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This article reviews the state-of-the-art in overlapping community detection algorithms, quality measures,
and benchmarks. A thorough comparison of different algorithms (a total of fourteen) is provided. In addition
to community-level evaluation, we propose a framework for evaluating algorithms’ ability to detect over-
lapping nodes, which helps to assess overdetection and underdetection. After considering community-level
detection performance measured by normalized mutual information, the Omega index, and node-level de-
tection performance measured by F-score, we reached the following conclusions. For low overlapping density
networks, SLPA, OSLOM, Game, and COPRA offer better performance than the other tested algorithms.
For networks with high overlapping density and high overlapping diversity, both SLPA and Game provide
relatively stable performance. However, test results also suggest that the detection in such networks is
still not yet fully resolved. A common feature observed by various algorithms in real-world networks is the
relatively small fraction of overlapping nodes (typically less than 30%), each of which belongs to only 2 or 3
communities.
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1. INTRODUCTION

Community or modular structure is considered to be a significant property of real-world
social networks as it often accounts for the functionality of the system. Despite the
ambiguity in the definition of community, numerous techniques have been developed
for both efficient and effective community detection. Random walks, spectral clustering,
modularity maximization, differential equations, and statistical mechanics have all
been used previously. Much of the focus within community detection has been on
identifying disjoint communities. This type of detection assumes that the network can
be partitioned into dense regions in which nodes have more connections to each other
than to the rest of the network. Recent reviews on disjoint community detection are
presented in Danon et al. [2005], Lancichinetti and Fortunato [2009], Leskovec et al.
[2010], and Fortunato [2010].

However, it is well-understood that people in a social network are naturally char-
acterized by multiple community memberships. For example, a person usually has
connections to several social groups like family, friends, and colleagues; a researcher
may be active in several areas. Further, in online social networks, the number of com-
munities an individual can belong to is essentially unlimited because a person can
simultaneously associate with as many groups as he wishes. This also happens in
other complex networks such as biological networks, where a node might have multi-
ple functions. In Kelley et al. [2011] and Reid et al. [2011], the authors showed that
the overlap is indeed a significant feature of many real-world social networks.

For this reason, there is growing interest in overlapping community detection algo-
rithms that identify a set of clusters that are not necessarily disjoint. There could be
nodes that belong to more than one cluster. In this article, we offer a review on the
state-of-the-art in this area.

2. PRELIMINARIES

In this section, we present basic definitions that will be used throughout the article.
Given a network or graph G = {E, V }, V is a set of n nodes and E is a set of m edges.
For dense graphs m = O(n2), but for sparse networks m = O(n). The network structure
is determined by the n × n adjacency matrix A for unweighted networks and weight
matrix W for weighted networks. Each element Aij of A is equal to 1 if there is an
edge connecting nodes i and j; and it is 0 otherwise. Each element wi j of W takes a
nonnegative real value representing strength of connection between nodes i and j.

In the case of overlapping community detection, the set of clusters found is called a
cover C = {c1, c2, . . . , ck} [Lancichinetti et al. 2009], in which a node may belong to more
than one cluster. Each node i associates with a community according to a belonging
factor (i.e., soft assignment or membership) [ai1, ai2, . . . , aik] [Nepusz et al. 2008], in
which aic is a measure of the strength of association between node i and cluster c.
Without loss of generality, the following constraints are assumed to be satisfied

0 ≤ aic ≤ 1 ∀i ∈ V,∀c ∈ C (1)

and
|C|∑
c=1

aic = 1,

where |C| is the number of clusters. However, the belonging factor is often solely a set
of artificial weights. It may not have a clear or unambiguous physical meaning [Shen
et al. 2009b].

In general, algorithms produce results that are composed of one of two types of
assignments, crisp (nonfuzzy) assignment or fuzzy assignment [Gregory 2011]. With
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crisp assignment, the relationship between a node and a cluster is binary. That is,
a node i either belongs to cluster c or does not. With fuzzy assignment, each node
is associated with communities in proportion to a belonging factor. With a threshold,
a fuzzy assignment can be easily converted to a crisp assignment. Most detection
algorithms output crisp community assignments.

3. ALGORITHMS

In this section, algorithms for overlapping community detection are reviewed and
categorized into five classes which reflect how communities are identified.

3.1. Clique Percolation

The Clique Percolation Method (CPM) is based on the assumption that a community
consists of overlapping sets of fully connected subgraphs and detects communities
by searching for adjacent cliques. It begins by identifying all cliques of size k in a
network. Once these have been identified, a new graph is constructed such that each
vertex represents one of these k-cliques. Two nodes are connected if the k-cliques that
represent them share k−1 members. Connected components in the new graph identify
which cliques compose the communities. Since a vertex can be in multiple k-cliques
simultaneously, overlap between communities is possible. CPM is suitable for networks
with dense connected parts. Empirically, small values of k (typically between 3 and 6)
have been shown to give good results [Palla et al. 2005; Lancichinetti and Fortunato
2009; Gregory 2010]. CFinder1 is the implementation of CPM, whose time complexity is
polynomial in many applications [Palla et al. 2005]. However, it also fails to terminate
in many large social networks.

CPMw [Farkas et al. 2007] introduces a subgraph intensity threshold for weighted
networks. Only k-cliques with intensity larger than a fixed threshold are included into
a community. Instead of processing all values of k, SCP [Kumpula et al. 2008] finds
clique communities of a given size. In the first phase, SCP detects k-cliques by checking
all the (k−2)-cliques in the common neighbors of two endpoints when links are inserted
to the network sequentially in order of decreasing weights. In the second phase, the
k-community is detected by finding the connected components in the (k − 1)-clique
projection of the bipartite representation, in which one type of node represents a k-
clique and the other denotes a (k − 1)-clique. Since each k-clique is processed exactly
twice, the running time grows linearly as a function of the number of cliques. SCP
allows multiple weight thresholds in a single run and is faster than CPM.

Despite their conceptual simplicity, one may argue that CPM-like algorithms are
more like pattern matching rather than finding communities since they aim to find
specific, localized structure in a network.

3.2. Line Graph and Link Partitioning

The idea of partitioning links instead of nodes to discover community structure has
also been explored. A node in the original graph is called overlapping if links connected
to it are put in more than one cluster.

In Ahn et al. [2010]2, links are partitioned via hierarchical clustering of edge similar-
ity. Given a pair of links eik and e jk incident on a node k, a similarity can be computed
via the Jaccard index defined as

S(eik, e jk) = |Ni ∩ Nj |
|Ni ∪ Nj | ,

1http://www.cfinder.org.
2https://github.com/bagrow/linkcomm.
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where Ni is the neighborhood of node i including i. Single-linkage hierarchical cluster-
ing is then used to build a link dendrogram. Cutting this dendrogram at some threshold
yields link communities. The time complexity is O(nk2

max), where kmax is the maximum
node degree in the network.

Evans and Lambiotte [2009, 2010] projected the network into a weighted line graph,
whose nodes are the links of the original graph. Then disjoint community detection
algorithms can be applied. The node partition of a line graph leads to an edge partition
of the original graph. CDAEO [Wu et al. 2010] provides a postprocessing procedure
to determine the extent of overlapping. Once the preliminary partitioning on the line
graph is done, for a node i with |Eicmin|/|Eicmax| below some predefined threshold, where
Eicmin(cmax) is the set of edges in the community with which i has the minimum (max-
imum) number of connections, links in Eicmin of the line graph are removed. This
essentially reduces node i to a single membership.

Kim and Jeong [2011] extended the map equation method (also known as Infomap
[Rosvall 2008]) to the line graph, which encodes the path of the random walk on the
line network under the Minimum Description Length (MDL) principle.

Line graph has been extended to clique graph [Evans 2010], wherein cliques of a
given order are represented as nodes in a weighted graph. The membership strength
of a node i to community c is given by the fraction of cliques containing i which are
assigned to c.

Although the link partitioning for overlapping detection seems conceptually natu-
ral, there is no guarantee that it provides higher-quality detection than node-based
detection does [Fortunato 2010] because these algorithms also rely on an ambiguous
definition of community.

Note that a link-based extended modularity is also proposed by Nicosia et al. [2009].
This measure is built on the belonging coefficients of links. Let a link l(i, j) connecting
i to j for community c be βl(i, j),c = F(aic, ajc), then the expected belonging coefficient
of any possible link l(i, j) from node i to a node j in community c can be defined as
βout

l(i, j),c = 1
|V |

∑
j∈V F(aic, ajc). Accordingly, the expected belonging coefficient of any link

l(i, j) pointing to node j in community c is defined as βin
l(i, j),c = 1

|V |
∑

i∈V F(aic, ajc). The
preceding belonging coefficients are used as weights for the probability of an observed
link (first term in (2)) and the probability of a link starting from i to j in the null model
(second term in (2)), respectively, resulting in the new modularity defined as

QNi
ov = 1

m

∑
c

∑
i, j∈V

[
βl(i, j),c Ai, j − βout

l(i, j),cβ
in
l(i, j),c

kout
i kin

j

m

]
, (2)

where kout(in)
i is the number of outgoing (incoming) links of i and m is the total number

of edges. Note that QNi
ov depends on the link belonging coefficient F(aic, ajc), which could

be the product, average, or maximum of aic and ajc.

3.3. Local Expansion and Optimization

Algorithms utilizing local expansion and optimization are based on growing a natural
community [Lancichinetti et al. 2009] or a partial community. Most of them rely on
a local benefit function that characterizes the quality of a densely connected group of
nodes.

Baumes et al. [2005] proposed a two-step process. First, the algorithm RankRemoval
is used to rank nodes according to some criterion. Then the process iteratively removes
highly ranked nodes until small, disjoint cluster cores are formed. These cores serve as
seed communities for the second step of the process, Iterative Scan (IS), that expands
the cores by adding or removing nodes until a local density function cannot be improved.
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The proposed density function can be formally given as

f (c) = wc
in

wc
in + wc

out
,

where wc
in and wc

out are the total internal and external weight of the community c.
The worst-case running time is O(n2). The quality of discovered communities depends
on the quality of seeds. Since the algorithm allows vertices to be removed during the
expansion, IS has been shown to produce disconnected components in some cases. For
this reason, a modified version called CIS was introduced in Kelley [2009], wherein
the connectedness is checked after each iteration. In the case that the community is
broken into more than one part, only the one with the largest density is kept. CIS also
develops a new fitness function

f (c) = wc
in

wc
in + wc

out
+ λep

incorporating the edge probability ep. The parameter λ controls how the algorithm
behaves in sparse areas of the network. The addition of a node needs to strike a
balance between the change in the internal degree density and the change in edge
density.

LFM [Lancichinetti et al. 2009] expands a community from a random seed node to
form a natural community until the fitness function

f (c) = kc
in(

kc
in + kc

out
)α (3)

is locally maximal, where kc
in and kc

out are the total internal and external degree of the
community c, and α is the resolution parameter controlling the size of the communities.
After finding one community, LFM randomly selects another node not yet assigned to
any community to grow a new community. LFM depends significantly on the resolution
parameter α. The computational complexity for a fixed α-value is roughly O(ncs2),
where nc is the number of communities and s is the average size of communities. The
worst-case complexity is O(n2).

MONC [Havemann et al. 2011] uses the modified fitness function of LFM

f (c) = kc
in + 1(

kc
in + kc

out
)α ,

which allows a single node to be considered a community by itself. This avoids violation
of the principle of locality. The proposed fitness function enables MONC to find the
range of αs (resolution parameter as in LFM) for which a set of nodes is locally optimal.
Rather than numerical exploration of these α values, MONC calculates the next lowest
value of α which results in further expansion and continues to expand the community.
In the case that the natural community of a node i is a subset of another node, the
analysis of i stops. In this way, MONC merges communities during processing and, as
a result, uncovers the network faster than LFM.

OSLOM3 [Lancichinetti et al. 2011] tests the statistical significance of a cluster
[Bianconi et al. 2008] with respect to a global null model (i.e., the random graph gener-
ated by the configuration model [Molloy and Reed 1995]) during community expansion.
To grow the current community, the r value is computed for each neighbor, which is the
cumulative probability of having the number of internal connections equal or larger

3http://www.oslom.org.
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than the number of connections from a neighbor into this community in the null model.
If the cumulative distribution of the smallest r value is smaller than a given tolerance,
it is considered to be significant and the corresponding node is added to the community.
Otherwise, the second smallest r is checked and so on. OSLOM usually results in a
significant number of outliers or singleton communities. The worst-case complexity in
general is O(n2), while the exact complexity depends on the community structure of
the underlying network being studied.

Rather than considering the original network, UEOC [Jin et al. 2011] unfolds the
community of a node based on the l-step transition probability of the random walk
on the corresponding annealed network [Newman et al. 2001], which represents an
ensemble of networks. After sorting nodes according to the transition probabilities in
descending order, the natural community is extracted with some proper cutoff. The
dominating time complexity is for calculating the transition matrix, which is O(ln2).

OCA [Padrol-Sureda et al. 2010] is based on the idea of mapping each node to a
d-dimensional vector. Each subset of nodes S is then defined as the sum of individual
vectors in this set. The fitness function is defined as the directed Laplacian on function
O, where O is the squared Euclidean length of a subset vector. Like LFM, starting
from some initial seeds, OCA tries to remove or add a node that results in the largest
increase in the value of the fitness function. OCA requires finding the most negative
eigenvalue of the adjacency matrix.

Chen et al. [2010a] proposed selecting a node with maximal node strength based on
two quantities B(u, c) (called belonging degree) and the modified modularity Qov for
weighted networks. Qov is defined as

QC
ov = 1

2m

∑
c

∑
i, j∈V

[
Aij − kikj

2m

]
βicβ jc, (4)

where βic = kic/
∑

c′ kic′ is the strength with which node i belongs to community c, and
kic = ∑

j∈c wi j is the total weight of links from i into community c. B(u, c) measures how
tightly a node u connects to a given community c compared to the rest of the network.
Given two thresholds BU and BL, when expanding a community c, neighboring nodes
with B(u, c)>BU are included in c. For nodes with BL ≤ B(u, c) ≤ BU , if Qov increases
after adding such a node, u is added to c. The drawbacks of this algorithm are the
rather arbitrary selection of the BU and BL thresholds and the expensive computation
of Qov whose complexity is O(kn2), where k is the number of communities.

iLCD4 [Cazabet et al. 2010] is capable of detecting both static and temporal com-
munities. Given a set of edges created at some time step, iLCD updates the existing
communities by adding a new node if its number of second neighbors and number of
robust second neighbors are greater than expected values. New edges are also allowed
to create a new community if the minimum pattern is detected. Defining the similarity
between two communities as the ratio of nodes in common, a merging procedure is
performed to improve the detection quality if the similarity is high. iLCD relies on two
parameters for adding a node and merging two communities. The complexity of iLCD
is O(nk2) in general, whose precise quantity depends on community structures and its
parameters.

Seeds are very important for many local optimization algorithms. A clique has been
shown to be a better alternative over an individual node as a seed, serving as the basis
for a wide range of algorithms. EAGLE [Shen et al. 2009a] uses the agglomerative
framework to produce a dendrogram. First, all maximal cliques are found and made to
be the initial communities. Then, the pair of communities with maximum similarity is

4http://cazabetremy.fr/Cazabet_remy/iLCD.html.
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merged. The optimal cut on the dendrogram is determined by the extended modularity
with a weight based on the number of overlapping memberships in Shen et al. [2009b].
Even without taking into account the time required to find all the maximal cliques,
EAGLE is still computationally expensive with complexity O(n2+(h+n)s), where s is the
number of maximal cliques whose upper bound is 3n/3 (i.e., theoretically exponential)
[Moon and Moser 1965], and h is the number of pairs of maximal cliques which are
neighbors. This paper also defines an extended modularity that uses the number of
communities to which a node belongs as a weight for Q as

QE
ov = 1

2m

∑
c

∑
i, j∈c

[
Aij − kikj

2m

]
1

Oi Oj
, (5)

where Oi is the number of communities to which node i belongs. This measure is in the
same form as (8), but with a coefficient defined based on the maximal clique. One may
argue that they are identical as in Gregory [2011].

Similar to EAGLE, GCE5 [Lee et al. 2010] identifies maximum cliques as seed com-
munities. It expands these seeds by greedily optimizing a local fitness function. GCE
also removes communities that are similar to previously discovered ones using distance
between communities c1 and c2 defined as

1 − |c1 ∩ c2|
min(|c1|, |c2|) .

If this distance is shorter than a parameter ε, the communities are similar. The time
complexity for greedy expansion is O(mh), where m is the number of edges and h is the
number of cliques.

In COCD [Du et al. 2008], cores are a set of independent maximal cliques induced on
each vertex. Two maximal cliques are said to be dependent if their closeness function is
positive. This function is a product of the differences between the size of internal links
between two maximal cliques and the number of links connecting nodes appearing
only in one of the two maximal cliques. Once the cores are identified, the remaining
nodes are attached to cores with which they have maximum connections. COCD runs
in O(Cmax · Tri2) in the worst case, where Cmax is the maximum size of the detected
communities, and Tri is the number of triangles, whose lower bound is 9mn−2n3−2(n2−3m)3/2

27
[Fisher 1989] or O(n3) for a dense enough graph.

3.4. Fuzzy Detection

Fuzzy community detection algorithms quantify the strength of association between
all pairs of nodes and communities. In these algorithms, a soft membership vector,
or belonging factor [Gregory 2010], is calculated for each node. A drawback of such
algorithms is the need to determine the dimensionality k of the membership vector.
This value can be either provided as a parameter to the algorithm or calculated from
the data.

Nepusz et al. [2008] modeled the overlapping community detection as a nonlin-
ear constrained optimization problem which can be solved by simulated annealing
methods. The objective function to minimize is

f =
n∑

i=1

n∑
j=1

wi j(s̃i j − sij)2, (6)

5https://sites.google.com/site/greedycliqueexpansion.
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where wi j denotes the predefined weight, s̃i j is the prior similarity between nodes i and
j, and the similarity sij is defined as

sij =
∑

c

aicajc, (7)

where the variable aic is the fuzzy membership of node i in community c, subject to the
total membership degree constraint in (1) and a nonempty community constraint. To
determine the number of communities k, the authors increased the value of k until the
community structure does not improve as measured by a modified fuzzy modularity,
which, by weighting Q with the product of a node’s belonging factor, is defined as

QNe
ov = 1

2m

∑
c

∑
i, j∈c

[
Aij − kikj

2m

]
aicajc, (8)

where aic is the degree of membership of node i in the community c.
Zhang et al. [2007a] proposed an algorithm based on the spectral clustering frame-

work [Newman 2006; White and Smyth 2005]. Given an upper bound on the num-
ber of communities k, the top k − 1 eigenvectors are computed. The network is then
mapped into a d-dimensional Euclidean space, where d ≤ k − 1. Instead of using k-
means, Fuzzy C-Means (FCM) is used to obtain a soft assignment. Both detection
accuracy and computation efficiency rely on the user-specified value k. With running
time O(mkh + nk2h + k3h) + O(nk2), where m is the number of edges, n is the number
of nodes, the first term is for the implicitly restarted Lanczos method, and the second
term is for FCM, it is not scalable for large networks. An extended modularity that
used the average of the belonging factor is also proposed as

QZ
ov =

∑
c

[
A(V ′

c , V ′
c )

A(V, V )
−

(
A(V ′

c , V )
A(V, V )

)2
]
,

where V ′
c is the set of nodes in a community c, wi j is the weight of the link con-

necting nodes i and j, A(V ′
c , V ′

c ) = ∑
i, j∈V ′

c
wi j(aic + ajc)/2, A(V ′

c , V ) = A(V ′
c , V ′

c ) +∑
i∈V ′

c , j∈V \V ′
c
wi j(aic + (1 − ajc))/2, and A(V, V ) = ∑

i, j∈V wi j .
Due to their probabilistic nature, mixture models provide an appropriate frame-

work for overlapping community detection [Newman and Leicht 2007]. In general, the
number of mixture models is equal to the number of communities, which needs to be
specified in advance. In SPAEM6 [Ren et al. 2009], the mixture model is viewed as a
generative model for the links in the network. Suppose that πr is the probability of
observing community r and community r selects node i with probability Br,i. For each
r, Br,i is a multinomial across elements i = 1, 2, . . . , n, where n is the number of nodes.
Therefore,

∑n
i=1 Br,i = 1. The edge probability eij generated by such finite mixture

model is given by

p(eij |π, B) =
k∑

r=1

πr Br,i Br, j .

The total probability over all the edges present in the network is maximized by the
Expectation-Maximization (EM) algorithm. As in Kim and Jeong [2011], the optimal
number of communities k is identified based on the minimum description length. There
is another algorithm called FOG7 [Davis and Carley 2008] also trying to infer groups
based on link evidence.

6http://www.code.google.com/p/spaem.
7http://www.casos.cs.cmu.edu/projects/ora.
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Similar mixture models can also be constructed as a generative model for nodes [Fu
and Banerjee 2008]. In SSDE8 [Magdon-Ismail and Purnell 2011], the network is first
mapped into a d-dimensional space using the spectral clustering method. A Gaussian
Mixture Model (GMM) is then trained via the Expectation-Maximization algorithm.
The number of communities is determined when the increase in log-likelihood of adding
a cluster is not significantly higher than that of adding a cluster to random data which
is uniform over the same space.

Stochastic Block Model (SBM) [Nowicki and Snijders 2001] is another type of genera-
tive model for groups in the network. Fitting an empirical network to an SBM requires
inferring model parameters similar to GMM. In OSBM [Latouche et al. 2011], each
node i is associated with a latent vector (i.e., community assignment) Zi with K inde-
pendent Boolean variables Zik ∈ {0, 1}, where K is the number of communities, and Zik
is drawn from a multivariate Bernoulli distribution. Z is inferred by maximizing the
posterior probability conditioned on the present of edges as in Ren et al. [2009]. OSBM
requires more efforts than mixture models because the factorization in the observed
condition distribution for edges given Z is in general intractable. MOSES9 [McDaid
and Hurley 2010] combines OSBM with the local optimization scheme in which the fit-
ness function is defined based on the observed condition distribution. MOSES greedily
expands a community from edges. Unlike OSBM, no connection probability parameters
are required as input. The worst-case time complexity is O(en2), where e is the number
of edges to be expanded.

Nonnegative Matrix Factorization (NMF) is a feature extraction and dimensionality
reduction technique in machine learning that has been adapted to community detec-
tion. NMF approximately factorizes the feature matrix V into two matrices with the
nonnegativity constraint as V ≈ WH, where V is n × m, W is n × k, H is k × m, and k
is the number of communities provided by users. W represents the data in the reduced
feature space. Each element wi, j in the normalized W quantifies the dependence of node
i with respect to community j. In Zhang et al. [2007b], V is replaced with the diffusion
kernel, which is a function of the Laplacian of the network. In Zarei et al. [2009], V is
defined as the correlation matrix of the columns of the Laplacian. This results in better
performance than Zhang et al. [2007b]. In Zhao et al. [2010], redundant constraints in
the approximation are removed, reducing NMF to a problem of symmetrical Nonnega-
tive Matrix Factorization (s-NMF). Psorakis et al. [2011] proposed a hybrid algorithm
called Bayesian NMF10. The matrix V , where each element vi j denotes a count of the
interactions that took place between two nodes i and j, is decomposed via NMF as
part of the parameter inference for a generative model similar to OSBM and GMM.
Traditionally, NMF is inefficient with respect to both time and memory constraints
due to the matrix multiplication. In the version of Psorakis et al. [2011], the worst-case
time complexity is O(kn2), where k denotes the number of communities.

Wang et al. [2009] combined disjoint detection methods with local optimization al-
gorithms. First, a partition is obtained from any algorithm for disjoint community
detection. Communities attempt to add or remove nodes. The difference, called vari-
ance, of two fitness scores on a community, either including a node i or removing node
i, is computed. The normalized variances form a fuzzy membership vector of node i.

Ding et al. [2010] employed the affinity propagation clustering algorithm [Frey
and Dueck 2007] for overlapping detection, in which clusters are identified by repre-
sentative exemplars. First, nodes are mapped as data points in the Euclidean space
via the commute time kernel (a function of the inverse Laplacian). The similarity

8http://www.cs.rpi.edu/~purnej/code.php.
9http://sites.google.com/site/aaronmcdaid/moses.
10http://www.robots.ox.ac.uk/~parg/software.html.
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between nodes is then measured by the cosine distance. Affinity propagation reinforces
two types of messages associated with each node, the responsibility r(i, k) and the
availability a(i, k). The probability for assigning node i into the cluster represented
by exemplar node k is computed by equation p(i, k) = er̂(i,k), where r̂ is the normalized
responsibility as in Geweniger et al. [2009].

3.5. Agent-Based and Dynamical Algorithms

The label propagation algorithm [Raghavan et al. 2007; Xie and Szymanski 2011], in
which nodes with same label form a community, has been extended to overlapping
community detection by allowing a node to have multiple labels. In COPRA11 [Gregory
2010], each node updates its belonging coefficients by averaging the coefficients from
all its neighbors at each time step in a synchronous fashion. The parameter v is used
to control the maximum number of communities with which a node can associate. The
time complexity is O(vmlog(vm/n)) per iteration.

SLPA12 [Xie et al. 2011; Xie and Szymanski 2012] is a general speaker-listener-
based information propagation process. It spreads labels between nodes according to
pairwise interaction rules. Unlike Raghavan et al. [2007] and Gregory [2010], where
a node forgets knowledge gained in the previous iterations, SLPA provides each node
with a memory to store received information (i.e., labels). The probability of observing
a label in a node’s memory is interpreted as the membership strength. SLPA does not
require any knowledge about the number of communities, which is determined by the
clustering of labels in the network. The time complexity is O(tm), linear in the number
of edges m, where t is a predefined maximum number of iterations (e.g., t ≥ 20). SLPA
can also be adapted for weighted and directed networks by generalizing the interaction
rules, known as SLPAw.

A game-theoretic framework is proposed in Chen et al. [2010b], in which a community
is associated with a Nash local equilibrium. A gain function and a loss function are
associated with each agent. The game assumes that each agent is selfish and selects to
join, leave, and switch communities based on its own utility. An agent is allowed to join
multiple communities to handle overlapping, so long as it results in increased utility.
The time complexity to find the best local operation for an agent i is O(|Li| · |L(Ni)| · ki),
where Li is the communities that agent i wants to join, L(Ni) is the set of communities
that i’s neighbors want to join, and ki is the node degree. The time it takes to reach a
local equilibrium is bounded by O(m2), where m is the number of edges.

A process in which particles walk and compete with each other to occupy nodes is
presented in Breve et al. [2009]. Particles represent different communities. Each node
has an instantaneous ownership vector (similar to belonging factor) and a long-term
ownership vector. At each iteration, each particle takes either a random walk or a
deterministic walk to one of its neighbors with some probability. If the random walk is
performed, the visited neighbor updates its instantaneous ownership vector; otherwise,
the long-term ownership vector is updated. At the end of the process, the long-term
ownership vector is normalized to produce a soft assignment. Different from SLPA
and COPRA, this algorithm takes a semisupervised approach. It requires at least one
labeled node per class.

Multistate spin models [Reichardt and Bornholdt 2004; Lu et al. 2009], in which a
spin is assigned to each node, can also be applied to community detection. One of such
models is the q-state Potts model [Blatt et al. 1996; Reichardt and Bornholdt 2004],
where q is the number of states that a spin may take, indicating the maximum number
of communities. The community detection problem is equivalent to the problem of

11http://www.cs.bris.ac.uk/~steve/networks/software/copra.html.
12https://sites.google.com/site/communitydetectionslpa.
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minimizing the Hamiltonian of the model. In the ground states (i.e., local minima of
the Hamiltonian), the set of nodes with the same spin state form a community. The
overlap of communities is linked to the degeneracy of the minima of the Hamiltonian
[Reichardt and Bornholdt 2006a]. Although a co-appearance matrix keeps track of
how frequently nodes i and j have been grouped together over multiple runs, it is not
clear how to aggregate this information into overlapping communities when analyzing
large networks. Another Potts model-like approach was proposed in Ronhovde and
Nussinov [2009] to evaluate the hierarchical or multiresolution structure of a graph
via information-based replica correlations.

Synchronization of a system that consists of coupled phase oscillators is able to un-
cover community structures. In such a model (e.g., the Kuramoto model) the phase of
each unit evolves in time according to the predefined dynamics. The set of nodes with
the same phase or frequency can be viewed as a community [Arenas et al. 2006] while
nodes that do not match any observed dynamic behaviors can be considered overlap-
ping nodes [Li et al. 2008]. Like methods utilizing a Potts model, such algorithms are
parameter dependent.

3.6. Others

CONGA13 [Gregory 2007] extends Girvan and Newman’s divisive clustering algorithm
(GN) [Girvan and Newman 2002] by allowing a node to split into multiple copies.
Both splitting betweenness, defined by the number of shortest paths on the imaginary
edge, and the conventional edge betweenness are considered. CONGA inherits the
high computational complexity of GN. In a more refined version, CONGO [Gregory
2008] uses local betweenness to optimize the speed. Gregory [2009] also proposed to
perform disjoint detection algorithms on the network produced by splitting the node
into multiple copies using the split betweenness.

Zhang14 [Zhang et al. 2009] proposed an iterative process that reinforces the net-
work topology and propinquity that is interpreted as the probability of a pair of nodes
belonging to the same community. The propinquity between two vertices is defined as
the sum of the number of direct links, number of common neighbors, and the number of
links within the common neighborhood. Given the topology, propinquity is computed.
Propinquity above a certain threshold is then used to redistribute links, updating the
topology. If the propinquity is large, a link is added to the network; otherwise, the link
is removed. The propinquity can be used to perform microclustering on each vertex to
allow overlap.

Kovács et al. [2010] proposed an approach focusing on centrality-based influence
functions. Community structures are interpreted as hills of the influence landscape. For
each node i, the influence over each link fi( j, k) is computed. Links within a community
should have higher influence than those linking distant areas of the network. The
influence on a given link c( j, k) is the sum of fi( j, k) over all nodes. The function
c( j, k) over each link defines the community landscape, wherein the communities are
determined by local maxima and their surrounding regions.

Rees and Gallagher [2010] proposed an algorithm to extract the overlapping commu-
nities from the egonet, which is a subgraph including a center node, its neighbors, and
the links around them. When all egonets are induced, each center is removed, creating
small connected components among neighbors. Then, the center node is added back to
each of these components to form a so-called friendship group. Clearly, each center node
can be in multiple friendship groups. The overlapping communities are determined by
merging all friendship groups.

13http://www.cs.bris.ac.uk/~steve/networks/software/conga.html.
14http://dbgroup.cs.tsinghua.edu.cn/zhangyz/kdd09.
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Inspired by OPTIC [Ankerst et al. 1999], an algorithm based on techniques from
visualization was proposed in Chen et al. [2009]. Nodes are ordered according to the
Reachability Score (RS) with respect to a starting node. The reachability is based on
the probability of the existence of a link between two nodes. By scanning through the
obtained sequence of nodes, a community containing consecutive nodes with RS larger
than a community threshold is found. Clearly, this algorithm is hard to apply to large
networks and requires the introduction of a community threshold.

4. EVALUATION CRITERIA

Evaluating the quality of a detected partitioning or cover is nontrivial, and extending
evaluation measures from disjoint to overlapping communities is rarely straightfor-
ward. Unlike disjoint community detection, where a number of measures have been
proposed for comparing identified partitions with the known partitions [Danon et al.
2005; Leskovec et al. 2010], only a few measures are suitable for a set of overlapping
communities. Two most widely used measures are the Normalized Mutual Information
(NMI) and Omega index.

4.1. Normalized Mutual Information

Lancichinetti et al. [2009] has extended the notion of normalized mutual information
to account for overlap between communities. For each node i in cover C ′, its community
membership can be expressed as a binary vector of length |C ′| (i.e., the number of
clusters in C ′). (xi)k = 1 if node i belongs to the kth cluster C ′

k; (xi)k = 0 otherwise.
The kth entry of this vector can be viewed as a random variable Xk, whose probability
distribution is given by P(Xk = 1) = nk/n, P(Xk = 0) = 1 − P(Xk = 1), where nk = |C ′

k|
is the number of nodes in the cluster C ′

k and n is the total number of nodes. The same
holds for the random variable Yl associated with the lth cluster in cover C ′′. Both the
empirical marginal probability distribution P(Xk) and the joint probability distribution
P(Xk, Yl) are used to further define entropy H(X) and H(Xk, Yl).

The conditional entropy of a cluster Xk given Yl is defined as H(Xk|Yl) = H(Xk, Yl) −
H(Yl). The entropy of Xk with respect to the entire vector Y is based on the best
matching between Xk and any component of Y given by

H(Xk|Y ) = minl∈{1,2,...,|C ′′ |}H(Xk|Yl).

The normalized conditional entropy of a cover X with respect to Y is

H(X|Y ) = 1
|C ′|

∑
k

H(Xk|Y )
H(Xk)

.

In the same way, one can define H(Y |X). Finally the NMI for two covers C ′ and C ′′ is
given by

NMI(X|Y ) = 1 − [H(X|Y ) + H(Y |X)]/2. (9)

The extended NMI is between 0 and 1, with 1 corresponding to a perfect matching.
Note that this modified NMI does not reduce to the standard formulation of NMI when
there is no overlap.

4.2. Omega Index

Omega index [Collins and Dent 1988] is the overlapping version of the Adjusted Rand
Index (ARI) [Hubert and Arabie 1985]. It is based on pairs of nodes in agreement in
two covers. Here, a pair of nodes is considered to be in agreement if they are clustered
in exactly the same number of communities (possibly none). That is, the Omega index
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considers how many pairs of nodes belong together in no clusters, how many are placed
together in exactly one cluster, how many are placed in exactly two clusters, and so on.

Let K1 and K2 be the number of communities in covers C1 and C2, respectively, the
Omega index is defined as [Gregory 2011; Havemann et al. 2011]

ω(C1, C2) = ωu(C1, C2) − ωe(C1, C2)
1 − ωe(C1, C2)

. (10)

The unadjusted Omega index ωu is defined as

ωu(C1, C2) = 1
M

max(K1,K2)∑
j=0

|tj(C1) ∩ tj(C2)|,

where M equals to n(n − 1)/2 represents the number of node pairs, and tj(C) is the set
of pairs that appear exactly j times in a cover C. The expected Omega index in the null
model ωe is given by

ωe(C1, C2) = 1
M2

max(K1,K2)∑
j=0

|tj(C1)| · |tj(C2)|.

The subtraction of the expected value in (10) takes into account agreements resulting
from chance alone. The larger the Omega index, the better the matching between two
covers. A value of 1 indicates perfect matching. When there is no overlap, the Omega
index reduces to the ARI.

In addition to NMI and Omega, some other measures have been proposed, such
as the generalized external indexes [Campello 2007, 2010] and the fuzzy rand index
[Hüllermeier and Rifqi 2009].

5. BENCHMARKS

It is necessary to have good benchmarks to both study the behavior of a proposed com-
munity detection algorithm and to compare the performance across various algorithms.
In order to accurately perform these two analyses, networks in which the ground truth
is known are needed. This requirement implies that real-world networks, which are
often collected from online or observed interactions, do not paint a clear enough picture
due to their lack of “ground truth”. In light of this requirement, we begin our dis-
cussion with synthetic networks. In the GN benchmark [Girvan and Newman 2002],
equal size communities are embedded into a network for a given expected degree and a
given mixing parameter μ that measures the ratio of internal connections to outgoing
connections. One drawback of this benchmark is that it fails to account for the hetero-
geneity in complex networks. Another is that it does not allow embedded communities
to overlap. A few benchmarks have been proposed for testing overlapping community
detection algorithms, all of which are special cases of the planted l-partition model
[Condon and Karp 2001] just like GN.

Sawardecker et al. [2009] proposed an extension of GN, in which the probability pij
of an edge being present in the network is a nondecreasing function based solely on
the set of comemberships of nodes i and j. With the definition pij = pk, parameter pk
is the connection probability of nodes i and j that cooccur k times, subject to p0 < p1 ≤
p2 ≤ . . . .

The LFR15 benchmark proposed in Lancichinetti et al. [2008] introduces heterogene-
ity into degree and community size distributions of a network. These distributions are

15http://sites.google.com/site/andrealancichinetti/files.
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Table I. Algorithms Included in the Experiments

Algorithm Reference Complexity Imp
CFinder [Palla et al. 2005] - C++

LFM [Lancichinetti et al. 2009] O(n2) C++
EAGLE [Shen et al. 2009a] O(n2 + (h + n)s) C++

CIS [Kelley 2009] O(n2) C++
GCE [Lee et al. 2010] O(mh) C++

COPRA [Gregory 2010] O(vmlog(vm/n)) Java
Game [Chen et al. 2010b] O(m2) C++
NMF [Psorakis et al. 2011] O(kn2) Matlab

MOSES [McDaid and Hurley 2010] O(en2) C++
Link [Ahn et al. 2010] O(nk2

max) C++
iLCD [Cazabet et al. 2010] O(nk2) Java
UEOC [Jin et al. 2011] O(ln2) Matlab

OSLOM [Lancichinetti et al. 2011] O(n2) C++
SLPA [Xie et al. 2011; Xie and Szymanski 2012] O(tm) C++

governed by power laws with exponents τ1 and τ2, respectively. To generate overlap-
ping communities On, the fraction of overlapping nodes is specified and each node is
assigned to Om ≥ 1 communities. The generating procedure is equivalent to generating
a bipartite network where the two classes are the communities and nodes subject to the
requirement that the sum of community sizes equals the sum of node memberships.
LFR also provides a rich set of parameters to control the network topology, including
the mixing parameter μ, the average degree k, the maximum degree kmax, the maximum
community size cmax, and the minimum community size cmin.

The LFR model brings benchmarks closer to the features observed in real-world
networks. However, requiring that overlapping nodes interact with the same number
of embedded communities is unrealistic in practice. A simple generalization where each
overlapping node may belong to different number of communities has been considered
in McDaid and Hurley [2010].

In Gregory [2011], crisp communities from LFR are converted to fuzzy associations
by adding a belonging coefficient to the occurrence of nodes. This coefficient can be
defined as

pij = sij p1 + (1 − sij)p0,

where pk is the same as in Sawardecker et al.’s model and sij = ∑
c∈C αicα jc is the

similarity of node i and j as defined in (6). In other words, the probability of an edge
being present depends not only on the number of communities in which nodes i and j
appear together but also on their degree of belonging to these communities.

6. TESTS ON SYNTHETIC NETWORKS

In this section, we empirically compare the performance of different algorithms on
LFR networks. We focus on algorithms which produce a crisp assignment of vertices
to communities. In total, 14 algorithms were collected and tested. They are listed in
Table I. Note that the time complexity given is for the worst case.

For algorithms with tunable parameters, the results with the best setting are re-
ported. For LFM, we varied α from 0.8 to 1.6 with an interval 0.1, within which good
results have previously been reported [Lancichinetti et al. 2009; Lee et al. 2010]. For
iLCD, f Ratio is from {0.75, 0.5, 0.35} and bThreshold is from {0.5, 0.3, 0.2} as suggested
by the authors. For GCE, the minimum clique size k ranges from 3 to 8. For CFinder,
k ranges from 3 to 8. For OSLOM, we considered the first two levels. For Link, the
threshold varies from 0.1 to 0.9 with an interval 0.1. For COPRA, parameter v is taken
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from the range [1,10]. For SLPA, parameter r varies from 0.05 to 0.5 with an interval
0.05. Since COPRA and SLPA are nondeterministic, we repeated each of them 10 times
on each network instantiation. For NMF, which returns a fuzzy assignment, we applied
the same threshold as SLPA to convert it to a crisp assignment.

For each parameter set generated via LFR, we generated 10 instantiations. We used
networks with sizes n ∈ {1000, 5000}. The average degree is kept at k = 10, which is of
the same order as most large real-world social networks16. The rest of the parameters of
the LFR generator are set similar to those in Lancichinetti and Fortunato [2009]: node
degrees and community sizes are governed by power law distributions with exponents
τ1 = 2 and τ2 = 1, respectively, the maximum degree is kmax = 50, and community
sizes vary in both small range s = (10, 50) and large range b = (20, 100). The mixing
parameter μ is from {0.1, 0.3}, which is the expected fraction of links through which a
node connects to other nodes in the same community.

The degree of overlap is determined by two parameters. On is the number of over-
lapping nodes, and Om is the number of communities to which each overlapping node
belongs. On is set to 10% and 50% of the total number of nodes, indicating low and high
overlapping density, respectively. Instead of fixing Om [Lancichinetti and Fortunato
2009; Gregory 2010], we also allow it to vary from 2 to 8 indicating the overlapping
diversity of overlapping nodes. By increasing the value of Om, we create harder detec-
tion tasks. This also allow us to look in greater detail at the detection accuracy at node
level.

Two previously discussed measures, Omega and NMI, are used to quantify the qual-
ity of the cover discovered by an algorithm.

6.1. Effects of μ, n and Om

We first examined how the performance, measured by NMI, changes as the number of
memberships Om varies from small to large values (i.e., 2 to 8) for different network
sizes (n) and intra-community strength (μ) in Figure 1.

In general, changes in the network topology, especially the mixing value μ, have a
similar impact for disjoint community detection. That is, the larger the value of μ, the
poorer the results produced by detection algorithms (i.e., red curve < blue curve in
Figure 1) due to the fact that the connection inside communities is weak for larger μ.
This is true for the majority of algorithms with the only exception NMF (see the 5000b
case). On the other hand, increasing network size from 1000 to 5000 typically results in
slightly better performance (i.e., square > dot in Figure 1), with prominent exceptions
for EAGLE, NMF, and UEOC. Slight fluctuations in performance are observed for iLCD
and Link. Detection performance typically decays at a moderate rate as the diversity
of overlapping increases (i.e., Om getting larger), except for OSLOM and UEOC.

6.2. Effects of Community Size Range and Overlapping Density On

We evaluated the effects of On and community size ranges on each individual algorithm
on networks with n = 5000 and μ = 0.3. Results for NMI are shown in Figure 2.

As expected, the performance of detection consistently and significantly drops in
the case where there are many overlapping nodes for all algorithms (i.e., red curves
(On = 50%) < blue curves (On = 10%)). However, the difference in performance between
small and large community size ranges (gaps between two curves with the same color)
is more prominent in the case of low overlapping density.

Interestingly, the NMI’s for networks with small community size s = (10, 50) are
typically higher than those for networks with large community size range b = (20, 100)

16snap.stanford.edu/data.
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Fig. 1. The effects of network size n and mixing parameter μ on LFR networks. Plots show NMI’s for
networks with large community size range and On = 10%. The order of subplots is from general behaviors
to exceptions (see text).
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Fig. 2. The effects of community size range and overlapping density On on LFR networks. Plots show NMI’s
for networks with n = 5000 and μ = 0.3. The order of subplots is from general behaviors to exceptions (see
text).
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Fig. 3. Evaluations of overlapping community detection on LFR networks with low overlap density On =
10%. Left column: NMI as a function of the number of memberships Om; Right column: Omega as a function
of the number of memberships Om. Results for small community size range are shown in top row (i.e., (a) and
(c)), and results for large community size range are shown in bottom row (i.e., (b) and (d)). All resutls are
from networks with n = 5000 and μ = 0.3.

(i.e., dot > square in Figure 2). It appears that the well-known resolution limit does
not play a role here since all the tested algorithms are neither based on a modularity
nor an extended modularity. This is evidenced by algorithms including CFinder, LFM,
Link, MOSES, Game, iLCD, CIS, and OSLOM that have a significant performance
gap between small and large community size ranges. Given only small variances in
performance in two tested ranges, we also conclude that the community size range has
limited impact on algorithms including SLPA, COPRA, EAGLE, and GCE.

6.3. Ranking for Community Detection

Extensive comparisons have been conducted over different overlapping densities and
community size ranges. Performance measured by NMI and Omega for n = 5000 and
μ = 0.3 is shown in Figures 3 and 4.
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Fig. 4. Evaluations of overlapping community detection on LFR networks with high overlap density On =
50%. Left column: NMI as a function of the number of memberships Om; Right column: Omega as a function
of the number of memberships Om. Results for small community size range are shown in top row (i.e., (a) and
(c)), and results for large community size range are shown in bottom row (i.e., (b) and (d)). All resutls are
from networks with n = 5000 and μ = 0.3.

To provide an intuitive way for both comparing two measures and also summarizing
the vast volume of experiment results, we propose RSM(i), the averaged ranking score
for a given algorithm i with respect to some measure M as:

RSM(i) =
∑
j=1

rank
(
i, O j

m

)
, (11)

where O j
m is the number of memberships (diversity) in {2, 3, . . . , 8}, and function rank

returns the ranking of algorithm i for the given Om. Sorting RSM in increasing order
gives the final ranking among algorithms. Whenever it is clear from context, we use
the term ranking to refer to the final rank without the actual score value.

The results for low overlapping density case in Figure 3 are summarized as four rank-
ings including RSs

NMI , RSb
NMI , RSs

Omega, and RSb
Omega in Table II, where RSs(b)

NMI(Omega)
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Table II. The Community Detection Ranking for n = 5000, μ = 0.3 and Low Overlapping
Density On = 10%

Rank RSs
NMI RSs

Omega RSb
NMI RSb

Omega RS∗
NMI,Omega RS∗

F
1 SLPA SLPA SLPA SLPA SLPA SLPA
2 GCE OSLOM GCE OSLOM GCE CFinder
3 CIS Game NMF COPRA OSLOM Game
4 LFM GCE CIS Game CIS OSLOM
5 MOSES MOSES COPRA GCE Game MOSES
6 CFinder COPRA OSLOM CIS COPRA COPRA
7 Game Link LFM NMF LFM iLCD
8 OSLOM CIS Game LFM MOSES Link
9 COPRA LFM CFinder MOSES NMF LFM

10 NMF CFinder MOSES CFinder CFinder UEOC
11 Link NMF Link Link Link EAGLE
12 iLCD iLCD EAGLE EAGLE EAGLE GCE
13 EAGLE EAGLE UEOC iLCD iLCD CIS
14 UEOC UEOC iLCD UEOC UEOC NMF

Table III. The Community Detection Ranking for n = 5000, μ = 0.3 and High
Overlapping Density On = 50%

Rank RSs
NMI RSs

Omega RSb
NMI RSb

Omega RS∗
NMI,Omega RS∗

F
1 MOSES SLPA COPRA SLPA SLPA Link
2 COPRA Link SLPA Game MOSES UEOC
3 CFinder Game GCE OSLOM Game SLPA
4 Game MOSES MOSES Link COPRA Game
5 SLPA CFinder CFinder MOSES CFinder LFM
6 GCE OSLOM Game CFinder OSLOM CFinder
7 iLCD COPRA OSLOM COPRA Link CIS
8 OSLOM GCE LFM LFM GCE MOSES
9 CIS iLCD CIS NMF LFM OSLOM

10 LFM LFM NMF EAGLE CIS iLCD
11 NMF CIS UEOC CIS iLCD GCE
12 Link NMF iLCD iLCD NMF COPRA
13 EAGLE EAGLE Link UEOC EAGLE EAGLE
14 UEOC UEOC EAGLE GCE UEOC NMF

denotes the ranking based on NMI (or Omega) for networks with small (or large)
community size range. Results for high overlapping density case in Figure 4 are sum-
marized in Table III.

We first compared pairwise similarities of (RSs
NMI , RSs

Omega) and (RSb
NMI , RSb

Omega).
As shown, among the top seven (half of the total fourteen) algorithms in two rankings,
there are 4 pairs of matches (ignoring the exact order) for On = 10% and 5 pairs of
matches for On = 50% for (RSs

NMI , RSs
Omega). Even more, there are 6 pairs of matches

for both On = 10% and On = 50% for (RSb
NMI , RSb

Omega). This suggests that NMI and
Omega provide similar overall evaluation to some extent.

Based on these four rankings, we further derive the average ranking RS∗
NMI,Omega

as the overall community detection performance. In this final ranking, the top seven
algorithms are exclusively agent-based algorithms (SLPA, Game, and COPRA) and
local expansion-based algorithms (GCE, OSLOM, CIS, and LFM), which significantly
outperform the others for networks with low overlapping density (see Figure 3).
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Fig. 5. Histogram of the detected community sizes for SLPA, GCE, NMF, LFM, and MOSES created from
the results for LFR networks with n = 5000, μ = 0.3, and On = 10%.

Fig. 6. Histogram of the detected community sizes for OSLOM, Game, COPRA, CFinder, Link, and CIS
created from the results for LFR networks with n = 5000, μ = 0.3, and On = 10%.

For high overlapping density, agent-based algorithms remain in the top seven, to-
gether with MOSES representing fuzzy algorithms, CFinder representing clique al-
gorithms, and Link representing link partitioning. However, given the fact that the
performance is actually fairly low (most of them are less than 0.5 for Om > 2) shown in
Figure 4, it is fair to conclude that all the algorithms do not yet achieve satisfying per-
formance for networks with high overlapping density and high overlapping diversity
(e.g., for On = 50% and Om > 2).

6.4. Comparing Detected Community Size Distribution in LFR

In order to provide insight into the behaviors of different algorithms and verify the
ranking, we examined the discovered distribution (histograms) of Community Sizes
(CS) and compared it with the known ground truth. Here we only provide analysis for
n = 5000, μ = 0.3, On = 10% (the corresponding ranking is RSb

NMI in Table II). In this
case, we expect the community size distribution to follow the power law with exponent
τ2 = 1, a minimum of 20, and a maximum size of 100. Note that the histograms are
created from communities over different O′

ms. As shown in Figure 5, SLPA, GCE, and
NMF find communities whose sizes are distributed in a unimodal distribution with a
single peak at CS = 20 in aggreement with the ground-truth distribution. This explains
why they perform well with respect to ranking RSb

NMI . LFM and MOSES have a peak
around CS = 5, which lowers their performance. The prominent feature of Figure 6
(see the inset) is a bimodal distribution that has a peak at CS = 1 ∼ 5. This means that
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Fig. 7. Histogram of the detected community sizes for EAGLE, UEOC, and iLCD crated from the results
for LFR networks with n = 5000, μ = 0.3 and On = 10%.

algorithms like OSLOM, Game, COPRA, CIS, and CFinder find significant numbers of
small communities. In Figure 7, the distribution is shifted mostly outside the predefined
range 20∼100. Algorithms with such a distribution create relatively small communities
and perform poorly with respect to this analysis. Here, we conclude that observations
on the community size distribution can be used to explain the performance and ranking.

It is worth noticing that in Figure 6, excluding the range that contains the undesired
peak (CS = 1 ∼ 20), the distributions seem to agree well with the ground truth,
especially for COPRA. The performances of OSLOM, Game, CIS, and COPRA with
respect to NMI are still fairly stable. This demonstrates that NMI is, to some degree,
not sensitive to small size communities (including outliers or singleton communities).

6.5. Identifying Overlapping Nodes in LFR

Community overlap manifests itself as the existence of the nodes with membership
in multiple communities. Thus, we will refer to nodes with multiple membership as
overlapping nodes. In real-world social networks, such nodes are important because
they usually represent bridges (or messengers) between communities. For this reason,
the ability to identify overlapping nodes, although often neglected, is essential for
assessing the accuracy of community detection algorithms. Measures like NMI and
Omega focus only on providing an overall measure of algorithmic accuracy. As we see
in Section 6.4, these measures might not be sensitive enough to provide an accurate
picture of what is happening at node level. In this section, we evaluate an algorithm’s
ability to identify overlapping nodes.

Similar to the definitions of On and Om, we define the number of detected overlapping
nodes Od

n and detected memberships Od
m. Note that the number of overlapping nodes

Od
n alone is insufficient to accurately quantify the detection performance, because it

contains both true and false positive. Ideally, an algorithm should report as many true
overlapping nodes as possible (i.e., a balance between quality and quantity). To provide
more precise analysis, we consider the identification of overlapping nodes as a binary
classification problem. A node is labeled as overlapping as long as Om > 1 or Od

m > 1
and labeled as nonoverlapping otherwise. Within this framework, one can use Jaccard
index as in Ball et al. [2011] or F-score as a measure of detection accuracy. In this
article, we use the latter that is defined as

F = 2 · precision · recall
precision + recall

, (12)
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where recall is the number of correctly detected overlapping nodes divided by the true
number of overlapping nodes On, and precision is the number of correctly detected over-
lapping nodes divided by the total number of detected overlapping nodes Od

n . F-score
accounts for the balance between detection quantity and quality, and reaches its best
and worst value at 1 and 0, respectively.

Figures 8 and 9 show the F-score, precision, and recall for different settings of the
LFR benchmark. In general, an algorithm achieves better F-score on benchmarks
with small community sizes for both low and high overlapping density. However, the
behaviors are quite different for the various algorithms. For example, the gain in F-
score on communities in the small size range for EAGLE is due to the increase in recall
(i.e., detect more overlapping nodes shown in (c) and (f) in Figure 8), while the gain for
iLCD is mainly due to the increase in precision (see (b) and (e) in Figure 8). Moreover,
the F-score (performance) typically decays moderately as overlapping diversity Om
increases. It is evident that Om has great impacts on OSLOM with a rapid drop for
large Om. SLPA is the only exception that has a positive correlation with Om for the
low overlapping density case.

In terms of the precision, half of the algorithms including SLPA, CFinder, Game,
OSLOM, MOSES, EAGLE, and iLCD consistently outperform the expected random
performance, 10% and 50% for low and high overlapping density respectively (see (b)
and (e) in both Figures 8 and 9). The high precision of EAGLE (also CFinder and GCE
for Om = 2) shows that clique-like assumption of communities may help to identify
overlapping nodes in the low overlapping density case. Link performs merely as well
as the random classifier.

Experiments also reveal an imbalance in precision and recall for some algorithms,
which is partially due to either overdetection where more overlapping nodes than
there exists are claimed or underdetection where only very few overlapping nodes are
identified. Extreme examples are EAGLE and Link. Although EAGLE achieves very
high detection precision (e.g., (b) and (e) in Figure 8), it suffers underdetection (verified
in Figure 10), which results in a low recall score ((c) and (f) in Figure 8). As a result, we
observe a low F-score ((a) and (b) in Figure 8). For Link, the algorithm does not perform
well in terms of F-score even though it has very high recall ((c) and (f) in Figure 8). This
is due to the fact that Link claims way more overlapping nodes than excepted (verified
in Figure 10).

6.6. Ranking for Overlapping Node Detection

The rankings with respect to F-scores for different community size ranges, RSs
F and

RSb
F are shown in Tables IV and V for different overlapping density cases. RS∗

F is the
average ranking over two community size ranges.

To facilitate comparison, we copy RS∗
F into Tables II and III. It is clearly shown,

for example in Table II, that the community quality ranking RS∗
NMI,Omega and node

quality ranking RS∗
F might provide quite different pictures of the performance. For the

low overlapping density case (as in Table II), algorithms with a low rank in detect-
ing communities could actually have good performances when it comes to identifying
overlapping nodes (e.g., CFinder, iLCD, and MOSES), while high-ranking algorithms,
including GCE and CIS, might perform badly due to underdetection and overdetec-
tion, respectively. SLPA has very stable and good performance for the low overlapping
density case. These observations suggest the need for a careful treatment of the algo-
rithms with a high NMI or Omega score if the application of these algorithms is aimed
at identifying nodes with multiple community memberships. Similar conclusions can
be drawn for high overlapping density case.
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Fig. 8. Evaluations of overlapping node detection on LFR networks with low overlap density On = 10%.
Plots show F-score (together with precision and recall) as a function of the number of memberships for
n = 5000 and μ = 0.3. Results for small community size range are shown in the left column, and results for
large community size range are shown in the righ column.
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Fig. 9. Evaluations of overlapping node detection on LFR networks with high overlap density On = 50%.
Plots show F-score (together with precision and recall) as a function of the number of memberships for
n = 5000 and μ = 0.3. Results for small community size range are shown in the left column, and results for
large community size range are shown in the righ column.
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Fig. 10. The number of detected overlapping nodes (normalized by On) based on the results for LFR networks
with n = 5000b and μ = 0.3. A value larger than 1 is possible.

Table IV. The Overlapping Node Detection
Ranking for n = 5000, μ = 0.3 and Low

Overlap Density On = 10%

Rank RSs
F RSb

F RS∗
F

1 SLPA SLPA SLPA
2 CFinder CFinder CFinder
3 OSLOM Game Game
4 Game OSLOM OSLOM
5 MOSES COPRA MOSES
6 iLCD MOSES COPRA
7 COPRA Link iLCD
8 Link iLCD Link
9 EAGLE LFM LFM
10 GCE UEOC UEOC
11 UEOC CIS EAGLE
12 LFM EAGLE GCE
13 CIS GCE CIS
14 NMF NMF NMF

6.7. Final Ranking

Since two types of rankings provide complementary information, we conclude by con-
sidering algorithms that are consistently ranked in the top seven in both RS∗

F and
RS∗

NMI,Omega: (a) For low overlapping density networks, SLPA, OSLOM, Game, and
COPRA offer better performance than the other tested algorithms; (b) for high overlap-
ping density networks, both SLPA and Game provide better performance. (Note that
we do not include Link and UEOC because their high ranks are mainly due to the
overdetection.)

7. TESTS ON REAL-WORLD SOCIAL NETWORKS

We first examined algorithm performance on a high school friendship network17 where
the ground truth is known. This social network from a high school is based on self-
reporting from students. It is known that the true partitioning of the network roughly

17A project funded by the National Institute of Child Health and Human Development.
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Table V. The Overlapping Node Detection
Ranking for n = 5000, μ = 0.3 and High

Overlap Density On = 50%

Rank RSs
F RSb

F RS∗
F

1 Link Link Link
2 UEOC UEOC UEOC
3 Game SLPA SLPA
4 SLPA Game Game
5 CFinder LFM LFM
6 LFM CIS CFinder
7 CIS CFinder CIS
8 GCE MOSES MOSES
9 MOSES OSLOM OSLOM
10 iLCD iLCD iLCD
11 OSLOM COPRA GCE
12 COPRA EAGLE COPRA
13 EAGLE NMF EAGLE
14 NMF GCE NMF

Fig. 11. High school network (n = 69, k = 6.4). Colors represent known communities corresponding to
grades ranging from 7 to 12. Grade 9 is separated into two subgroups that correspond to white (upper) and
black (lower) students respectively. Numbers are the node id’s.

corresponds to the grade (from 7 to 12) of students listed in the survey. The ground
truth is a total of 6 communities (see Figure 11) together with two subgroups within
grade 9 corresponding to a group of white and black students. Even though there are
no overlapping nodes reported by the students, each algorithm reports some by its own.
Results are shown in Table VI18. Discovered overlapping nodes are listed in the third
column. For algorithms that discover more than 10 overlapping nodes, only the total
number is shown. We also include NMI and the number of communities for reference.

It is easy to verify that all the overlapping nodes in Table VI are connected to at
least two different groups. Some of them lie between different grades with strong
connections to each individual one, for example, nodes 45, 46, 61, 26, 32, and 33. Some
are boundary nodes between subgroups within a grade such as nodes 59, 12, and 18.
Node 42 serves as a bridge between groups without having particular coherence to
any group. However, it is still not clear whether these nodes are really meaningful or

18For each algorithm, we show results with parameters that output the best NMI score.
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Table VI. Test on a High School Friendship Network

Algorithm Num. of communities Overlapping nodes NMI
CFinder 2 {12, 18} 0.1679

CIS 9 total 34 0.7495
COPRA 6 total 14 0.7966
EAGLE 4 {18} 0.4962
Game 10 total 14 0.4673
GCE 6 {0, 21, 45, 46, 61} 0.8333
iLCD 7 {5, 21, 26, 29, 31, 32, 33, 46, 61} 0.3713
LFM 7 {0, 45} 0.8134
Link 20 total 31 0.3155

MOSES 10 total 18 0.5037
NMF 7 {0, 12, 18, 45} 0.643

OSLOM 11 {45, 46} 0.4315
SLPA 6 {1, 42, 45, 59} 0.6788
UEOC 7 {0, 12, 18, 26, 29, 45} 0.8148

Table VII. Social Networks in the Tests

Network n k Network n k
karate (KR) 34 4.5 PGP 10680 4.5
football (FB) 115 10.6 Email (EM) 33696 10.7
lesmis (LS) 77 6.6 P2P 62561 2.4

dolphins (DP) 62 5.1 Epinions (EP) 75877 10.6
CA-GrQc (CA) 4730 5.6 Amazon (AM) 262111 6.8

necessary to be considered as “overlapping”. This is one factor that makes the detection
(and verification) even more challenging in real-life applications.

Next, we tested on a wider range of social networks listed in Table VII. More in-
formation about these networks can be found here19. Given that the ground truth is
not available for most of these networks, we selected two overlapping modularities QE

ov

in (5) and QNi
ov in (2) as quality measures. The former is based on the node belonging

factor, and the latter is based on the link belonging factor. For the arbitrary function
in QNi

ov , we adopted the one used in Gregory [2010], f (x) = 60x − 30.
In Figures 12 through 17, networks are shown in order of increasing number of edges

along the x-axis. Lines connecting points are meant merely to aid the reader in differen-
tiating points from the same algorithm. We removed CFinder, EAGLE, and NMF from
the test due to either their memory or computation inefficiency in large networks. As a
reference, we also performed disjoint community detection with the Infomap algorithm
[Rosvall 2008], which has been shown quite accurate in Lancichinetti and Fortunato
[2009].

Figures 12 and 13 show a positive correlation between the two quality measures.
Typically, the disjoint partitioning achieves higher QE

ov than overlapping clusterings,

19CA-GrQc: a coauthorship network based on papers in General Relativity publishing in Arxiv [Leskovec
et al. 2007b].
PGP: a network of users of the Pretty-Good-Privacy algorithm [Boguna et al. 2004].
Email: a communication network in Enron via emails [Leskovec et al. 2009].
Epinions: a who-trust-whom online social network of a consumer review site Epinions.com [Richardson et al.
2003].
P2P: the Gnutella peer-to-peer file sharing network from August 2002 [Ripeanu et al. 2002].
Amazon: a copurchase network of the Amazon Web site [Leskovec et al. 2007a].
Data are available at http://www-personal.umich.edu/~mejn/netdata and http://snap.stanford.edu/
data.
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Fig. 12. Overlapping modularity QE
ov for social networks.

Fig. 13. Overlapping modularity QNi
ov for social networks.

Fig. 14. The normalized number of detected overlapping nodes for social networks based on the clustering
with the best QE

ov .

which empirically serves as a bound of the quality of detected overlapping communities.
This also holds for QNi

ov in general.
In general, Link and iLCD achieve lower QNi

ov or QE
ov compared to others, while SLPA,

LFM, COPRA, OSLOM, and GCE achieve higher performance on larger networks (e.g.,
last five networks). Moreover, an algorithm may not perform equally well on different
types of network structures. Some of them are sensitive to specific structures. For
example, only SLPA, LFM, CIS, and Game have satisfying performances in networks
with highly sparse structure such as P2P, for which COPRA finds merely one single
giant community and GCE also fails. Another issue is that some algorithms tend to
overdetect the overlap, as was the case for LFR networks. CIS and Link fail in the test
because they find too many overlapping nodes or memberships relative to the consensus
shown by the other algorithms as seen in Figures 14 through 17. Such overdetection
happens to other algorithms, including COPRA, GCE, and UEOC on specific networks,
resulting in low performance for these algorithms.

Some interesting common features are observed from our tests. As shown in
Figures 14 and 15, the fraction of overlapping nodes found by most of the algorithms
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Fig. 15. The normalized number of detected overlapping nodes for social networks based on the clustering
with the best QNi

ov .

Fig. 16. The number of detected memberships for social networks based on the clustering with the best QE
ov .

Fig. 17. The number of detected memberships for social networks based on the clustering with the best QNi
ov .

is typically less than 30%. Results from SLPA, OSLOM, and COPRA, which offer good
performances in the LFR benchmarks, show an even smaller fraction of overlapping
nodes, less than 20%, in most real-world networks examined in this article. Moreover,
Figures 16 and 17 confirm that the diversity (i.e., membership) of overlapping nodes
in the tested social networks is relatively small as well, typically 2 or 3.

8. CONCLUSIONS AND DISCUSSIONS

In this article, we review a wide range of overlapping community detection algorithms
along with quality measures and several existing benchmarks. A number of tests are
performed on the LFR benchmarks, incorporating different network structures and
various degree of overlapping. Quality evaluation is performed on both community and
node levels to provide complementary information. Results show that the detection in
networks with high overlapping density and high overlapping diversity still has space
for improvements. The node-level evaluation reveals the problems of overdetection and
underdetection which need to be considered when designing or evaluating detection
algorithms. The results discovered in real-world social networks suggest the sensitivity
of some algorithms to sparse networks. A common feature of social networks in view
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of agreement of different algorithms is the relatively small number of overlapping
nodes, most of which belong just to a few communities. Moreover, the ambiguity in the
definition of overlapping nodes imposes challenges in real-life applications as well.

Here, we review work that has been done mostly for unweighted networks. However,
there are number of applications where a weight bears significant information (e.g., the
correlation network in biological studies [Langfelder and Horvath 2008]). Algorithms
that explicitly take weights into account and allow overlapping, such as CPMw and
SLPAw, expect to have advantages over others.

Despite the large amount of work devoted to developing detection algorithms, there
are a number of fundamental questions that have yet to be fully addressed. Two of
the most prominent are when to apply overlapping methods and how significant the
overlapping is.

It is natural to ask whether or not an application of the overlapping detection algo-
rithms captures any additional information that a disjoint algorithm would necessarily
miss. Unfortunately, measures like NMI and Omega do not offer a satisfying answer.
The discussion on the necessity of overlap has largely been left unexplored. In Kelley
[2009], the author empirically examined attributes of the vertices in a network repre-
senting commenting activity. The author suggests that, for a pair of communities Aand
B, the trait similarity between A∩ B and the sets A− B and B− A be higher than the
similarity between A− B and B− A. Such a relationship might offer a way to estimate
the validation of the overlap.

The significance of community structures has been previously explored only within
the context of disjoint community detection and based on the notion of modularity
[Reichardt and Bornholdt 2006b; Guimerà et al. 2004; Massen and Doye 2005]. The
robustness and uniqueness of a discovered partitioning is also examined in Gfeller et al.
[2005], Karrer et al. [2008], and Massen and Doye [2007]. Many of these techniques can
be extended to assess the overlapping community structure. Interestingly, statistical
significance has begun to be included in detection methodologies such as OSLOM
[Lancichinetti et al. 2011].
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