
1

A Model-Driven Approach to the Construction,
Composition and Analysis of Services on Sensor

Networks
Joel Wright, John Ibbotson, Christopher Gibson, Dave Braines, Thomas Klapiscak,

Sahin Geyik, Boleslaw Szymanski, David Thornley

Abstract—This paper investigates the application of model-
driven techniques to the construction and composition of services
on sensor networks. We present a model that gives the user a
visual representation of a service, that can be annotated with
semantic information (for example performance characteristics,
deployment constraints, policies and rules, etc.) using an appro-
priate extensible user-oriented vocabulary. We propose the use
of UML 2.0 Activity Diagrams as our graphical notation, with
semantic annotations represented as properties.

We show the transformation of the UML model to a semantic
representation conforming to an appropriate ontology and use
this as the core model for subsequent static and dynamic
analysis. We show how the core model can be used to generate
domain-specific representations suitable for input to analysis and
development tools. Two examples are given: (i) generation of a
Performance Evaluation Process Algebra (PEPA) [1] model, and
(ii) generation of a specification for the deployment of the service
on a sensor network infrastructure. The output of the tools is
harvested to provide additional generated semantic information
that can be “round tripped” back into the core model, and
available for downstream processing.

Index Terms—Sensor networks, middleware, fabric, model-
driven development.

I. INTRODUCTION

ASensor network consists of a set of autonomous de-
vices, connected by a communications infrastructure,

that collectively monitor and report physical conditions in the
real world. To the user, the sensor network offers a set of
monitoring services. These services can be augmented with
data manipulation (for example filtering and transformation)
and data fusion carried out either within the sensor network
itself or centrally. Furthermore, sensor events can trigger
actions and, again, these might be carried out within the sensor
network or centrally.

Manuscript received May 14, 2010. This research was sponsored by the
U.S. Army Research Laboratory and the U.K. Ministry of Defence and
was accomplished under Agreement Number W911NF-06-3-0001. The views
and conclusions contained in this document are those of the author(s) and
should not be interpreted as representing the official policies, either expressed
or implied, of the U.S. Army Research Laboratory, the U.S. Government,
the U.K. Ministry of Defence or the U.K. Government. The U.S. and
U.K. Governments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.

Joel Wright, John Ibbotson, Christopher Gibson, Dave Braines and Thomas
Klapiscak are with the Emerging Technology Services Department of IBM
U.K., Hursley, Winchester, U.K. e-mail: {joel.wright, john ibbotson, gibsoncr,
dave braines, KLAPITOM}@uk.ibm.com

Sahin Geyik and Boleslaw Szymanski are with the Rensselaer Polytechnic
Institute. e-mail: {geyiks,szymansk}@cs.rpi.edu

David Thornley is with Imperial College. e-mail: djt@doc.ic.ac.uk

A sensor network such as that described above can be
formally modeled in order to describe the architecture and
semantics of a solution in the form of a configured sensor
network and its component parts. This must describe the
architectural structure of the solution, characteristics of the
individual building blocks (services and connections), and
constraints placed upon the solution by the developer and/or
the target environment. Ideally the model must also be inde-
pendent of any specific implementation and must be presented
to the user through a friendly but powerful editing interface.

We propose the use of Model Driven Development [2],
based on UML 2.0 Activity Diagrams [3], for describing ser-
vice construction and composition. Model driven development
is a well established design and development paradigm in the
enterprise community, and reduces the complexity of solving
a problem into an abstract representation of a proposed solu-
tion, without burdening the designer with the implementation
details for a particular system. Using activity diagrams as the
modelling notation has a number of benefits when attempting
to design and understand complex systems, primarily that it
has a readily understood graphical notation with well defined
semantics for capturing behaviour. Data flows can be split,
merged, synchronised and processed allowing the designer to
express any arbitrary service. The diagrams naturally describe
a distributed workflow in terms of autonomous processing
and logic elements which lends itself naturally to distributed
processing across a network.

We go beyond traditional model-driven development by
producing a core semantic representation of our designs, which
can then be combined with semantic information from other
sources to describe a deployed system, as shown in Figure 1.
Using this core representation, possibly in conjunction with
domain specific information, we can generate not only service
deployments, but also more specialised models including for-
mal models, e.g. process algebra representations, which can
be used to further analyse and refine our model of the system
as a whole.

In the rest of this paper we discuss the interpretation of
UML Activity Diagrams in terms of service composition for
sensor networks, how we represent the UML design of a
service in our core semantic model, and how this semantic
information may be used to generate both a deployment model
for a real sensor network as well as a process algebraic model
for performance evaluation. Throughout the paper we draw on
a simple motivating example in the form of a scan-cue-focus

admin
Text Box
Third Annual Conference of International Technology Alliance, ACITA'10, London, U.K. September 15-16, 2010 



2

Fig. 1. Model driven service development with a core semantic representa-
tion.

service which would form one element of a base protection
scenario. We conclude by reviewing our progress so far, and
outlining ways in which the semantic representation of a
service composition may be used in the future.

II. BASE PROTECTION SCENARIO

In this section we describe the motivating example used
throughout this paper. Derived from a fielded system, this
scenario uses unattended ground sensors to identify, locate
and photograph the sources of acoustic events (such as mortar
or sniper fire) and make all the sensed data, including the
imagery, available to a multiplicity of consumers. The main
elements of the scenario are:

• A set of Unattended Ground Sensors (UGS) capable of
detecting acoustic events, and generating Line of Bearing
Reports (LOBRs) that indicate the bearing from the
sensor to the detected event.

• A data fusion service to compute the most likely location
of an event from the information contained in two or
more corresponding LOBRs. This information is used to
generate a corresponding Location Report (LOCR).

• A high-resolution camera, controlled/commanded from
an onboard analytics service that, based on the infor-
mation in a LOCR, calculates the pan, tilt and zoom
commands to be issued to the camera in order to di-
rect it towards the origin of the event and photograph
the location. The resulting imagery from the camera is
made available for consumption by personnel who have
registered an interest in receiving this information, for
example, personnel at a command and control centre.

We now introduce the graphical notation derived from UML
Activity Diagrams that we will be using for modelling service
design and composition.

III. ACTIVITY DIAGRAMS FOR SERVICE COMPOSITION

Designed as a workflow specification language, activity
diagrams can directly represent distributed services on sensor

Fig. 2. The base protection scenario.

networks by providing a small set of combinators with suf-
ficient expressive capability for modelling and implementing
services as data flows. In traditional service oriented architec-
tures workflows described using UML must be translated into
a process choreography language (e.g. BPEL [4]) for a central
workflow engine. In the context of sensor networks this would
be largely unacceptable, both due to the excessive data transfer
requirements inherent in this type of system, and the assumed
ad-hoc nature of sensor networks meaning that connections to
a central management engine would not always be available.

In this section we introduce the various UML combinators
available for describing services and service compositions and
describe their interpretations in this domain.

Activities

Activities may represent a number of sensor network enti-
ties:

• Data sources - For example, the unattended ground
sensors producing line of bearing reports in our scenario.

• Data fusion algorithms - For example, the transforma-
tion service producing location reports in our scenario,
which run on a network node.

• Consumers of data - For example, a consumer of the
photographs produced by the camera in our scenario.

Activities may also represent further composite services,
however their classification will still fall under one of the three
types outlined above. Because we are modelling data flow in
the network, the inputs and outputs of all the activities in a
service description are explicitly typed and pinned, restricting
the activity diagrams to only data flows, as opposed to control
flows.

Arcs

Arcs in the context of sensor networks are more than
ways of denoting the ordering of activities, they directly
represent links between the components of a composition,
and as such have attributes that affect the cost and viability



3

of a composition. These attributes must be considered when
producing a service design, as any restrictions placed on the
design must be met by the underlying physical links (e.g.
a network connection). A single slow link may adversely
affect the performance of an entire composition, and in some
applications the necessity that a link between activities be
secure is an important consideration. Arcs are also used to
enforce valid typing in compositions, as an arc will only permit
a service input to be joined to a service output of the correct
type.

Fig. 3. A UML 2.0 Activity Diagram showing two activities joined by an
arc.

Fork

Forking permits concurrent data flows within a composite
service, allowing a message to be separately transformed in
a number of ways, perhaps to provide a variety of outputs
based on a single input, or for independent processing streams
before re-composition. Forks signify that concurrent data flows
in a service composition are each provided with a copy of
an incoming message, a copy being provided to the first
processing element of each concurrent flow. Forking on a
sensor network would allow not only parallel independent
processing streams, but each outgoing edge could represent
an individual physical link, thus distributing processing across
the network.

Fig. 4. A UML 2.0 Activity Diagram showing a fork node.

Merge

Merging permits the joining of flows of the same basic type
without processing or synchronisation. This operator simply
joins two message flows into one, with the number of messages
delivered at its end point being the sum of the two (or more)
input streams. This type of operator allows multiple sensor
streams of the same type to be treated as a single sensor, which
would be useful in any application where correspondance
between a number of messages is not required (e.g. logging
of multiple sensor outputs).

Fig. 5. A UML 2.0 Activity Diagram showing a merge node.

Decision

Decisions mark points at which a service composition may
vary its behaviour dependent on the content of a message,
e.g. the value of an output from a sensor. A decision point
may express explicit message filtering, a message only being
passed onto a consumer if certain properties are met, or dif-
fering behaviour based on environmental information such as
temperature or light levels. In this way decisions may represent
messages being delivered to differing recipients based on the
content of a message, thus expressing varying behaviour and
points at which filtering may occur.

Fig. 6. A UML 2.0 Activity Diagram showing a decision node.

Join

Join nodes represent synchronisation points; a single mes-
sage containing all relevant information is produced whenever
a message has arrived in each of the imputs. The behaviour
of a join can be refined according to a join specification,
which may define the number of input messages required
to produce an output, or criteria for input correspondence.
When describing the joining of message flows on a sensor
network a join would be responsible for determining when
a collection of messages were related, possibly based on
timestamps, or identifiers added before a previous fork. Being
able to determine related groups of messages will be essential
when developing distributed applications.

Fig. 7. A UML 2.0 Activity Diagram showing a join node.



4

Other Activity Diagram Elements

We do not mention here a number of UML Activity Diagram
nodes, such as those related to starting and ending activities,
and those related to asynchronous signalling, although it is
possible that these will be incorporated as design elements in
the future. Starting and ending activities is a design element
we may wish to consider when representing services with a
short lifetime, while asynchronous signalling could represent
configuration or command messages to services.

A. Modelling the base Protection Scenario

We now model a subset of the base protection scenario using
the diagrammatic elements introduced in this section. We give
a UML design for the generation of location report events from
UGS line of bearing reports, and show how this simple design
of an activity can be connected to sensor feeds to provide a
high level service which provides location reports for acoustic
events.

The three acoustic sensors each provide a LOBR service that
is consumed by a fusion service. In turn this provides a LOCR
service that is consumed, in this example, by a camera control
service. Collectively this forms a scan-cue-focus scenario, and
is an example of service composition on a sensor network. Two
steps are required to build this solution:

• Design - the analysis and design of the composite
service: creation of a composite service template that
describes how to build a base protection solution from
a set of compatible hardware and software assets.

• Deployment - the mapping of the design to a set of
fielded software and hardware assets: the instantiation
of the solution on a fielded sensor network, if suitable
hardware and software assets are available.

Fig. 8. A UML 2.0 Activity Diagram showing the design of a service to
convert three LOBR inputs to a LOCR output.

Figure 8 shows a UML design for a low level software
service, Convert LOBR to LOCR. This design represents a
service which takes three inputs, all of type LOBR, and
using a join node, passes on sets of inputs which represent a
single event. As discussed above, a join specification (e.g. the
number of input edges required to receive a message) defining
the behaviour of the join itself could also form part of the

design. When a set of LOBR messages have been received
they are delivered to the Lobr2locr data transformation, which
transforms the data into a location report and produces a single
LOCR message.

Fig. 9. A UML 2.0 Activity Diagram showing the conversion service
connected to appropriate input providers.

High level software services making use of pre-defined
actvities such as that described above are also possible, and the
heirarchical nature of the model means that the internal details
of a service need not be considered when creating composi-
tions. Methods for determining whether a service design can
fulfill stated requirements, both in terms of capabilities and
quality, are discussed later in this paper.

IV. SEMANTIC REPRESENTATION OF THE SERVICE
DESCRIPTION

In this section we describe how UML service designs can be
represented semantically and how this semantic representation,
combined with appropriate annotations and ontologies, can be
used to generate two views of the system; a PEPA performance
model and a Sensor Fabric [5] deployment model.

A. An Ontology for Service Representation

Figure 10 shows the class hierarchy of an OWL [6] ontology
used to describe services on a sensor network. For simplicity
we have not shown all the relationships between classes. Here,
we have an explicit representation of the various constituents
of a deployed service, those being Connection, Port and
Service definitions and instances. Connections correspond
to the arcs within a service design, whilst Ports represent
the service inputs and outputs. Metadata are associated with
classes by linking them to members of the Annotation class.
This allows a rich description of the model to be produced
including information about the types produced or accepted by
input or output ports and connection security parameters. Note
that this mechanism is distinct from OWL’s built-in annotation
properties, since these are not usually considered as part of
the semantics of the ontology (and thus are largely ignored by
reasoners). In addition, other namespaces within the ontology
describe components of a deployed sensor network including
the Node, Platform, Sensor and Feed components together
with the end users (Actors) and the tasks they perform.

Service definitions may also contain instances of other
composite services representing a hierarchic service descrip-
tion. The ontology elements, service and port definitions and



5

Fig. 10. An Ontology for a Sensor Network.

instances together with connections, provide the anchor points
for design annotations supporting the UML activity model for
sensor network designs. The ontology allows for annotations,
providing support for application into arbitrary domains. Note
that the types of information produced by the sensors in a
service design have a general type which can be taken from
any sensor ontology. Initially we expect the typing information
on these sensors to come from the ISTAR ontology produced
by Project 8 as part of their work on sensor mission matching
[7], however alternatives such as SensorML [8] or OntoSensor
[9] may also provide input.

The use of OWL as the core semantic modelling language
of Fabric services has three primary motivations:

• OWL is an open standard recommended by the W3C,
meaning that the data produced by our system will
be inherently and readily reusable, making integration
and interoperation with other existing technologies more
straightforward. For example, we have the opportunity
to make use of the aforementioned ISTAR ontology
developed as part of Project 8 in the ITA programme.

• A wide range of freely available tools have been de-
veloped aimed at helping developers and end-users of
OWL-based technology. Of particular interest are generic
visualisation and exploration tools such as Protege [10],
and libraries such as the OWL-API [11].

• Owing to its formal underpinnings in Description Logics,
the semantics of OWL are well understood and it has been
proven that decidable and complete reasoning algorithms
exist for inferring new information from all but the most
expressive species of OWL ontology. Moreover, a num-
ber of general reasoner implementations exist, many of
which are under active development, such as Pellet [12],
Jena [13] and HermiT [14]. Making use of technologies
such as these will allow us to sidestep the considerable
overhead and risk of developing a custom reasoner from
the ground up.

The final point above is of particular interest and merits
further discussion. Access to implicit information contained
within an ontology can offer a number of benefits in the
context of running services on the sensor network, some
examples of which are given below:

• Errors in a service instantiation can be detected at design-
time, potentially speeding up and easing the development
of demonstrably robust services. A simple example of
this might be checking that connections between nodes

go from input to output pin, but not visa versa. More
complex design-time checks may involve ensuring that
proposed sensor configurations lie within defined manu-
facturer thresholds - for instance, that a complementary
group of acoustic LOB sensors are located within range
of one another.

• Implicit information can aid with the process of auto-
mated service composition and discovery. A very simple
example would be inferring the potential compatibility of
two services with synactically different but semantically
equivalent output/input types (e.g. ”Text” and ”String”) as
determined by some inference. A more complex match-
making service might employ subsumption reasoning to
allow for the querying of compatible services according
to some specification of required functional and non-
functional parameters.

• Degrees of trust held by actors in the system can be
propagated through a network of connected services
using transitive properties or property chains. Similar
techniques could also be used to infer the overall level
of security of a candidate flow through the system (i.e. a
flow is only as secure as its weakest link).

V. GENERATED MODELS

In this section we describe the generation of useful models
from the core semantic representation of service designs. We
begin by describing our interface with the ITA Mission Ab-
straction, Requirements, Structure (MARS) framework [15],
which makes use of a transformation of our core semantic
model describing a service composition into PEPA. The con-
clusion of this section describes the mapping of our service
designs onto a deployed sensor network system in the form of
the Fabric.

A. Interfacing with MARS

The MARS framework formulates and quantifies Measures
of Merit (MoM) that explain the performance and effectiveness
of systems for command and control support by creating com-
putational links between the details of an information system
deployment and the satisfaction of command requirements.
The approach taken to the analysis of composite systems is
compatible with the NATO COBP for C2 analysis, which
describes a complete route from deployments on the ground to
the requirements of command. The range of measures being
developed in the MARS programme includes basic accuracy
and delay with decay characteristics computed on the mission
design [16], through contextualized emergent utility features
[17], [18], to higher level reasoning in support of balance of
investment decisions relating to technology development and
deployment [19].

Specifically, a service is treated as a system of systems, each
of which is analysed in terms of performance characteristics
in an activity that can provide support to getting Measures
of Performance (MoP). The whole system is analysed for
effectiveness in solving a problem, giving Measures of Effec-
tiveness (MoE), by relating the outcomes in the problem space
to the performance in the solution method space. An MoP for



6

a sensor network might characterize the bounds on delay be-
tween event and notification, and bounds on the capacity of the
network to deliver notifications, whereas a corresponding MoE
might give the percentage of events for which the combination
of notification and subsequent requests and responses result in
the satisfaction of a command requirement.

To predict the performance of a composite service, it is
necessary to relate the required outputs to the inputs and other
influences in a stochastic model that can explain the timing and
charateristics that emerge from the combination of interacting
or contributing services. In a service oriented architecture,
services are constructed at runtime from novel combinations
of fielded services. This naturally motivates the use of a
componentized approach to performance analysis, as this
supports simplification of the model construction, formation
of a library of services for which knowledge and experience
can be built, and the potential for re-use of results calculated
for individual services to increase efficiency. The theoretical
work and concrete numerical computation are linked by the
use of the Performance Analysis Process Algebra (PEPA).

Once defined, the semantic representation of our service
descriptions can be transformed into PEPA, which the MARS
framework can use to form components of larger models
describing mission scenarios. The initial generation of a PEPA
model describing a service composition requires three pieces
of information derived from the semantic model:

• UML Node types.
• Node connection information.
• Rate information (either explicitly stated or derived).

Previous work on transforming UML Activity diagrams
[20] requires each element of the diagram itself to be tagged
with rate information, and acts as a direct translation of the
diagram itself. Here we can use the information stored in
a semantic repository, e.g. the speed of network links or
available processing power on nodes, in order to automatically
derive rate information. We can also refine our performance
model, and use it to inform deployment, because the effects of
a particular proposed deployment could be added to a model,
taking into account such things as network contention and
multi-hop links.

Figure 11 shows a fragment of the PEPA code generated
from the UML depicted in Figure 8. Note that here we
only consider the simple case where all three corresponding
messages arrive. More complex behaviours, such as allowing
the process to continue when only a subset of messages arrive,
are the subject of further research.

For SOA performance analysis, MARS modelling provides
the interface for which a PEPA component may be produced
from the SOA definition framework, e.g. in [16] the quality
of a sensing service providing detection information. The
performance of the system is expressed in the delay and error
of detection reports delivered to the customer. The utility
is expressed in the correction of the customer’s situational
awareness (i.e. solving his problem). PEPA is used because
it naturally describes support with its use of cooperation over
actions.

Lobr2Locr
def= (lobr1,>).Lobr2Locr100

+ (lobr2,>).Lobr2Locr010

+ (lobr3,>).Lobr2Locr001

Lobr2Locr100
def= (lobr2,>).Lobr2Locr110

+ (lobr3,>).Lobr2Locr101

...

Lobr2Locr111
def= (lobrset, r1).Lobr2Locr

Lobr2Locract
def= (lobrset,>).(locr, r2).Lobr2Locract

Fig. 11. PEPA Model Fragment of Convert LOBR 2 LOCR.

B. Mapping from UML Semantic Representation to a Fabric
Deployment

In this section we describe how to generate a deployment
model for the ITA Sensor Fabric (Fabric) from the semantic
representation of a service design. Services on the Fabric
do not follow the conventional view of a service requester
invoking a service provider which responds to the invocation.
This request/response service model is widely used in Web
Service applications but is not appropriate for the stream-based
services found in an event based messaging environment such
as the Fabric for reasons discussed in Section III. Note that we
do not give full deployment details, but rather describe how
the elements of a design relate to Fabric concepts.

The Fabric is an extensible middleware platform that spans
the network from the data centre to deployed sensors and
mobile personnel. It tracks the sensors, nodes, and users of
the sensor network facilitating universal access to sensor data
from any point, and maximising its availability and utility
to applications and users. A plug-in architecture allows new
functions (such as filters, transformations, policies, security,
and event detection algorithms) to be deployed into the sensor
network and selectively applied to sensor messages en route
to the user.

A Fabric node is a node on the sensor network that runs
an instance a message broker, a Fabric Manager, and a
Fabric Registry. As the main Fabric service running on a
node, the Fabric Manager has wide ranging responsibilities,
building the major capabilities of the Fabric on top of the
message broker, which provides the actual communications
infrastructure, and the Fabric Registry, which is responsible for
storing the configuration and operational status of the Fabric
infrastructure. The major features and functionality provided
by the Fabric Manager include establishing the communication
channels between nodes, tracking the operational status of
connected sensors and nodes, and registering local data fusion
algorithms as intelligence assets with the Fabric Registry.
However, most importantly from the perspective of service
design and deployment, the Fabric also provides a container
for running software services which may perform in-network
information fusion, filtering, and other algorithms, as well



7

as a point from which the capabilities of the Fabric may
be extended. For more information regarding the ITA Sensor
Fabric see [5].

1) UML Activity Diagrams and the Fabric: As we de-
scribed in section III, activities in a UML service design
may represent a number of entities in a sensor network, and
hence a Sensor Fabric deployment; in the context of the
Fabric, activities may represent sensors producing data, actors
consuming data, or algorithms running on Fabric Nodes. Here
we describe the mapping of the various UML Activity diagram
entities onto an instance of the Fabric.

Join, merge and decision points are special cases of software
services which perform those roles without implementing any
form of data transformation. Forking a flow in the Fabric
simply represents two activities subscribing to the same data
feed, and thus does not require an explicit implementation; the
Fabric includes the concept of message identification to allow
a resultant join to identify corresponding events if necessary.

Arcs represent a producer of information publishing, and
a consumer subscribing, on a single Fabric topic; data may
pass through multiple Fabric Nodes on this journey. Links
only join outputs to inputs with the corresponding type so
that the message provided as input to a data transformation
or end subscriber contains data in the expected form. This
enforcement is performed using information about sensors and
services contained in the Fabric Registry and semantic store.

By viewing all services as activities we allow heirarchical
definitions, with component activities viewed as data transfor-
mation black boxes which may be distributed on the network
themselves. This fits with the 5-box schema view of the
services introduced in [21], and allows higher level composites
to be tagged with semantic information (not just the lowest-
level simple services).

VI. CONCLUSIONS

A UML model used to design high level services allows
compositions to be specified in a clearly understood and
graphical manner, whilst having a well defined meaning.
A corresponding semantic model of composition not only
reduces the complexity of producing a concrete solution, but
due to the high-level abstract representation, can be used to
inform the recomposition or reconfiguration of a service in
the event of a network topology change or network failure, a
common event in ad-hoc wireless networks.

By representing the service design semantically we allow
generic transformations into a variety of formal and deploy-
ment models. These transformations can be extended into new
and unknown models and domains without modification of the
model due to the semantic representation not being tailored to
any particular use or analysis; we simply need any required
information, beyond the details of nodes and connections, to
be contained in, or derivable from, the semantic store. Also,
existing tooling and techniques for transforming UML are still
available to us because the original UML can be recreated from
our semantic model. A semantic representation is therefore far
more flexible and extensible in terms of both its sources of
information and its potential outputs.

VII. FUTURE WORK

In this section we lay out further directions for research
based on the semantic model representing service designs in
conjunction with a sensor network.

A. Round tripping

We expect transformations into formal models to be used
as part of an initial design process prior to deployment in the
sensor network. Results from the analysis of the formal model
may then be used to enhance or modify the annotations on the
design model. The flexibility of semantically annotating the
model allows us to easily integrate the results back into the
original UML model as feedback to the designer/developer.
Due to our use of a semantic store to represent the sensor
network and its services, the results of any analysis are made
available as potential inputs to any further reasoning. We
describe this as round-tripping.

Semantic annotations can also be used to capture physical
properties of a deployed sensor network. This supports the
second, concrete, round-tripping route show in Fig 12 between
the design model and the services deployed on an active sensor
network. The Fabric provides instrumentation on the sensor
network allowing real-time metrics to be gathered and a profile
of the deployed network performance to be generated. This
profile can be used to provide further annotations within the
design model to allow subsequent refinements of the formal
representation that will be more suitable for the deployment
environment.

Fig. 12. Analysis and Model Round Tripping.

We expect the UML design model to undergo multiple
round-trips between the formal and deployed states during
its lifecycle. By evaluating potential services in this way and
using the information gathered through round tripping we can
choose the deployment which best serves our needs, e.g. we
could choose the deployment that has the least runtime impact
on the services running at the time of deployment, or decide
the best way to fulfil any particular service requirement. In
one specific instance, by round-tripping through the MARS



8

framework the semantic repository can include perfomance
assessments that may be used to inform future composition
choices.

B. Other Transformations

We must investigate further transformations of the seman-
tic model into alternate formal models for analysis, but it
is important to consider other uses of our service designs,
e.g. generating skeleton code to implement a design. Code
generation in this context is non-trivial because we must decide
when to use an existing service and when to generate a
code skeleton. Another important consideration is the most
appropriate method for generating code so that it may be
distributed across the network. Even the decision of when
to use an existing service is a potential source of problems
because, in order to generate only the required code, we would
need design time access to a list of available services.

REFERENCES

[1] J. Hillston, “A Compositional Approach to Performance Modelling,”
1996.

[2] J. A. Clark and J. L. Jacob, “Model-Driven Development,” IEEE
Software, vol. 20, pp. 14–18, 2003.

[3] Unified Modeling Language (UML). Specification ISO/IEC 19501, OMG
Std., Rev. v2.1.2.

[4] Web Services Business Process Execution Language, OASIS Std., Rev.
v2.0. [Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.pdf

[5] J. Wright, C. Gibson, F. Bergamaschi, K. Marcus, R. Pressley, G. Verma,
and G. Whipps, “A Dynamic Infrastructure for Interconnecting Disparate
ISR/ISTAR Assets (the ITA Sensor Fabric),” in Proceedings of the 12th
International Conference on Information Fusion, 2009.

[6] D. L. McGuinness and F. van Harmelen, “OWL web ontology language
overview,” World Wide Web Consortium, W3C Recommendation,
2004. [Online]. Available: http://www.w3.org/TR/owl-features

[7] M. Gomez, A. Preece, M. P. Johnson, G. de Mel, W. Vasconcelos,
C. Gibson, A. Bar-Noy, K. Borowiecki, T. L. Porta, D. Pizzocaro,
H. Rowaihy, G. Pearson, and T. Pham, “An Ontology-Centric Approach
to Sensor-Mission Assignment,” in Proceedings of the 16th International
Conference on Knowledge Engineering and Knowledge Management,
2008.

[8] Sensor Model Language (SensorML) for In-Situ and Remote Sensors.
Specification OGC 07-000, OGC Std., Rev. v1.0. [Online]. Avail-
able: http://vast.uah.edu/downloads/sensorML/v1.0/specification/07-
000 SensorML Implementation Specification.pdf

[9] D. J. Russomanno, C. R. Kothari, and O. A. Thomas, “Building a Sensor
Ontology: A Practical Approach Leveraging ISO and OGC Models,” in
ISO and OGC Models,The 2005 International Conference on Artificial
Intelligence, Las Vegas, NV, 2005. Press, 2005, pp. 637–643.

[10] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen, “The Protg
OWL Plugin: An Open Development Environment for Semantic Web
Applications,” in International Semantic Web Conference. Springer,
2004, pp. 229–243.

[11] M. Horridge and S. Bechhofer, “The OWL API: A Java API for Working
with OWL 2 Ontologies,” in Proceedings of The OWL: Experiences and
Direction (OWLED) Workshop, 2009.

[12] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz, “Pellet:
A practical owl-dl reasoner,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 5, no. 2, pp. 51–53, June 2007.
[Online]. Available: http://dx.doi.org/10.1016/j.websem.2007.03.004

[13] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and
K. Wilkinson, “Jena: implementing the semantic web recommendations.”
in Proceedings of the 13th international conference on World Wide Web
- Alternate Track Papers & Posters, WWW 2004, New York, NY, USA,
May 17-20, 2004, S. I. Feldman, M. Uretsky, M. Najork, and C. E.
WillsSemanti, Eds., 2004, pp. 74–83.

[14] B. Motik, R. Shearer, and I. Horrocks, “Hypertableau Reasoning for
Description Logics,” Journal of Artificial Intelligence Research, vol. 36,
pp. 165–228, 2009.

[15] D. Thornley, R. Young, and J. Richardson, “Development of a Mission
Abstraction Requirements Structure (MARS) and stochastic modelling
for sensing service-driven mission performance prediction,” Department
of Computing, Imperial College London, Tech. Rep., August 2008,
research was sponsored by the U.S. Army Research Laboratory and
the U.K. Ministry of Defence and was accomplished under Agreement
Number W911NF-06-3-0001. The views and conclusions contained in
this document are those of the author(s) and should not be interpreted
as representing the official policies, either expressed or implied, of
the U.S. Army Research Laboratory, the U.S. Government, the U.K.
Ministry of Defence or the U.K. Government. The U.S. and U.K.
Governments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.
[Online]. Available: http://pubs.doc.ic.ac.uk/ita-mars-tech-report-v09/

[16] D. J. Thornley, C. Bisdikian, and D. F. Gillies, “Using stochastic process
algebra models to estimate the quality of information in military sensor
networks,” in Proceedings of Modeling and Simulation for Military
Operations III, SPIE DSS 6965, 2008.

[17] D. J. Thornley, R. I. Young, and J. P. Richardson, “Toward mission-
specific service utility estimation using analytic stochastic process
models,” in Proceedings of SPIE Defense, Security and Sensing 7352A,
2009.

[18] D. J. Thornley, D. F. Gillies, and C. Bisdikian, “A stochastic process
algebraic abstraction of detection evidence fusion in tactical sensor
networks,” in Proceedings of SPIE Defense, Security and Sensing 7348,
2009.

[19] D. J. Thornley, D. F. Dean, and J. C. Kirk, “Warfighter decision making
performance analysis as an investment priority driver,” in Proceedings
of Modeling and Simulation for Defense Systems and Applications V,
SPIE DSS 7705, 2010.

[20] M. Tribastone and S. Gilmore, “Automatic Extraction of PEPA Per-
formance Models from UML Activity Diagrams Annotated with the
MARTE Profile,” in Proceedings of the 7th International Workshop on
Software and Performance, 2008.

[21] J. Ibbotson, C. Gibson, J. Wright, P. Waggett, P. Zerfos, B. K. Szyman-
ski, and D. J. Thornley, “Sensors as a Service Oriented Architecture:
Middleware for Sensor Networks,” in Proceedings of the 6th Interna-
tional Conference on Intelligent Environments - IE’10, 2010, to appear.




