assumethat Node Counting visits subroot s (with s # g,,,) during passp, where
0 < p < 2m. Thevaluesv,(s) can then be calculated as follows:

Vor+1(g0) = var(go) = muvak(r1) + z21(g0)
and for i > 0:
var(gi) = (m+i)min(ver—1(ri), vor(rix1)) + 21 (gi)
vak+1(9:) = (m+4) min(vor (rit1), var+1(ri)) + T26+1(9:)
var(ri) = min(var—1(gi—1), var(gi)) + w2r (1)
vary1(ri) = min(vek(gi), var+1(gi=1)) + T2r11(r:)

Proof: Consider first the subroot g, when visited by down pass 2k. While the number of
visitsat any of itsleavesislessthan vsy (11 ), Node Counting will moveto such aleaf. Thus,
when Node Counting movesto ry, it must bethat w11 (go) = w2k (go) = ver(r1). Hence
Var41(90) = var(go) = m var(r1) + T2x(g0)-

Assume now that Node Counting visits subroot g; (0 < 4 < m) during down
pass 2k # 0. As long as the number of visits to any of the leaves of subroot
gi is less than min(veg—1(7;), var (riv1)), Node Counting will move to such a lesf.
Hence, when Node Counting moves to another subroot, it must hold that wqy(g;) =
max(min(veg—1(r;), ver (rit1)), war—1(g;)). Likewise, assumethat Node Counting visits
subroot g; (with0 < i < m) duringup pass2k+ 1 > 0. Then, accordingto our selection of
the successor rules, it holdsthat wa,t1(g;) = max(min(veg (7i41), Vag+1(7:)), wak (g;))-
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We now show by induction on p that, for all passes p and al subroots g; with1 < i < m,
it holds that w),(¢g;) < min(vy(r;),vp(ri41)). For pass zero, it holdsthat wy(g;) = 1 <
min(1,1) = min(v,(r;), vp(ri+1)). Assume that the inequality holds for down pass 2k.
Then, if Node Counting visits subroot g; during up pass 2k + 1, it holdsthat

wort1(g:) = max(min(vek (Tit1), vart1(77)), war (i)

max(min(vak+1(ri), var+1(ri41)), min(vzk (ri), var (ris1)))

N

= min(vag+1(ri), var+1(ris1)),

because v, (s) is a non-decreasing function of pass number p. If Node Counting does
not visit subroot g; during up pass 2k + 1, then it holds that war4+1(g;) = war(gi) <
min(veg (1;), vak (rir1)) < min(veg41(7i), var+1(rit1)), 8gain based on monotonicity of
vp(s) iNp. Assuming that theinequality holdsfor up pass2k + 1, asimilar argument shows
that the inequality continuesto hold for the following down pass.

Now assume again that Node Counting visits subroot ¢; (0 < ¢ < m) during down
pass 2k # 0. Then, as we just showed woi—1(g;) < min((var—1(7i), var—1(rit1)) <
min(vag—1(r;), var (ri+1)) because v, (s) is nondecreasing function of p. Hence, it holds
that

war(g:) = max(min(var—1(r:), var (ri+1)), war—1(9:))
= min(vag—1(r:), v2r (rit1))
and finally
var(gi) = (m+ )wa(gi) + z21(g:)
= (m+ 1) min(vog—1(ri), var (ri+1)) + Tax(gi)-

A similar argument showsthat it holdsthat vag 11 (g;) = (m + ) wag+1(g:) + T2r41(g9:) =
(m + ) min(var (rit1), var41(ri)) + T2r41(95)-

The remaining two equalities defining the number of visits at r-subroots can be derived sim-
ilarly. m

We now use the lemmato prove the following theorem.

Theorem 1 If p = 2k for 0 < k < m, then the down pass ends at subroot g, and it holds
that

m(vzk_z(gi)+2k)+k+1 forte=0<k

var(gi) = { (m+i)(vak—2(g:) + 2k — 20+ 1)+ 2k — 2i + 1 for0<i<k
m+i+1 otherwise

) _ ng_l(gi71)+2k—2i+2 f0r0<i§k
var(ri) = 1 otherwise
kE+1 fori =0

zon(g) = { 2% — 2+ 1 foro<i<k
1 otherwise

o(r) = { 2k — 2i + 2 foro<i<k
¢ 1 otherwise

var(ri) > vak—1(ri—1) forl<i<k

var(gi) > var—1(gi-1) for0 <i<k



If p=2k+ 1for 0 <k < m, then the up pass ends at subroot 41 (with the exception of
up pass 2m + 1 that ends at the goal state) and it holds that

v2k (9:) fori=0
vons1(ge) = (m +i)(var—1(9:) + 2k — 2i) + 2k — 20 + 2 for0<i<k
- ! m+i+2 foro0<i==k
m+1+1 otherwise
vor(g:) + 2k — 20 +3 for0<i<k
vopt1(ri) = { vak+1(gi—1) + 2 fori=k+1<m
1 otherwise
k+1 fori =10
Tokt1(gi) = { 2k — 2 +2 foro<i<k
1 otherwise
2k —2i+3 foro<i<k
Tokt1(ri) = { 2 fori=k+1<m
1 otherwise
vokt1(ri) > var(rigr) foro<i<k
vak+1(gi) > v2r(git1) foro<i<k

Proof by induction on the number of executed actions:

Part 1: The valuesare correct for p = 0.

vo(gi) = m+i+1 for0<i<m
vo(ri) = 1 for0<i<m
zo(gi) = 1 foro<i<m
zo(ri) = 1 for0<i<m

At the end of the down pass, Node Counting is at subroot g, and is about to moveto subroot
r1, starting an up pass.

For the remainder of the proof, notice that Node Counting cannot return to a subroot during
apass after it has moved from the subroot to a different subroot (such areturn constitutes a
change of direction of a pass, so it ends the current pass and starts a new one).

Part 2: Assumethat p = 2k + 1 for 0 < k < m. Up pass 2k + 1 starts where the previous
down pass ended, that is, at subroot go. To determinethe values voy11 () for subroot s we
distinguish the following six cases:

Ls=gyfor0 <k <m.

Valuexar+1(go): Accordingtotheinduction hypothesis, it holdsthat zo;11(go) =
1‘2k(go) =k+1.

Valuewvsr11(go): According to theinduction hypothesis, Node Counting startsthe
down pass at subroot g, and the next subroot that Node Counting visitsisr;. Thus,
it holdsthat vay41 (g()) = Vok (go).



Inequality var+1(go) > var(g1) for k > 0: Accordingto theinduction hypothesis,
it holdsfor 0 <1 < k that

Vo1 (g0) = var(go) = m+1 forl =0

2+1190) = v21ig0} = m(va_2(go) +21) +1+1 otherwise.

From this definition, it follows that ve;11(go) > mw2;—1(go) and by induction on
I we get var11(go) > v1(go)m! = (m + 1)m!. Solving the recursion yields

m!t? 4+ m! T !t (2l+2)m +(=2m+i+1
2-2m+1

v+1(g0) =
Similarly, according to the induction hypothesis, it holdsfor 1 <[ < k that

{ m+ 2 forl=1

va(gr) (m+1)(vst_2(g1)+ 21— 1)+ 21— 1 otherwise

Solving the recursion yields

(m+ 1) (m> 4 5m? + 8m + 4) — (m® + 4 + 2m>1 + 4ml + 4m)
m? '

var(g1) =

Using the previous results, we verify for 2 < m < 5and0 < k£ < m that
var41(g0) > v2r(91) (see Table below).

m | v3(go) wa2(g1) | vabgo) wa(g1) | vr(go) we(g1) | wal(go) ws(g1)
2 12 4 35 24
3 20 5 75 35 247 165
4 30 6 139 48 584 270 2373 1392

vort1(go) > (m+1)m* and k( ) < (m+1)F Y (m?+5m?+8m+4)/m? =
(m + 1)F(1 + 4(m + 1))/m? for 0 < k < m. We aso utilize the well known
inequality

Now assume that m > 5. Then, using the previous results we know that

(1 + %)m <e, o

where e isthe basis of natural algorithms (thisinequality holdsfor all natural m,
see [Finney and Thomas, 1994]). Then, it holdsfor 0 < k£ < m that

U2k(gl) < (m + 1) =

m* (1 4+ 1/m)* (m + 1) (% + i)
m¥(m +1)(1 + 1/m)™ (% n %)
m*(m + 1)e (é + 245) <mF(m+1)
v2k+1(go)-
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22s=r;for0<i<k<m.

Valuexsy,11 (r;): Accordingto theinduction hypothesis, it holdsthat zo5, 11 (1) =
xop(ri) +1 =2k — 2i + 3.

Value wvar41(r;):  According to the induction hypothesis, it holds that
vor+1(gi—1) > var(g;) for 0 < i < k. Thus, the next subroot that Node Count-
ing visitsis g;. According to the lemmaand theinduction hypothesis, it holds that
Va1 (i) = min(vak (i), Var+1(9i—1)) + Tort1 (rs) = var(gs) + 2k — 20 + 3.
Inequality vagt1(r;) > var(ri41): For i = k, according to the induction hypoth-
esis, it holds that U2k 41 (’I"l) = 'UQk(gi) +2k—-2i+3>12> UQk(Ti+1) because
either nopass (fori = k = m) oronly pass0 (i = k < m) reached subroot
ri+1. Otherwise, if 0 < ¢ < k then it holds from the induction hypothesis that
V2k4-1 (T‘,) = U2k (g,) +2k—2i+3 > ngfl(gi) + 2k — 21 = vy, (TiJrl) because
vp(s) isanon-decreasing function of p.

Is=g;ford<i<k

Valuezs,+1(g;): Accordingto theinduction hypothesis, it holdsthat x2x+1(g;) =
xgk(gi) +1=2k— 2+ 3.

Value va11(g;): The induction hypothesis implies that vog (ri+1) < vogt1(r;)
so the next visited subroot is ;1 and the lemmaimpliesthat vog11(g9;) = (m +
i)v%(riﬂ) + Top+1 (gz) = (m + Z')(ngfl(gifl) + 2k — 22) + 2k — 21 + 2.
Inequality vag4+1(g:) > wv2r(gi+1): We start by noticing that vor+1(9;) =
vor(gi) + 1for 0 < i < k. Thisistruefor ¢ = k directly from equations defining
theinitial number of visits and the first changed values of vog1(gx). Fori < k
we have by induction fromi toi — 1:

vap+1(g9:) = (mA+10)(vae—1(gi) +2(k — @) +2(k — 1) +2
= (m+d)(vak—1)(gi) +2(k —3) + 1) +2(k — ) +2
= wx(gi) + 1.
Asaresult, the postulated inequality holdsif, and only if
va(gi) > wvar(giv1)- 2

According to the induction hypothesis, it holdsfor 0 < I < k that

v(gh) = m+i+1 forl =i
A9} = (m +14)(vai—2(gi) + 20 —2i +1) + 21 — 2i + 1 otherwise.

From this definition, it follows that v (g;) > (m + i)v—2(g;) and by induction
onlweget vy (g;) > volgi)(m + i)t = (m +i+ 1)(m + i) % Solving the
recursion yields

var(gi) = (m+i+1)
Nk—i Nk—i 3(m+i)—1 . 2
((m+l)k + ((m+ i) —l)m—(k—z)m>
< (m+i+1)(m+1) <1+m+i—1+(m+i—1)2>'
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Inthe proof of thisinequality wewill useagaininequality (1), soform > 5, i > 0
we obtain

_ . . k—i—1 3 2
vap(giv1) < (Mm+i+2)(m+i+1) <1+m+i+(m+i)2

; 1 1 1
< i (14 o) (145 0 )
s (mtitl) Ry S R T

L k—i 14 . L k—12€
< (m+1) EES(m—i—z—i—l)(m—i—z) N

< (mA4i+)(m4+i0) " < var(gi).

proving the postulated inequality for m > 5. In the table below, we verify that
v2k(gi) > var(gi+1 for 2 < m < 5 using the solution of the recursion.

m k| var(g1) wva(g2) wvak(gs) v2k(ga)
2 2 42 5
3 2 35 6
3 3 165 48 7
4 2 48 7
4 3 270 63 8
4 4 1392 413 80 9

4s=grfor0<k<m

Value zs41(gr): According to the induction hypothesis, it holds that
Toky1(gk) = Tar(gr) + 1= 2.

Valuevsy11 (gr): Consider two cases. For 0 < k& < m, according to theinduction
hypothesis, it holdsthat vog41 (k) > var(re+1) for 0 < k < m. Thus, the next
subroot that Node Counting visitsis 1. According to thelemmaand theinduc-
tion hypothesis, it holdsthat vay.1 (9x) = (m + k) min(vag (re+1), v2g+1 (7)) +
Zop+1(gr) = m + k + 2. The complementary case is for k¥ = m, when, ac-
cording the induction hypothesis, it also holds that vog+1(re) = vomt1(rm) =
vom(9m) + 3 > 1. According to the selection of the successor rule, Node Count-
ing movesto the goal state and terminates since the value of the start state is till
one and the value of the goal stateis still zero. Thus, the next subroot that Node
Counting visitsis 1. According to the lemma and the induction hypothesis, it
holdsthat vag+1(gx) = vom+1(gm) = 2m + 2.

5 s=rppfor0<k<m

Value zap41(rg+1): According to the induction hypothesis, it holds that
Topg1(Thyr) = Tor(Phyr) +1 =2

Value vag 11 (rr+1): It follows from the induction hypothesis, that vay (gr+1) =
m+ k+ 2 > vopr1(gr) because vopr1(gr) = m+k+2for0 < k < m
and voi+1(g90) = m + 1 for k = 0. According to the selection of the succes-
sor rules, this endsthe up pass and starts a down pass. Thus, the next subroot that
Node Counting visitsis g;. According to the lemma and the induction hypothe-
sis, it holds that V2k4-1 (rk—i-l) = min(vgk(gk+1), V2k4-1 (gk)) + Top41 (Tk+1) =
Uak+1(gr) + 2.



6:s=riforl<k+l<i<mors=g;for0<k<i<m.

Values: Sinceup pass2k + 1 startsat subroot o and ends at subroot r.,; (withthe
exception of up pass 2m + 1 that ends at the goal state), Node Counting does not
visitthesubrootsr; fori > k41 nor thesubrootsg; fori > k duringup pass2k+1.
Thus, according to theinduction hypothesis, it holdsthat o, 1 (1;) = z2x(r;) = 1
and V2k+1 (Tz) = ng(T‘i) =1fori > k+1,and Tok41 (gz) = l‘zk(gi) =1and
vor1(9i) = var(g;) =m +i+ 1fori > k.

Part 3: Assumethat p = 2k for 0 < & < m. Down pass 2k starts where the previous up
pass ended, that is, at subroot r;.. To determine the values vy, (s) for subroot s, we distin-
guish five cases:

Ls=ryfor0<k<m.

Value zoy (1 ): According to theinduction hypothesis, al previous passes, except
pass 0, ended beforereaching 7y, SO xok (1) = xogp—1(rr) = 2.

Value vo (r): According to the induction hypothesis, Node Counting starts the
down pass at subroot r;, and the next subroot that Node Counting visits is g—1.
Thus, it holds that V2 (T‘k) = U2k—1 (Tk).

Inequality veor(rr) > wop—1(rg—1fork > 4 > 1: As show above,
vor(rr) = wvar_1(rk) @nd, according to the induction hypothesis, vor_1(ry) =
Vak—1(gr—1) +2=m+k + 3 = vop—2(gr—1) + 3 = vap—1(rk—1).

2.s=g;for0<i<k<m.

Value z2x (g;): According to the induction hypothesis, it holds that z2(g;)
ka_l(gi) +1=2k—2i+1.

Value vo(g;): According to the induction hypothesis, it holds that vay, (r;+1)
vor—1(r;). Thus, according to the selection of the successor rule, Node Count-
ing continues with the down pass and the next subroot that it visitsis r;. Thus,
according to the lemma and the induction hypothesis, it holds that vay(g;) =
(m+14) min(veg—1(r;), vor (rix1)) + T21(g:) = (M+8)vog—_1(r;) +2k—2i+1 =
(m + i) (vap—2(gi) + 2k — 20 + 1) + 2k — 2i + 1.

Inequdity var(g;) > wvar—1(gi—1): As shown above var(g;) = (m +
i) (v2g—2(g:)+2k—2i+1)+2k—2i+1. Accordingto theinductionhypothesis1 <
Vok—2(gi)+2k—2i+1 = vog_1(r;), 0V (gi) = (m+i—1)vog_1(r;)+2k—2i+
2—(1—U2k_1(ri)) > (m+i—1)v2k_1(ri)+2k—2i+2. Ontheother hand, from
Iemmawehavevgk_l(gi_l) = (m+i—1)v2k_2(ri)+x2k_2(gi_1) either dlrectly
(fori = 0) or onthebasisof inequality vog_2(r;) < vor—3(r;—1) satisfied accord-
ing to the induction hypothesisfor k£ > ¢ > 1. However, vag_2(r;) < vog—1(r;)
based on monotonicity of v, (s) inpand zax_1(g;—1 < 2k—2i+2 fromtheinduc-
tion hypothesis, so finally vor—1(gi—1) < (m+i—1)vap—1(r;) + 2k —2i+2 <
vk (9i)-

v

Is=rifor0<i<k<m.
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Value x4 (r;): According to the induction hypothesis, it holds that zor(r;) =
1‘2]@,1(7'2') +1=2k—2i+ 2.

Value vo (1;): According to the induction hypothesis, it holds that vay(g;) >
vog—1(gi—1). Thus, the next subroot that Node Counting visits is g;—1. Ac-
cording to the lemma and the induction hypothesis, it holds that vo(r;) =
min(veg—1(9i—1), vor (73)) + T2x(r:) = vor—1(g9i—1) + 2k — 20 + 2.

Inequality vor (r;) > var_1(ri—1) for 1 < i < k: According to the induction
hypothesis, Node Counting visits subroot g;_; during up pass 2k — 1. Thus, it
holdsthat vag—1(gi—1) > var—2(gi—1) and, according to theinduction hypothesis,
Vok (1) = Vor—1(9i—1)+2k—204+2 > vo_o(gi—1) +2k—2i+3 = vop_1 (ri—1).

4 s=gygfor0 < k <m.

Value z21 (go): According to the induction hypothesis, it holds that z2x(g0) =
1‘2]9,1(90) +1=k+1.

Value vai, (go): The next subroot that Node Counting visitsis 1, which ends the
down pass and starts an up pass. For k£ > 1, according to the induction hypothesis
UQk(Tl) = 'UQk_l(g()) + 2k = UQk_Q(g()) + 2k. Fork = 1, 1)2(7'1) = ’01(7'1) =
v1(go) + 2 = vo(go) + 2. Thus, according to the lemmaand the induction hypoth-
esis, it holdsthat vor (go) = mvar(r1) + zak (go) = m (vog—2(go) + 2k) + k + 1.

Bis=rifor0<k<i<mors=g;for0 <k <i<m.

Values. Since down pass 2k starts at subroot r, and ends at subroot gy, Node
Counting does not visit the subroots r; for ¢ > k nor the subroots g; for i > k
during down pass 2k. Thus, according to the induction hypothesis, it holds that
I'Zk(ri) = .Tgk,l(ri) = 1and ng(T‘i) = ng,l(ri) = 1fori > k, and
ok (g:) = war—1(g;) = 1 and vy (g;) = vox—1(g9;) = m + i+ 1fori > k.

This completesthe proof. m
Thus, Node Counting reaches the goal node during up pass2m + 1. Settingl = m in

Equation (1) resultsin

mm+3 + mm+2 + mm+l _ 2m3 _ m2 —m+ 1 m
vam(go) = m2 —2m+1 > me.

For example, v4,2(g0) = 35 asshownin Figure 2.

Recall that n = 2m? + $m + 3. Consider an arbitrary constant 0 < € < 1/6. Assume
that m > 1/e — 4. First, thisimpliesthat 1/m < €/(1 — 4¢). Second, it implies that

m > 2andthusn = 2m? + 3m + 3 < 2 (1+ 2)m?. Put together, it follows that

n< 3 (1455 ) m? = 325 andthusm > 4 /3n(1 - 4e).

(V)

In the following, we utilize an inequality (an)® > n(1=9% vaid for n > (1/a)'/¢ and
1/e
a > 0. Hence, it holdsfor n > m > max <% — 4, (ﬁ) > that
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\/2n(l—4e)/3
m > 2n(1 — 4e)/3 R
— ((2 _ Se)n/3)l/2\/2n(1745)/3

n(l—e)\/n(l—4e)/6 _ n\/(l—e)2n(l—4e)/6
n\/(1726)n(1746)/6 _ n\/(1/675+452/3)n

n\/(1/6*6)n

Y

vV Vv

Hence, va,, (g0) > m™ = Q (nv(l/f‘*@”), where0 < € < 1/6 isan arbitrarily small
constant. Thus, the complexity of Node Counting on undirected graphsisQ (n\/ a/ 6—6)") .

3 Conclusion

We conclude that the performance of Node Counting can be exponentia in the number of
states even if the domains are undirected trees. Determining a tight bound on the perfor-
mance of Node Counting in undirected domainsis still an open problem.

The construction of thetree can be generalized. Let thetree havem + 1 levelswith the bot-
tom subtree having ¢(m) leaves. To ensure that passes up change direction in subsequent
levels and there are 2m + 1 passes atogether, the number of leaves of g-subroots must in-
crease by one on each level. For inequality (2) to hold, we must aso havet(m) in O (m?®),
where ¢ > 0. Hence, such atree will produce O (¢(m)™) visits to the bottom g-subroot
and will haven = O (mt(m) + m?) nodes. A quick analysis shows that selectinga = 1
ensures the fastest asymptotic growth of the number of visits. Hence, ¢(m) isalinear func-
tion of m, i.e. t(m) = ecm + d for some constants ¢ and d. We can assume d = 0 because
this coefficient does not impact asymptotic complexity of Node Counting. As aresult, the
treehasn = (¢ +1/2)m? + o(m?) nodesand thereforem > /13- For any given small
constant e we can select ¢ = ¢/2 and for sufficiently large m (and corresponding to it ),
the created tree will force Node Counting to make € (nV n(t/ 2‘6)) steps before reaching

agoal.

Another generalizationisto increase the number of leavesin ther-subtrees. Without chang-
ing the behavior of the algorithmwe can haveuptom!'~?, 3 > 0 leavesfor each r-subroot.
The number of nodesin thetree will remainin (1/2 +c¢)m? +o(m?) but each passwill now
result in multiplication of thevisitsto leavesby m' ~# beforethe result is added to the num-
ber of visits to the corresponding r-subroots. As aresult, the complexity of Node Counting

onsuch atreeisin (nV (2*5)”) and alsoin (n\/ﬁ)
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