
The Complexity of Node Counting
on Undirected Graphs

Boleslaw Szymanski
Department of Computer Science, Rensselaer Polytechnic Institute

szymansk@cs.rpi.edu

Sven Koenig
College of Computing, Georgia Institute of Technology

skoenig@cc.gatech.edu

Abstract

We analyze the complexity of Node Counting, a graph-traversal method.
On many graphs arising in control problems in Artificial Intelligence,
Node Counting performs as efficiently as other methods which are known
to be of polynomial complexity in the number of states (e.g., Learning
Real-Time A* method). We show that complexity of Node Counting on
undirected graphs is 
(n

p
n), which is not polynomial in the number of

states. This solves an open problem from the literature.

1 Introduction

Node Counting is a simple graph-traversal method that has been used in artificial intelli-
gence to explore unknown environments, either on its own or to accelerate reinforcement-
learning methods. To the best of our knowledge, the term “Node Counting” was first used in
[Thrun, 1992]. Later, it has been suggested that variants of Node Counting approximate the
exploration behavior of ants, that use pheromone traces to guide their exploration [Wagner
et al., 1997]. Node Counting is also similar to “Avoiding the Past: A Simple but Effective
Strategy for Reactive Navigation” [Balch and Arkin, 1993] with mobile robots.

Node Counting has been often compared to Learning Real-Time A* (LRTA*) [Korf, 1990]
which is probably the best known real-time heuristic search method. It always moves to a
successor state with a minimal approximation of the goal distance of the current state. Con-
trol methods similar to LRTA* include RTA* [Korf, 1990] and methods studied in [Russell

Bolek
Text Box
Technical Report CS 98-02, Department of Computer Science, RPI, 1998



Initially, the u-values u(s) are zero for all s 2 S.

1. s := sstart.

2. If s 2 G, then stop successfully.

3. a := one-of argmina2A(s) u(succ(s; a)).

4. u(s) := 1 + u(s).

5. Execute action a. This changes the current state to succ(s; a).

6. s := the current state.

7. Go to 2.

Figure 1: Node Counting

and Wefald, 1991].

Experimental results indicated that Node Counting and LRTA* perform about equally well
in many domains from artificial intelligence, which are typically undirected. LRTA* was
know to have polynomial complexity in the number of states, thus, it was expected that Node
Counting have also a small complexity on undirected graphs [Koenig and Simmons, 1996].
In this paper, we present an undirected tree on which, perhaps surprisingly, complexity of

Node Counting is
(n
p

n(1=6��)), where 0 < � < 1
6 is an arbitrarily small constant. Hence,

its complexity is not polynomial in the number of states. We also show how the tree can be
extended to show that complexity of Node Counting on undirected graphs is 
(n

p
n).

We use the following notation to describe Node Counting: S denotes the finite set of states
of the domain, sstart 2 S the start state, and ; 6= G � S the set of goal states. The
number of states is n := jSj. A(s) 6= ; is the finite set of actions that can be executed in
state s 2 S. succ(s; a) denotes the successor state that results from the execution of ac-
tion a 2 A(s) in state s 2 S. We measure the complexity of Node Counting in action
executions and assume that one can reach a goal state from every state that can be reached
from the start state. Domains with this property guarantee that Node Counting reaches a
goal state eventually. We also use two operators with the following semantics: Given a set
X , the expression “one-ofX” returns an element of X according to an arbitrary rule. A
subsequent invocation of “one-ofX” can return the same or a different element. The ex-
pression “argminx2X f(x)” returns the elements x 2 X that minimize f(x), that is, the
set fx 2 X jf(x) = minx02X f(x0)g.

Node Counting is shown in Figure 1. A u-value u(s) corresponds to the number of times
Node Counting has already been in state s. Node Counting always moves to a successor
state with a minimal u-value because it wants to get to states which it has visited a smaller
number of times to eventually reach a state that it has not yet visited at all, that is, a potential
goal state. The program for LRTA* is nearly identical, the only difference is in line 4 which
for LTRA* assigns 1 + u(succ(s; a)) to variable u(s), whereas Node Counting sets this
variable to 1 + u(s).

2



start goal

le
ve

l 1

r2

r1

g2

g1

g0

state state

le
ve

l 2
le

ve
l 0

pass 0
(down pass)

5

1

4

1

3

pass 1
(up pass)

5

1

4

5

3

pass 2
(down pass)

5

1

4

5

12

pass 3
(up pass)

5

7

5

7

12

pass 4
(down pass)

5

7

24

16

35

pass 5
(up pass)

6

8

25

29

35

number of times
the vertex has been
visited at the end

of the pass

1

1

1

0

1

1

1

0

1

1

1

1

1

1

0

1

1

1

3

1

1

1

1

1

1

0

1

1

1

3

5

5

1

1

1

1

5

1

1

1

4

5

5

1

1

1

1

5

7

7

7

12

16

16

1

1

1

1

5

7

7

7

24

16

16

1

1 0 1 0 1 0 1 0 1 0 1 1

Figure 2: Node Counting has Exponential Runtime (m = 2; n = 18)

2 Complexity of Node Counting

In the following, we present an undirected tree that shows that the complexity of Node

Counting on undirected graphs is 
(n
p

n(1=6��)), where 0 < � < 1
6 is an arbitrarily small

constant.

Consider undirected trees of the kind shown in Figure 2. The trees havem+ 1 � 3 levels.
The levels consist of nodes of three different kinds: g-subroots, r-subroots, and leaves that
are connected to the subroots. g-subroots and r-subroots alternate. At level i = 0, there is
one subroot, namely a g-subroot g0. At levels i = 1 : : :m, there are two subroots, namely
an r-subroot ri and a g-subroot gi. Subroot gi has m+ i leaves connected to it, and subroot
ri has one leaf connected to it. Finally, subroot gm is connected to two additional nodes,
namely the start node and the single goal node. The trees have n = 3

2m
2 + 9

2m+3 nodes.

Node Counting proceeds in a series of passes through the tree, each pass traversing the sub-
roots in the opposite order than the previous pass. We call a pass that traverses the subroots
in descending order a down pass, and a pass that traverses them in ascending order an up
pass. We number passes from zero on upward. Thus, even passes are down passes and odd
passes are up passes. A pass ends immediately before it changes directions.

The semantics of “one-of arg” operator in Line 3 in Figure 2 allows for a selection of any
element of the operator’s argument set. Hence, we present a selection rule for this operator
that results in bad performance. The selection is possible only when the current state of
Node Counting is a subroot since all leaves have only a single successor state. We make the
selections as follows:

During pass zero, whenever possible, a leaf node is selected at g-subroots and a g-subroot is
selected at r-subroots. The selection of the subroot is unique. In case of leaves, any eligible

3



leaf can be chosen. Pass zero ends in subroot g0 after each leaf of subroot g0 has been visited
once. As a result, at the end of pass zero each subroot gi has been visited m+ i+ 1 times,
and each of its leaves has been visited once. Each r-subroot has been visited once, and its
leaf has not been visited at all.

During all subsequent passes, whenever possible, a subroot is selected. If two r-subroots are
eligible for selection (when Node Counting is at a g-subroot) then that r-subroot is chosen
which extends the current pass. If two g-subroots are eligible (when Node Counting is at an
r-subroot), the g-subroot is chosen in such a way as to terminate the current pass and start a
new one in the opposite direction. When only leaves are eligible for selection, one of them
is chosen arbitrarily.

In the sequel, we consider a tree with arbitrary but constant number of levelsm+1. Hence,
in the three functions defined below, an argument m is omitted for the sake of brevity. Let
vp(s) denote the total number of times that subroot s of the considered tree has been entered
at the end of pass p. By definition, vp(s) is a nondecreasing function of p. Our selection of
the successor rules ensure that all leaves of a subroot have been entered the same number of
times at the end of each pass, so we will denotewp(s) the number of times each of the leaves
of subroot s has been entered at the end of pass p. Finally, let xp(s) denote the total number
of times subroot s has been entered from non-leaves at the end of pass p. These values relate
as follows: The total number of times that a subroot was entered at the end of pass p is equal
to the product of the number of its leaves and the total number of times that it was entered
from each of its leaves at the end of pass p (which equals the total number of times that each
of its leaves was entered at the end of pass p) plus the total number of times the subroot was
entered from non-leaves at the end of passp. For example, vp(gi) = (m+i)wp(gi)+xp(gi).

Lemma 1 Assume that Node Counting visits subroot s (with s 6= gm) during pass p, where
0 < p < 2m. The values vp(s) can then be calculated as follows:

v2k+1(g0) = v2k(g0) = m v2k(r1) + x2k(g0)

and for i > 0:

v2k(gi) = (m+ i)min(v2k�1(ri); v2k(ri+1)) + x2k(gi)

v2k+1(gi) = (m+ i)min(v2k(ri+1); v2k+1(ri)) + x2k+1(gi)

v2k(ri) = min(v2k�1(gi�1); v2k(gi)) + x2k(ri)

v2k+1(ri) = min(v2k(gi); v2k+1(gi�1)) + x2k+1(ri)

Proof: Consider first the subroot g0 when visited by down pass 2k. While the number of
visits at any of its leaves is less than v2k(r1), Node Counting will move to such a leaf. Thus,
when Node Counting moves to r1, it must be that w2k+1(g0) = w2k(g0) = v2k(r1). Hence
v2k+1(g0) = v2k(g0) = m v2k(r1) + x2k(g0).

Assume now that Node Counting visits subroot gi (0 < i < m) during down
pass 2k 6= 0. As long as the number of visits to any of the leaves of subroot
gi is less than min(v2k�1(ri); v2k(ri+1)), Node Counting will move to such a leaf.
Hence, when Node Counting moves to another subroot, it must hold that w2k(gi) =
max(min(v2k�1(ri); v2k(ri+1)); w2k�1(gi)). Likewise, assume that Node Counting visits
subroot gi (with 0 < i < m) during up pass 2k+1 > 0. Then, according to our selection of
the successor rules, it holds that w2k+1(gi) = max(min(v2k(ri+1); v2k+1(ri)); w2k(gi)).

4



We now show by induction on p that, for all passes p and all subroots gi with 1 � i < m,
it holds that wp(gi) � min(vp(ri); vp(ri+1)). For pass zero, it holds that w0(gi) = 1 �
min(1; 1) = min(vp(ri); vp(ri+1)). Assume that the inequality holds for down pass 2k.
Then, if Node Counting visits subroot gi during up pass 2k + 1, it holds that

w2k+1(gi) = max(min(v2k(ri+1); v2k+1(ri)); w2k(gi))

� max(min(v2k+1(ri); v2k+1(ri+1));min(v2k(ri); v2k(ri+1)))

= min(v2k+1(ri); v2k+1(ri+1));

because vp(s) is a non-decreasing function of pass number p. If Node Counting does
not visit subroot gi during up pass 2k + 1, then it holds that w2k+1(gi) = w2k(gi) �
min(v2k(ri); v2k(ri+1)) � min(v2k+1(ri); v2k+1(ri+1)), again based on monotonicity of
vp(s) in p. Assuming that the inequality holds for up pass 2k+1, a similar argument shows
that the inequality continues to hold for the following down pass.

Now assume again that Node Counting visits subroot gi (0 < i < m) during down
pass 2k 6= 0. Then, as we just showed w2k�1(gi) � min((v2k�1(ri); v2k�1(ri+1)) �
min(v2k�1(ri); v2k(ri+1)) because vp(s) is nondecreasing function of p. Hence, it holds
that

w2k(gi) = max(min(v2k�1(ri); v2k(ri+1)); w2k�1(gi))

= min(v2k�1(ri); v2k(ri+1))

and finally

v2k(gi) = (m+ i)w2k(gi) + x2k(gi)

= (m+ i)min(v2k�1(ri); v2k(ri+1)) + x2k(gi):

A similar argument shows that it holds that v2k+1(gi) = (m+ i)w2k+1(gi)+x2k+1(gi) =
(m+ i)min(v2k(ri+1); v2k+1(ri)) + x2k+1(gi).

The remaining two equalities defining the number of visits at r-subroots can be derived sim-
ilarly.

We now use the lemma to prove the following theorem.

Theorem 1 If p = 2k for 0 � k � m, then the down pass ends at subroot g0 and it holds
that

v2k(gi) =

(
m(v2k�2(gi) + 2k) + k + 1
(m+ i)(v2k�2(gi) + 2k � 2i+ 1) + 2k � 2i+ 1
m+ i+ 1

for i = 0 < k
for 0 < i < k
otherwise

v2k(ri) =

�
v2k�1(gi�1) + 2k � 2i+ 2
1

for 0 < i � k
otherwise

x2k(gi) =

(
k + 1
2k � 2i+ 1
1

for i = 0
for 0 < i < k
otherwise

x2k(ri) =

�
2k � 2i+ 2
1

for 0 < i � k
otherwise

v2k(ri) � v2k�1(ri�1) for 1 < i � k
v2k(gi) > v2k�1(gi�1) for 0 < i < k

5



If p = 2k + 1 for 0 � k � m, then the up pass ends at subroot rk+1 (with the exception of
up pass 2m+ 1 that ends at the goal state) and it holds that

v2k+1(gi) =

8><
>:

v2k(gi)
(m+ i)(v2k�1(gi) + 2k � 2i) + 2k � 2i+ 2
m+ i+ 2
m+ i+ 1

for i = 0
for 0 < i < k
for 0 < i = k
otherwise

v2k+1(ri) =

(
v2k(gi) + 2k � 2i+ 3
v2k+1(gi�1) + 2
1

for 0 < i � k
for i = k + 1 � m
otherwise

x2k+1(gi) =

(
k + 1
2k � 2i+ 2
1

for i = 0
for 0 < i � k
otherwise

x2k+1(ri) =

(
2k � 2i+ 3
2
1

for 0 < i � k
for i = k + 1 � m
otherwise

v2k+1(ri) � v2k(ri+1) for 0 < i � k
v2k+1(gi) > v2k(gi+1) for 0 � i < k

Proof by induction on the number of executed actions:

Part 1: The values are correct for p = 0.

v0(gi) = m+ i+ 1 for 0 � i � m
v0(ri) = 1 for 0 < i � m

x0(gi) = 1 for 0 � i � m
x0(ri) = 1 for 0 < i � m

At the end of the down pass, Node Counting is at subroot g0 and is about to move to subroot
r1, starting an up pass.

For the remainder of the proof, notice that Node Counting cannot return to a subroot during
a pass after it has moved from the subroot to a different subroot (such a return constitutes a
change of direction of a pass, so it ends the current pass and starts a new one).

Part 2: Assume that p = 2k+1 for 0 � k � m. Up pass 2k+1 starts where the previous
down pass ended, that is, at subroot g0. To determine the values v2k+1(s) for subroot s we
distinguish the following six cases:

1: s = g0 for 0 � k � m.

Valuex2k+1(g0): According to the induction hypothesis, it holds thatx2k+1(g0) =
x2k(g0) = k + 1.

Value v2k+1(g0): According to the induction hypothesis, Node Counting starts the
down pass at subroot g0 and the next subroot that Node Counting visits is r1. Thus,
it holds that v2k+1(g0) = v2k(g0).

6



Inequality v2k+1(g0) > v2k(g1) for k > 0: According to the induction hypothesis,
it holds for 0 � l � k that

v2l+1(g0) = v2l(g0) =

�
m+ 1 for l = 0
m(v2l�2(g0) + 2l) + l+ 1 otherwise.

From this definition, it follows that v2l+1(g0) > mv2l�1(g0) and by induction on
l we get v2l+1(g0) > v1(g0)m

l = (m+ 1)ml. Solving the recursion yields

v2l+1(g0) =
ml+3 +ml+2 +ml+1 � (2l + 2)m2 + (l� 2)m+ l+ 1

m2 � 2m+ 1
:

Similarly, according to the induction hypothesis, it holds for 1 � l � k that

v2l(g1) =

�
m+ 2 for l = 1
(m+ 1)(v2l�2(g1) + 2l � 1) + 2l � 1 otherwise.

Solving the recursion yields

v2l(g1) =
(m+ 1)l�1(m3 + 5m2 + 8m+ 4)� (m2 + 4 + 2m2l+ 4ml+ 4m)

m2
:

Using the previous results, we verify for 2 � m < 5 and 0 < k � m that
v2k+1(g0) > v2k(g1) (see Table below).

m v3(g0) v2(g1) v45g0) v4(g1) v7(g0) v6(g1) v9(g0) v8(g1)

2 12 4 35 24
3 20 5 75 35 247 165
4 30 6 139 48 584 270 2373 1392

Now assume that m � 5. Then, using the previous results, we know that
v2k+1(g0) > (m+1)mk and v2k(g1) < (m+1)k�1(m3+5m2+8m+4)=m2 =
(m + 1)k(1 + 4(m + 1))=m2 for 0 < k � m. We also utilize the well known
inequality �

1 +
1

m

�m
< e; (1)

where e is the basis of natural algorithms (this inequality holds for all natural m,
see [Finney and Thomas, 1994]). Then, it holds for 0 < k � m that

v2k(g1) < (m+ 1)k
1 + 4(m+ 1)

m2

= mk(1 + 1=m)k(m+ 1)
�

1

m+ 1
+

4

m2

�
� mk(m+ 1)(1 + 1=m)m

�
1

m+ 1
+

4

m2

�
< mk(m+ 1)e

�
1

6
+

4

25

�
< mk(m+ 1)

< v2k+1(g0):

7



2: s = ri for 0 < i � k � m.

Value x2k+1(ri): According to the induction hypothesis, it holds that x2k+1(ri) =
x2k(ri) + 1 = 2k � 2i+ 3.

Value v2k+1(ri): According to the induction hypothesis, it holds that
v2k+1(gi�1) > v2k(gi) for 0 < i � k. Thus, the next subroot that Node Count-
ing visits is gi. According to the lemma and the induction hypothesis, it holds that
v2k+1(ri) = min(v2k(gi); v2k+1(gi�1)) + x2k+1(ri) = v2k(gi) + 2k � 2i+ 3.

Inequality v2k+1(ri) � v2k(ri+1): For i = k, according to the induction hypoth-
esis, it holds that v2k+1(ri) = v2k(gi) + 2k � 2i + 3 � 1 � v2k(ri+1) because
either no pass (for i = k = m) or only pass 0 (i = k < m) reached subroot
ri+1. Otherwise, if 0 < i < k then it holds from the induction hypothesis that
v2k+1(ri) = v2k(gi) + 2k � 2i+ 3 � v2k�1(gi) + 2k � 2i = v2k(ri+1) because
vp(s) is a non-decreasing function of p.

3: s = gi for 0 < i < k

Value x2k+1(gi): According to the induction hypothesis, it holds that x2k+1(gi) =
x2k(gi) + 1 = 2k � 2i+ 3.

Value v2k+1(gi): The induction hypothesis implies that v2k(ri+1) � v2k+1(ri)
so the next visited subroot is ri+1 and the lemma implies that v2k+1(gi) = (m+
i)v2k(ri+1) + x2k+1(gi) = (m+ i)(v2k�1(gi�1) + 2k � 2i) + 2k � 2i+ 2.

Inequality v2k+1(gi) > v2k(gi+1): We start by noticing that v2k+1(gi) =
v2k(gi) + 1 for 0 < i � k. This is true for i = k directly from equations defining
the initial number of visits and the first changed values of v2k+1(gk). For i < k
we have by induction from i to i� 1:

v2k+1(gi) = (m+ i)(v2k�1(gi) + 2(k � i)) + 2(k � i) + 2

= (m+ i)(v2(k�1)(gi) + 2(k � i) + 1) + 2(k � i) + 2

= v2k(gi) + 1:

As a result, the postulated inequality holds if, and only if

v2k(gi) � v2k(gi+1): (2)

According to the induction hypothesis, it holds for 0 � l � k that

v2l(gi) =

�
m+ i+ 1 for l = i
(m+ i)(v2l�2(gi) + 2l� 2i+ 1) + 2l� 2i+ 1 otherwise.

From this definition, it follows that v2l(gi) > (m+ i)v2l�2(gi) and by induction
on l we get v2l(gi) > v0(gi)(m + i)l�1 = (m + i + 1)(m + i)l�i. Solving the
recursion yields

v2k(gi) = (m+ i+ 1)�
(m+ i)k�i +

�
(m+ i)k�i � 1

� 3(m+ i)� 1

(m+ i� 1)2
� (k � i)

2

m+ i � 1

�

< (m+ i+ 1)(m+ i)k�i
�
1 +

3

m+ i � 1
+

2

(m+ i� 1)2

�
:

8



In the proof of this inequality we will use again inequality (1), so form � 5; i > 0
we obtain

v2k(gi+1) < (m+ i+ 2)(m+ i+ 1)k�i�1
�
1 +

3

m+ i
+

2

(m+ i)2

�

� (m+ i+ 1)k�i
�
1 +

1

m+ i+ 2

��
1 +

1

2
+

1

18

�
< (m+ i)k�ie

14

9
� (m+ i+ 1)(m+ i)k�1

2e

9

< (m+ i+ 1)(m+ i)k�i < v2k(gi):

proving the postulated inequality for m � 5. In the table below, we verify that
v2k(gi) � v2k(gi+1 for 2 � m < 5 using the solution of the recursion.

m k v2k(g1) v2k(g2) v2k(g3) v2k(g4)

2 2 42 5
3 2 35 6
3 3 165 48 7
4 2 48 7
4 3 270 63 8
4 4 1392 413 80 9

4: s = gk for 0 < k � m

Value x2k+1(gk): According to the induction hypothesis, it holds that
x2k+1(gk) = x2k(gk) + 1 = 2.

Value v2k+1(gk): Consider two cases. For 0 < k < m, according to the induction
hypothesis, it holds that v2k+1(rk) � v2k(rk+1) for 0 < k < m. Thus, the next
subroot that Node Counting visits is rk+1. According to the lemma and the induc-
tion hypothesis, it holds that v2k+1(gk) = (m+ k)min(v2k(rk+1); v2k+1(rk)) +
x2k+1(gk) = m + k + 2. The complementary case is for k = m, when, ac-
cording the induction hypothesis, it also holds that v2k+1(rk) = v2m+1(rm) =
v2m(gm) + 3 � 1. According to the selection of the successor rule, Node Count-
ing moves to the goal state and terminates since the value of the start state is still
one and the value of the goal state is still zero. Thus, the next subroot that Node
Counting visits is rk+1. According to the lemma and the induction hypothesis, it
holds that v2k+1(gk) = v2m+1(gm) = 2m+ 2.

5: s = rk+1 for 0 � k < m

Value x2k+1(rk+1): According to the induction hypothesis, it holds that
x2k+1(rk+1) = x2k(rk+1) + 1 = 2.

Value v2k+1(rk+1): It follows from the induction hypothesis, that v2k(gk+1) =
m + k + 2 � v2k+1(gk) because v2k+1(gk) = m + k + 2 for 0 < k < m
and v2k+1(g0) = m + 1 for k = 0. According to the selection of the succes-
sor rules, this ends the up pass and starts a down pass. Thus, the next subroot that
Node Counting visits is gk. According to the lemma and the induction hypothe-
sis, it holds that v2k+1(rk+1) = min(v2k(gk+1); v2k+1(gk)) + x2k+1(rk+1) =
v2k+1(gk) + 2.

9



6: s = ri for 1 � k + 1 < i � m or s = gi for 0 � k < i � m.

Values: Since up pass 2k+1 starts at subroot r0 and ends at subroot rk+1 (with the
exception of up pass 2m+ 1 that ends at the goal state), Node Counting does not
visit the subroots ri for i > k+1 nor the subroots gi for i > k during up pass 2k+1.
Thus, according to the induction hypothesis, it holds thatx2k+1(ri) = x2k(ri) = 1
and v2k+1(ri) = v2k(ri) = 1 for i > k + 1, and x2k+1(gi) = x2k(gi) = 1 and
v2k+1(gi) = v2k(gi) = m+ i+ 1 for i > k.

Part 3: Assume that p = 2k for 0 < k � m. Down pass 2k starts where the previous up
pass ended, that is, at subroot rk . To determine the values v2k(s) for subroot s, we distin-
guish five cases:

1: s = rk for 0 < k � m.

Value x2k(rk): According to the induction hypothesis, all previous passes, except
pass 0, ended before reaching rk, so x2k(rk) = x2k�1(rk) = 2.

Value v2k(rk): According to the induction hypothesis, Node Counting starts the
down pass at subroot rk and the next subroot that Node Counting visits is gk�1.
Thus, it holds that v2k(rk) = v2k�1(rk).

Inequality v2k(rk) � v2k�1(rk�1 for k � i > 1: As show above,
v2k(rk) = v2k�1(rk) and, according to the induction hypothesis, v2k�1(rk) =
v2k�1(gk�1) + 2 = m+ k + 3 = v2k�2(gk�1) + 3 = v2k�1(rk�1).

2: s = gi for 0 < i < k � m.

Value x2k(gi): According to the induction hypothesis, it holds that x2k(gi) =
x2k�1(gi) + 1 = 2k � 2i+ 1.

Value v2k(gi): According to the induction hypothesis, it holds that v2k(ri+1) �
v2k�1(ri). Thus, according to the selection of the successor rule, Node Count-
ing continues with the down pass and the next subroot that it visits is ri. Thus,
according to the lemma and the induction hypothesis, it holds that v2k(gi) =
(m+i)min(v2k�1(ri); v2k(ri+1))+x2k(gi) = (m+i)v2k�1(ri)+2k�2i+1 =
(m+ i)(v2k�2(gi) + 2k � 2i+ 1) + 2k � 2i+ 1.

Inequality v2k(gi) > v2k�1(gi�1): As shown above v2k(gi) = (m +
i)(v2k�2(gi)+2k�2i+1)+2k�2i+1. According to the induction hypothesis1 <
v2k�2(gi)+2k�2i+1 = v2k�1(ri), so v2k(gi) = (m+i�1)v2k�1(ri)+2k�2i+
2�(1�v2k�1(ri)) > (m+i�1)v2k�1(ri)+2k�2i+2. On the other hand, from
lemma we have v2k�1(gi�1) = (m+i�1)v2k�2(ri)+x2k�2(gi�1) either directly
(for i = 0) or on the basis of inequality v2k�2(ri) � v2k�3(ri�1) satisfied accord-
ing to the induction hypothesis for k > i > 1. However, v2k�2(ri) � v2k�1(ri)
based on monotonicity of vp(s) in p and x2k�1(gi�1 � 2k�2i+2 from the induc-
tion hypothesis, so finally v2k�1(gi�1) � (m+ i� 1)v2k�1(ri) + 2k� 2i+2 <
vk(gi).

3: s = ri for 0 < i < k � m.

10



Value x2k(ri): According to the induction hypothesis, it holds that x2k(ri) =
x2k�1(ri) + 1 = 2k � 2i+ 2.

Value v2k(ri): According to the induction hypothesis, it holds that v2k(gi) >
v2k�1(gi�1). Thus, the next subroot that Node Counting visits is gi�1. Ac-
cording to the lemma and the induction hypothesis, it holds that v2k(ri) =
min(v2k�1(gi�1); v2k(ri)) + x2k(ri) = v2k�1(gi�1) + 2k � 2i+ 2.

Inequality v2k(ri) � v2k�1(ri�1) for 1 < i � k: According to the induction
hypothesis, Node Counting visits subroot gi�1 during up pass 2k � 1. Thus, it
holds that v2k�1(gi�1) > v2k�2(gi�1) and, according to the induction hypothesis,
v2k(ri) = v2k�1(gi�1)+2k�2i+2 � v2k�2(gi�1)+2k�2i+3 = v2k�1(ri�1).

4: s = g0 for 0 < k � m.

Value x2k(g0): According to the induction hypothesis, it holds that x2k(g0) =
x2k�1(g0) + 1 = k + 1.

Value v2k(g0): The next subroot that Node Counting visits is r1, which ends the
down pass and starts an up pass. For k > 1, according to the induction hypothesis
v2k(r1) = v2k�1(g0) + 2k = v2k�2(g0) + 2k. For k = 1, v2(r1) = v1(r1) =
v1(g0)+2 = v0(g0)+2. Thus, according to the lemma and the induction hypoth-
esis, it holds that v2k(g0) = mv2k(r1)+x2k(g0) = m (v2k�2(g0)+2k)+ k+1.

5: s = ri for 0 < k < i � m or s = gi for 0 < k � i � m.

Values: Since down pass 2k starts at subroot rk and ends at subroot g0, Node
Counting does not visit the subroots ri for i > k nor the subroots gi for i � k
during down pass 2k. Thus, according to the induction hypothesis, it holds that
x2k(ri) = x2k�1(ri) = 1 and v2k(ri) = v2k�1(ri) = 1 for i > k, and
x2k(gi) = x2k�1(gi) = 1 and v2k(gi) = v2k�1(gi) = m+ i+ 1 for i � k.

This completes the proof.

Thus, Node Counting reaches the goal node during up pass 2m + 1. Setting l = m in
Equation (1) results in

v2m(g0) =
mm+3 +mm+2 +mm+1 � 2m3 �m2 �m+ 1

m2 � 2m + 1
> mm:

For example, v4;2(g0) = 35 as shown in Figure 2.

Recall that n = 3
2m

2 + 9
2m + 3. Consider an arbitrary constant 0 < � < 1=6. Assume

that m > 1=� � 4. First, this implies that 1=m < �=(1 � 4�). Second, it implies that
m > 2 and thus n = 3

2m
2 + 9

2m + 3 < 3
2

�
1 + 4

m

�
m2. Put together, it follows that

n < 3
2

�
1 + 4�

1�4�

�
m2 = 3

2
m2

1�4� and thus m >
q

2
3n(1� 4�).

In the following, we utilize an inequality (an)k > n(1��)k valid for n > (1=a)1=� and

a > 0. Hence, it holds for n > m > max

�
1
� � 4;

�
3

2�8�

�1=��
that

11



mm >
p

2n(1� 4�)=3

p
2n(1�4�)=3

= ((2� 8�)n=3)1=2
p

2n(1�4�)=3

> n(1��)
p

n(1�4�)=6 = n
p

(1��)2n(1�4�)=6

> n
p

(1�2�)n(1�4�)=6 = n
p

(1=6��+4�2=3)n

> n
p

(1=6��)n

Hence, v2m(g0) > mm = 

�
n
p

(1=6��)n
�

, where 0 < � < 1=6 is an arbitrarily small

constant. Thus, the complexity of Node Counting on undirected graphs is

�
n
p

(1=6��)n
�

.

3 Conclusion

We conclude that the performance of Node Counting can be exponential in the number of
states even if the domains are undirected trees. Determining a tight bound on the perfor-
mance of Node Counting in undirected domains is still an open problem.

The construction of the tree can be generalized. Let the tree have m+1 levels with the bot-
tom subtree having t(m) leaves. To ensure that passes up change direction in subsequent
levels and there are 2m+ 1 passes altogether, the number of leaves of g-subroots must in-
crease by one on each level. For inequality (2) to hold, we must also have t(m) in O (ma),
where a > 0. Hence, such a tree will produce O (t(m)m) visits to the bottom g-subroot
and will have n = O

�
mt(m) +m2

�
nodes. A quick analysis shows that selecting a = 1

ensures the fastest asymptotic growth of the number of visits. Hence, t(m) is a linear func-
tion of m, i.e. t(m) = cm+ d for some constants c and d. We can assume d = 0 because
this coefficient does not impact asymptotic complexity of Node Counting. As a result, the

tree has n = (c+1=2)m2+ o(m2) nodes and thereforem >
q

2n
1+2c . For any given small

constant � we can select c = �=2 and for sufficiently large m (and corresponding to it n),

the created tree will force Node Counting to make 

�
n
p

n(1=2��)
�

steps before reaching

a goal.

Another generalization is to increase the number of leaves in the r-subtrees. Without chang-
ing the behavior of the algorithm we can have up tom1�� ; � > 0 leaves for each r-subroot.
The number of nodes in the tree will remain in (1=2+c)m2+o(m2) but each pass will now
result in multiplication of the visits to leaves bym1�� before the result is added to the num-
ber of visits to the corresponding r-subroots. As a result, the complexity of Node Counting

on such a tree is in 

�
n
p

(2��)n
�

and also in 

�
n
p
n
�

.

References

(Balch and Arkin, 1993) Balch, T. and Arkin, R. 1993. Avoiding the past: A simple, but
effective strategy for reactive navigation. In International Conference on Robotics and
Automation. 678–685.

12



(Bonet et al., 1997) Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust and fast ac-
tion selection mechanism. In Proceedings of the National Conference on Artificial Intel-
ligence.

(Koenig and Simmons, 1996) Koenig, S. and Simmons, R.G. 1996. Easy and hard testbeds
for real-time search algorithms. In Proceedings of the National Conference on Artificial
Intelligence. 279–285.

(Finney and Thomas, 1994) Finney, R. and Thomas, G. 1994. Calculus. Addison Wesley,
New York, NY.

(Korf, 1990) Korf, R. 1990. Real-time heuristic search. Artificial Intelligence 42(2-3):189–
211.

(Pirzadeh and Snyder, 1990) Pirzadeh, A. and Snyder, W. 1990. A unified solution to cov-
erage and search in explored and unexplored terrains using indirect control. In Proceed-
ings of the International Conference on Robotics and Automation. 2113–2119.

(Russell and Wefald, 1991) Russell, S. and Wefald, E. 1991. Do the Right Thing – Studies
in Limited Rationality. MIT Press.

(Smirnov and Veloso, 1997) Smirnov, Y. and Veloso, M. 1997. Gensat: A navigational ap-
proach. In Proceedings of the Portuguese Conference on Artificial Intelligence.

(Thrun, 1992) Thrun, S. 1992. The role of exploration in learning control with neural net-
works. In White, D. and Sofge, D., editors 1992, Handbook of Intelligent Control: Neu-
ral, Fuzzy and Adaptive Approaches. Van Nostrand Reinhold. 527–559.

(Wagner et al., 1997) Wagner, I.; Lindenbaum, M.; and Bruckstein, A. 1997. On-line graph
searching by a smell-oriented vertex process. In Proceedings of the AAAI Workshop on
On-Line Search.

13




