
Energy-Efficient Location Services for Mobile Ad Hoc

Networks

Zijian Wanga,b,1, Eyuphan Buluta, Boleslaw K. Szymanskia,∗

aComputer Science Department, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
bInstitute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190,

China

Abstract

Location-based routing protocols are stateless since they rely on position

information in forwarding decisions. However, their efficiency depends on

performance of location services which provide the position information of

the desired destination node. Several location service schemes have been

proposed, but the most promising among them, hierarchical hashing-based

protocols, rely on intuitive design in the published solutions. In this paper,

we provide full analysis of the efficiency of routing in hierarchical hashing-

based protocols as a function of the placement of the routers. Based on the

theoretical analysis of the gain and costs of the query and reply routing, we

propose a novel location service protocol that optimizes the distance trav-

eled by the location update and query packets and, thus, reduces the overall

Bolek
Typewritten Text

Bolek
Typewritten Text
Ad Hoc Networks, vol. 11(1), January 2013, pp. 273- 287.

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

energy cost. These gains are further increased in the second presented pro-

tocol by the optimal location of servers that we established through analysis

of geometrical relationships between nodes and location servers. Simulation

results demonstrate that the proposed protocols achieve around 30%-35%

energy efficiency while improving or maintaining the query success rate in

comparison to the previously proposed algorithms.

Keywords: mobile ad hoc networks, location service, energy efficiency

1. Introduction

Recently, there has been an increasing usage of mobile devices such as

smartphones, iPads and GPS devices by people and vehicles. The applica-

tions running on these mobile devices require ad hoc type of communication,

and therefore necessitated the design of new cost efficient routing algorithms

for MANETs with constantly changing topology. Since these mobile devices

are carried voluntarily by people (the power of these nodes is not consumed

for mobility), the main factor that depletes the energy of such devices is the

set up and maintenance cost of routing algorithms that provide the commu-

nication between the nodes [1].

Among many routing algorithms proposed for MANETs, location based

routing has received much attention and is considered to be the most efficient

and scalable routing paradigm [2]. However, before a packet can be routed,

the source node needs to retrieve the location information of the destination

node. Thus, a critical issue for location based routing protocols is to design

efficient location services that can track the locations of mobile nodes and at

any time reply to queries about the locations of nodes residing anywhere in

2

the network. Since mobile nodes are battery powered with limited energy,

energy efficiency must be taken into consideration when designing location

service protocols.

1.1. Related work

There have been various protocols proposed for location service. The ear-

liest of them were flooding-based approaches. DREAM [3], DLS, and SLS [4]

are examples of those in which each node periodically floods the entire net-

work with its location information. However, the storage and dissemination

overhead of such an approach is very high. Reactive flooding-based approach-

es (e.g., RLS [4]) are better than pro-active ones in terms of overhead. Yet,

they might still resort to flooding the entire network when the destination

location information is not available in neighbor nodes.

To restrict the location update and query flooding, quorum-based proto-

cols were proposed. One example is the column-row protocol introduced in

[5], where each node periodically propagates its location information in the

north-south direction, while any location query is propagated in the east-west

direction. In this case, the update and query overhead is much lower than it

is in flooding-based methods. Yet, the location update cost in terms of hop

count is still the full diameter of the network and the query cost could be n-

early as high if the query enters the query column far from the intersection of

this column with the update row. This method is then extended by sending

query and update in non-vertical directions [6] and in multi-directions [7].

Recently, hashing-based protocols, in which location servers are deter-

mined via a global hash function, have been proposed. These protocols can

further be divided into flat or hierarchical, depending on how the home re-

3

gions of the location servers are structured. In the flat hashing-based proto-

cols [8, 9], each node’s identifier is mapped to a home region consisting of one

or more nodes within a fixed location in the network area. All nodes in the

home region serve as location servers maintaining location information and

replying to location queries. However, there are several drawbacks of such an

approach. First, a large overhead is introduced when moving nodes periodi-

cally send location updates to their location servers which may be far away.

Second, even if the destination node is arbitrarily close to the source node,

the source node still needs to send location query to the destination node’s

location server that could be far away. Third, when all the location server-

s are within a fixed geographical area, frequent location queries and replies

drain energy and cause early death of the nodes within this area. Multi-home

region method [10] was proposed to fix some of the above drawbacks.

The notion of hierarchical structure used for location service was first in-

troduced in [11]. In the hierarchical hashing-based protocols [12, 13, 14], the

network area is recursively divided into a hierarchy of squares. For each node,

one or more nodes in each square at each level of the hierarchy are assigned

as its location servers. Maintaining a hierarchy offers several benefits. First,

moving nodes do not need to send location update to location servers of cer-

tain level if they have not moved out of the corresponding square. Thus, the

location update cost is significantly reduced. Second, if the source node and

the destination node are close to each other and within the same low level

square, the location query can be replied quickly. Third, location servers

are scattered all over the network, balancing the total network energy usage

among nodes. Although energy-related parameters are considered in some

4

routing protocols such as [15], location service protocols mainly focus on the

ability to find the location of the destination nodes. Thus, their designs are

not supported by the rigorous analysis of the energy efficiency of forwarding

location update and location query packets.

1.2. Contributions

In this paper, we focus on the rigorous analysis of the energy efficiency of

the location update and query routing and its impact on the optimal design

of location service protocols. We also present a novel protocol resulting from

this analysis that optimizes energy consumption of the protocol induced com-

munication. We focus our analysis on hierarchical hashing-based protocols

introduced in [11, 12, 13, 14]. They use the hierarchical grid with servers

randomly assigned to each node based on its ID. In this paper, we made the

following fundamental contributions to this approach:

1. We analyzed analytically the gain and cost of the location query routing

and derived the optimal location query and update strategies.

2. Based on this analysis, we proposed an efficient protocol for reducing

the distance traveled by location update and query packets. The pro-

posed protocol decreases the energy cost of location service, increases

the delivery ratio, and balances the location service load equally among

all nodes.

3. We proposed a second algorithm that takes advantage of the existence

of the optimal locations (that we identified) for the servers; assigning

server duties to nodes near these optimal locations brings the energy

consumption and the delivery ratio close to their optimal values.

5

4. We performed extensive simulations with many varying parameters

running over many different environments to demonstrate experimen-

tally the advantages of proposed protocols over the leading existing

protocols.

The remainder of the paper is organized as follows. We describe the

network model, assumptions, and hierarchical coordinate system used by the

protocols in Section 2. In Section 3, we present our novel location service

protocols in detail. Section 4 provides the simulation results and compares

our protocols with existing work. We conclude the paper in Section 5.

2. Preliminaries

2.1. Network Model and Assumptions

We model a mobile ad hoc network as a set of wireless nodes deployed ran-

domly with uniform distribution over a predetermined finite two-dimensional3

square area. Each node has a unique ID, and is equipped with a commu-

nication radio with a communication protocol supporting reliable inter-node

communication with adjustable transmission range. We assume that each

node knows its own position (e.g., via low power GPS devices or localization

techniques [18, 19]) and also knows the positions of its neighbors. The lat-

ter is typically accomplished via periodic hello messages with Time-To-Live

(TTL) set to one hop. Thus, this packet will only be received by one-hop

neighbor of the sender, instead of flooding the entire network. Additionally,

3The protocols discussed here can easily be extended to three dimensional space. For

simplicity, we used two dimension.

6

we assume that the nodes move within the square network area according to

a mobility model.

2.2. Hierarchical Coordinate System

The whole network area is recursively divided into a hierarchy of squares

which are known to each node in the network. For a non square area, it

could be covered by a square with minimum size. At the top level, the entire

area is called a level-N square, where N is the total number of levels in

the hierarchy. Each of level-i (1<i≤N) square is further divided into four

level-(i-1) quadrants, until the entire region is divided into n = 4N−1 level-1

squares. Given L as the side length of the whole network area, the side length

of a level-i square is Li =
L

2N−i . Figure 1 illustrates an example of a 4-level

hierarchy network in which each node resides within exactly one square at

each level i, such that 1≤i≤N .

Using the lower left point as the origin of the system, we can define the ad-

dress of level-i square as a sequence of coordinate pairs (aN−1
x , aN−1

y). . .(aix, a
i
y)

(in short aix|y) computed as:

aix|y =
six|y −

∑N−i−1
k=1 LN−k × aN−k

x|y

Li

(1)

where (six, s
i
y)(s

i
x|y in short) is the lower left coordinate of the level-i

square. For example, the address sequence for the marked level-1 square

in Figure 1 is (1,0)(1,0)(0,1).

Inversely, the lower left coordinate of the level-i square can be computed

as follows:

six|y =
N−i∑
k=1

LN−k × aN−k
x|y (2)

7

Figure 1: An example for a 4-level hierarchy network.

With such a partitioning and the square address scheme applied to the

entire network, the specific location of a node can be identified by the square

in which this node resides.

Given a node’s coordinate (nx, ny), the address sequence (na
N−1
x , naN−1

y). . .(naix,

naiy) (in short naix|y) of the level-i square to which this node belongs is cal-

culated using the following formula:

naix|y = ⌊
nx|y −

∑N−i−1
k=1 LN−k × naN−k

x|y

Li

⌋ (3)

For example, the address sequence of the level-1 square in which the

destination node in Figure 1 resides is (0,0)(1,0)(0,1).

8

3. Energy Efficient Location Service Protocol

This section first gives the details of how the location update procedure is

performed to reduce the distance traveled by location update packets in Sec-

tion 3.1. Then a novel location query method aiming to reduce the distance

traveled by location query packets is proposed in Section 3.2. At last, an-

other novel algorithm which optimizes the location server positions to reach

the same aim is presented in Section 3.3.

3.1. Location Update

The following key issues need to be addressed in any attempt to reduce

the distance traveled by the location update packets: 1) which nodes are

selected as location servers and the rules of updating location information

on these location servers (Section 3.1.1); 2) how location information is or-

ganized and stored on each location server (Section 3.1.2); 3) how location

information is handed over to new location servers when the old ones move

out of position (Section 3.1.3); and 4) how location update packets are

forwarded (Section 3.1.4).

3.1.1. Location Server Selection and Update

Each node selects one level-i location server in each level-i square in

which it resides using its unique ID and a hash function known to all nodes.

Therefore, each node only needs to maintain N location servers. Moreover,

the storage overhead is evenly distributed all over the network as nodes with

different IDs use different servers. The position of the level-i location server

(lsix, ls
i
y) (referred to as location server point) for each node in level-i square

is determined as:

9

(lsix, ls
i
y) = (six, s

i
y) + hash(ID,Li) (4)

where ID is the unique identifier of the node and (six, s
i
y) is the lower left

coordinate of the level-i square in which the node resides. hash(ID,Li) is

a global function known to each node that maps a node’s ID to a relative

position in a level-i square4. There may be no node at the exact location

server point. In such a case, we choose the node nearest to the location server

point as the corresponding location server using the perimeter based scheme

presented in [14]. In perimeter based scheme, the location update packet

sending to the location server point (LSP) will circulate on the perimeter

around the LSP and the location information will be stored on all the nodes

on the perimeter enclosing the LSP. This scheme will guarantee that there

will be at least one location server around the LSP, even when the node

distribution is non-uniform across the network area and there are holes in

the network.

If the node moves from its last reported position further than a prede-

fined distance but remains within its current level-1 square, it sends location

update with its exact location information only to its level-1 location server.

Otherwise, if the node moves off the current level-i (i ≥ 1) square Sold
i into

new level-i square Snew
i within the lowest level-k (k ≥ i+ 1) common square

Scom
k that contains both Snew

i and Sold
i , it updates its location information as

4In the simulations, we used the following simple hash function. For level-k (1 ≤ k ≤ N

for ADJ and HG methods and k = 1 for OPT method) square, we divided it into M ×M

grids, where M ≫ n, then chose the center of grid (gx, gy) as the hash point where

gx = ID%M , gy = ⌊ID/M⌋. However, our methods can also use other hash functions.

10

follows. First, it sends location update to its level-k location servers. Second,

it sends location update to all of its level-j (1≤ j ≤ i) location servers in

Snew
i . Third, it sends location remove packets to all of its outdated level-j

(1≤ j ≤ i) location servers in Sold
i . Both the location update and remove

packets are sent following the route computed by greedy Hamiltonian path

algorithm. We elaborate on this in Section 3.1.4.

Obviously, if a node oscillates between two nearby points at two sides

of a high level square boundary, sending of location updates immediately

after each slight location change will be costly. Therefore, to reduce such an

overhead, we employ lazy update technique. Lazy update allows a node

to move out of level-i square up to a certain distance without updating

corresponding location servers. This scheme will keep the location query

to be efficient and locality aware, and reduce the overhead due to oscillating

nodes, as verified in [16, 17]. In our case, we let each node send location

update only if it moves out of level-i square for at least a certain threshold

distance d(Li).

3.1.2. Location Information Storage

In the proposed method, each location server node maintains a list of

IDs of those nodes for which location information is stored on this server.

Each element of the list stores the following information: node ID (32 bits),

location server level (log2N bits), location information (will be introduced in

the next paragraph), and expiration time (32 bits).

It should be noted that the exact location information of destination

nodes is only stored at level-1 location servers. At all other levels, the location

servers only store the address sequence of the square in which the level-

11

(i-1) location server (and also the destination node) resides, as shown in

Figure 1. There are three advantages of storing location information in this

way. First, the memory usage is reduced because the address sequence of

a square takes only 2(N -i+1) bits for level-i location server while the exact

location information takes 64 bits. For each location server, on average,

there are only N entries5 in the list. That is, for the example in Figure 1,

where N = 4, the memory usage is only 340 bits6 per node. Second, the

size of the location update packet is also reduced which decreases the energy

cost for location update. Third, the location information at level-i location

server needs to be updated only when the destination node moves out of the

corresponding level-(i-1) square, which significantly reduces the frequency of

location updates and thus the energy consumption.

3.1.3. Location Information Handover

Each location server periodically (with the same frequency of hello mes-

sages for all the nodes) checks each entry in its list and calculates the distance

between its current position and the location server point (computed by E-

q. 4) for each destination node. If this distance exceeds certain predefined

handover threshold, the current location server will choose the neighbor n-

ode closest to the corresponding location server point as the new location

5Since there are N location servers for each node in the network, in total we have

N×(node count) entries in the tables of all nodes. This makes an average of N entries per

node (or location server) in the network.
6On average, each node becomes a level-i server for only one node. Therefore, it keeps

130 bits for the node for whom it serves as level-1 server and 68, 70 and 72 bits for the

nodes for whom it is level-2,-3 and -4 server, respectively.

12

server. Here, note that this handover procedure involves only the old and

new location servers of a node and it is different than the update procedure

defined in Section 3.1.1. Both procedures indeed run in parallel. Therefore,

it is also possible that even if a node does not move, its level-i location server

may change due to the movement of current level-i location server.

With the sufficiently large move of a location server between the check-

ing times, it is also possible that it can lose its ‘location server duty’ for

more than one node at a time. Therefore, the location server may need to

inform multiple new location servers (each for a different node) about such

loss. Even in such cases, only one location handover packet is broadcast to

accomplish that. The packet carries a list of location servers to be informed

(indexed by the server’s node ID) and the corresponding location information

to be stored at each server. When receiving a location handover packet, n-

ode will check whether its ID is in the list of location servers to be informed.

If this is the case, it stores the corresponding location information. Com-

pared to the broadcasting of location handover packet for each new location

server individually, this solution decreases the chance of packet collision (an

observation confirmed by simulation) and consequently reduces the energy

cost.

3.1.4. Sending Location Update Packet

In previous work, all the location update packets are sent to location

servers individually. In our protocol, we achieve location updates in a more

energy efficient way. If one node (referred to as update node here after) needs

to send a location update to more than one location server, it first calculates

the distances that would be traveled by the update messages in two cases: (i)

13

when they are sent to each desired location server individually (referred to

as d-indiv) (ii) when they are sent in one packet that traverses all the desired

location servers (referred to as d-all). If d-indiv incurs smaller distance than

d-all does, the location update messages are sent to each desired location

server individually. Otherwise, all the update messages are integrated into

one packet that is forwarded according to a forwarding table indicating the

sequence of location servers to be visited.

Traversing multiple points in a plane is an instance of the Hamiltonian

path problem. We use a simple greedy solution in which the next visited node

is always the nearest one to the currently visited node. Any intermediate

node greedily forwards location update packet to the neighbor nearest to the

position of the next location server in the forwarding table. Once the location

update packet reaches a location server at certain level, the corresponding

location information will be stored at this server and the next entry in the

forwarding table will pop up. If certain intermediate node can not find a

neighbor node closer to the location server in the current forwarding table

entry than itself, this entry will be dropped and the next table entry will pop

up. All the outdated table entries are deleted and therefore the corresponding

server will not be updated7.

In order to reduce packet size, only the table entry for level-1 location

server stores the exact location information of the update node (64 bits). All

the other table entries store only location server level (⌈log2 i⌉ bits) and the

address sequence for the level-(i-1) square in which the update node resides

7This lowers the location query success rate, but it happens so infrequently that its

impact on the performance of the protocols is negligible.

14

(2(N -i+1) bits). The computational complexity of this coding procedure is

O(N2). Note that, when all n nodes are evenly distributed over the entire

network which is divided into n = 4N−1 squares, we obtain N ≈ log(n)/2.

Thus the computational complexity of the coding procedure indeed becomes

O(log(n)2). Any intermediate node receiving the location update packet

can decode the information to get the location of the server in the current

forwarding table entry.

The first entry in the forwarding table in Figure 2 is an example. Any

intermediate node can get the address sequence of the level-1 square in which

the level-1 location server resides. This address is computed from the update

node’s location (x,y) by applying Eq. 3. Then, the lower left coordinate

of the square can be computed by applying Eq. 2. Finally, the position of

the corresponding level-1 location server can be calculated using Eq. 4. The

computational complexity of this decoding procedure is O(N2) (O(log(n)2)).

An advantage of sending location update in one packet instead of many is

that the distance traveled by the location update packet is shorter, reducing

the energy cost.

3.2. Proposed Location Query Method

Here, we focus on the most important step, location query processing,

that is used to find the proper location servers to obtain location informa-

tion. We first introduce the observation that inspires our new location query

method. Then we analyze the gain and cost of using this new method and

introduce the location query procedure in detail.

15

Figure 2: An example of location update and forwarding table.

3.2.1. Observations and Basic Idea

We made the following observations about the previous methods de-

scribed in [14, 15, 16]. In these methods (throughout the paper we specifically

refer to HIGH-GRADE method in [14], abbreviated as HG here, as the rep-

resentative of such methods), the source node calculates all candidate level-i

location server points assuming the destination node resides in the same level-

i square as itself. Then, the location query packet traverses the candidate

location server points in increasing order of the corresponding square levels

until the lowest level square in which both the source and the destination

nodes reside is found. Clearly, such a common square always exists (in the

worst case this is the level-N square).

The main drawbacks of this method are as follows. First, the right lo-

cation server could be quite nearby, but the location query packet has to

16

travel a long distance to find it. One example of such a situation is shown8

in Figure 3. The destination node and its level-1 location server are within

adjacent square of the source node, but the location query packet has to visit

level-1 to level-3 possible location servers and level-4 to level-1 real location

servers to find the destination node. Second, the location query packets are

always forwarded from lower to higher levels of candidate location server

points, even if visiting the latter and dropping the former would decrease

the distance traveled by packet. In fact, if the high level candidate location

server is not a right one, then neither is the low level one. If the location

query packet can check the high level candidate location server points first,

then there is no need to check the low level candidate location server points

at all. Thus, both the distance traveled by the location query packet and the

corresponding energy cost could be reduced.

Some schemes (such as [16, 17]) try to address the aforementioned first

drawback by forwarding location query packet in a spiral with increasing

radius until it meets one of the location servers. Even though this helps in

finding the nearby location servers quickly, the location query packet still

travels a long distance if the location servers are far away from the source.

Considering the above points, we conclude that:

1. for the source node, it is worth searching the adjacent squares outside

its own high level square, but only if the expected gain (finding right

location server quickly, thus decreasing the average distance traveled by

8Note that in Figs 1-4, for illustration purposes, the locations of LS nodes are computed

randomly (without using the hash function we used in our simulations) because various

hash functions can be utilized in different hierarchy based algorithms.

17

Figure 3: Location query scheme from [14].

packet) is bigger than the cost for visiting extra location server points;

2. if jumping over lower level candidate location server points and visit-

ing higher level candidate location server point first will decrease the

average distance traveled by packet, then the source node should send

the location query packet to visit the higher ones first.

3.2.2. Location Query Procedure

Based on the conclusions of our observations above, we propose a new

location query method (referred to as ADJ), as shown in Algorithm 1. We

first analyze the gain and cost of using this new method9and then introduce

the location query algorithm step by step in detail.

9A detailed analysis and proof procedure can be found in [22]

18

For simplicity, we call the possible location servers within source node’s

level-k square as base location servers, and denote level-k base location server

point as LSPk. We call the possible location server in adjacent level-k square

of source node as extra location servers, and denote level-k extra location

server point as LSPka .

Gain and cost analysis

If the source node finds (with probability of 4−N+k) the right (e.g. with

information about the destination) level-k extra location servers, then we

gain by avoiding sending first a query packet to a sequence of base location

servers at levels growing from 1 to N and then descending from N to k.

Hence, the gain measured in distance is:

gk =

(
d(source, LSP1) +

N−1∑
i=1

d(LSPi, LSPi+1)

+
N−1∑
i=k

d(LSPi, LSPi+1)

)
4−N+k

(5)

where d(pi, pj) denotes the distance from pi to pj.

If the source node visits one level-k extra location server but does not find

the destination location information there (this happens with probability of

1 − 4−N+k), then the location query packet has to go back to visit base

location servers using HG method. In this case, we get no gain but pay

the extra cost. Assume LSP1 is the first base location server point that the

19

Algorithm 1 Location Query Procedure

1: Input: source node’s position and destination node ID

2: Output: forwarding table of the location query packet

3: Determine which method to use (ADJ or HG)

4: Find optimal visiting path for base LSPs (Alg. 2)

5: if ADJ is used then

6: Find adjacent squares to be searched

7: Compute gain and cost for each adjacent square found

8: if gain > cost then

9: Put corresponding extra LSP into visiting path

10: end if

11: Sort all the LSPs in visiting path using Hamiltonian path method

12: end if

13: Generate forwarding table based on sorted visiting path

20

source node will visit using HG method. Then the cost will be:

ck =(4−N+k)d(source, LSPka)+

(1− 4−N+k) [d(source, LSPka)+

d(LSPka , LSP1)− d(source, LSP1)]

=d(source, LSPka)+

(1− 4−N+k)[d(LSPka , LSP1)− d(source, LSP1)]

(6)

Determining which method to use

The first step is to determine which method to use in the location query

procedure, ADJ or HG. When the source node wants to find the location

of the destination node, it first draws a circle with itself as center with the

estimated maximum gain as a radius. If this circle intersects with other

level-h (predefined parameter, should be high, we set it to N -1) squares (not

the one containing the source node), the source node will choose to use ADJ

method. Otherwise, the source node will choose to use HG method. The

meaning behind this scheme is that ADJ method will be selected only if

the estimated maximum gain is big enough to pay the extra cost of visiting

adjacent squares. The maximum gain is estimated as follows. It is clear

that max(distance(source, LSP1)) =
√
2L1, where L1 is the side length of

level-1 square. According to the hash function we used, d(LSPi+1,i+2) =

2d(LSPi, LSPi+1). Given the ID of the destination node and a level-2 square,

it is easy to compute the exact maximum distance from the four possible

LSP1s to LSP2 (referred to as L(1, 2)max). Thus, Eq. 5 becomes:

gk =

(√
2L1 + L(1, 2)max

(∑N−1
i=1 2i−1 +

∑N−1
i=k 2i−1

))
4N−k

(7)

21

It is easy to prove [22] that gk is a strictly increasing function of k, thus

we have the maximum gk when k = N − 1:

gkmax =
(√

2L1 + L(1, 2)max((3(2
N−2)− 1)

)
/4

Finding optimal visiting path for base LS

The second step is to find the optimal visiting sequence (path) for base

Location servers points. In original HG method, the source node visits base

location servers from LSP1 to LSPN in sequence. However, in our protocol,

if the node selects to run HG method, we send the query over the optimal

visiting sequence (path) giving the minimum cost among all possible paths

(there are 2N−1 of them) from source to LSPN .

For example, if the source node visits LSP1 and LSP2 in sequence (the

path is 0x11), then with probability of 4−N+1, it will find the destination

location information in LSP1 and stop going further; with probability of

1 − 4−N+1, it will continue to search LSP2. Thus the average cost of get-

ting from source to LSP2 is d(source, LSP1) + (1 − 4−N+1)d(LSP1, LSP2).

If the source node drops LSP1 and visits LSP2 directly (the path is 0x10),

then with probability of 4−N+2, it will find the destination location infor-

mation in LSP2 and will go to the level-1 location server that contains de-

tailed destination location information. Since only one out of four servers

at level 1 serviced by LSP2 is LSP1, the probability that the search will

go back from LSP2 to LSP1 is just 1/4 × 4−N+2, or 4−N+1. With prob-

ability of 1 − 4−N+2, the search will continue to server LSP3. Thus the

average cost of getting from the source to LSP2 (when jumped over LSP1)

is d(source, LSP2)+(4−N+1)d(LSP2, LSP1). In general, optimal visiting se-

quence finding process is shown in Algorithms 2 and 3.

22

Algorithm 2 Optimal Visiting Sequence for base LS

1: Input: position list of original visiting base LSP

2: Output: position list of optimized visiting base LSP

3: opt path = 2N−1 − 1

4: opt dist = Length(opt path)

5: for i = 0; i < 2N−1 − 1; i++ do

6: dist = Length(i)

7: if dist < opt dist then

8: opt dist = dist

9: opt path = i

10: end if

11: end for

Finding adjacent squares to be searched

If ADJ method is used, the source node has to determine which adja-

cent squares will be searched for extra location servers. In order to narrow

down the possible adjacent squares to be searched, we use the following pro-

cess. After finding the optimal visiting path of base location servers, source

node knows the exact cost from itself to LSPN (Let L(s,N) denote this

cost). It then draws a new circle with itself as center and with a radius

of rest=
[
L(s,N) + L(1, 2)max

(∑N−1
i=k 2i−1

)]
4−N+k. If this circle intersects

with level-k (1 ≤ k ≤ h) squares contained within another level-h square

(not the one that contains the source node), the source node will consider

the corresponding level-k squares as candidate adjacent square. For each of

the level-k candidate adjacent square, the source node will calculate LSPk

assuming the destination node is within this square. If LSPk is not within

23

the new circle, the corresponding square will be dropped.

Algorithm 3 Length(int path)

1: Input: the visiting sequence (path) of base LSP

2: Output: the length of the input visiting path

3: dist = 0

4: last node = 0

5: for i = 1; i ≤ N ; i++ do

6: if ((ith digit of path from right is 1) || (i = N)) then

7: if (last node=0) then

8: dist = dist + d(LSPlast node, LSPi)

9: else

10: dist = dist + d(LSPlast node, LSPi)× (1− 4−N+last node)

11: end if

12: last node = i

13: else

14: dist = dist + d(LSPi, LSPi+1)× 4−N+i

15: end if

16: end for

17: return dist

Determining visiting path of all LS

For each candidate adjacent square remained after the previous step, the

source node will compute the exact gain and cost using Eq. 5 and Eq. 6. If

the gain exceeds the cost, the corresponding extra location server point in

the candidate adjacent square will be put into visiting path. All the location

servers (including base and extra location server) in the visiting path will be

24

sorted using Hamiltonian path method.

At last, forwarding table of location query packet is generated based on

the sorted visiting path.

Figure 4 shows an example in which the source node resides in the level-1

square which is beside the boundary of level-3 square. After optimizing the

visiting path of four base location server points, the level-1 base location

server point is removed. The source node finds some extra location server

points in adjacent squares, but only the level-3 location server point in adja-

cent square (0,0) will be put into the visiting path. Then, all location server

points in the visiting path are sorted and the forwarding table is generated

as shown in Figure 4.

To reduce the packet size, the forwarding table uses the same information

coding technique which was used by the location update procedure. All table

entries store the location server level i (⌈log2i⌉ bits) and the address sequence

of the level-i square in which the candidate location server resides (2(N − i)

bits). Any intermediate node receiving the location query packet can decode

the information and learn the location of the candidate location server in

the current forwarding table entry. During the location query procedure,

if any location server with destination information is found, the location

query packet will stop following the forwarding table and instead will use the

information found in this location server.

Consider the forwarding table shown in Figure 4. From the first table

entry, an intermediate node calculates the lower left coordinate of the square

by applying Eq. 2 to address sequence (0,0). Then, the position of the cor-

responding candidate location server can be calculated using Eq. 4 that is of

25

Figure 4: Location query procedure and forwarding table.

complexity O(N) (O(log(n))).

3.3. Location Server Position Optimization

In the previous section, we tried to reduce the location query costs by

adjusting the paths traveled by these packets. In this section, we try to reduce

the location update and query costs by adjusting the position of location

servers. We first take a two-level grid as an example to analyze the average

cost of location query procedure and then derive the optimal position for

location servers.

As shown in Figure 5, the two-level grid is divided into four level-1 grids,

marked as grids A, B, C and D. H1a, H1b, H1c and H1d are four level-1

location server points for these grids. Note that the relative position to the

26

lower left corner of level-1 grid for each of these points is the same for the

same destination node, thus the distance between H1a and H1b is L1, which

is the side length of the level-1 grid. H2 is the location server point for the

level-2 grid. We denote the distance between H1a and H2 as a, the distance

between H1b and H2 as b, the distance between H1c and H2 as c, and finally

the distance between H1d and H2 as d. The source node and the destination

node could fall within each level-1 grid with equal possibility of 1/4. Thus,

in total, there are 16 cases, each of them occurring with equal probability of

1/16. Since the same procedure will apply to the lower levels, we ignore the

distance traveled by the location query packet between the source node (or

the destination node) to the level-1 location server in the same level-1 grid

and just take the distance between level-1 location server and level-2 location

server into consideration.

For example, if the source node and the destination node are within the

same grid A, then the location query packet will first go to H1a and then

will find the destination node’s information and go to the destination node

directly. Thus, the location query cost will be 0. If the source node is within

grid A and the destination node is within grid B, then the location query

packet will visit H1a, H2, H1b and the destination node in sequence. Thus

the location query cost will be a+b.

By enumerating all possibilities, it is easy to show that the average cost

of query location is 3(a+b+c+d)
8

. The sum a + b + c + d is minimized when

the server is located at the center of the square (elementary but nice proof

of this fact is presented in [22] but omitted here for the sake of brevity).

Hence, given the position (x1, y1) of the level-1 location server in the most

27

Figure 5: A two-level grid example.

lower-left level-1 grid within the whole grid, the optimum position of level-i

(xi, yi) location server could be computed as:

xi = x1 +
i−1∑
k=1

Lk

2
and yi = y1 +

i−1∑
k=1

Lk

2

Although the distribution of location servers are not even using the above

equation, the energy cost is still evenly distributed over the whole network

as shown in the simulation section.

We can also estimate the benefit from the optimization of location server

positions. When the locations of servers are determined by Eq. 4, we can com-

pute the average location query cost for non-optimal placement as follows.

Given one of the possible level-1 location server points, (x, y), the other three

level-1 location server points will be (x+L1, y), (x, y+L1), (x+L1, y+L1),

where L1 is the side length of level-1 square. And the level-2 location server

point will be (2x, 2y). Assuming a uniform distribution of the location server

within one level-1 square, the distance (a + b + c + d) as shown in Figure 5

28

can be computed as∫ L1

0

∫ L1

0

√
x2 + y2 +

√
(L1 − x)2 + y2+√

x2 + (L1 − y)2 +
√

(L1 − x)2 + (L1 − y)2 dx dy

(8)

By using Matlab integration tools, the result of Eq. 8 is 3.0608L1, and the

average distance yielded is 1.1478L1. When the location servers are placed

at the optimal positions, then a=b=c=d=
√
2L1/2, thus the average cost of

location query for optimal placement will be 1.0607L1. Above all, we can

expect to achieve an improvement of about 8.2%.

According to the location update rule introduced above, the average lo-

cation update cost will be a+b+c+d
4

, which is 2/3 of the average location query

cost. Thus, we can get the same improvement for location update when the

location servers are placed at the optimized positions.

4. Simulations

4.1. Simulation Model and Settings

We used NS-2.33 simulator to evaluate our proposed schemes and com-

pared them with the HIGH-GRADE method presented in [14] (referred to as

HG) and the method presented in [13] (referred to as SALS)10. Our method

that adjusts the paths traveled by location update and query packets is re-

ferred to as ADJ, while our method with the location servers optimally placed

is referred to as OPT. It should be noted that OPT shares with ADJ all other

10We would like to thank the authors of [13] for kindly providing the simulation code

of their method.

29

protocol improvements introduced above (however, they may yield different

results due to the different positions of servers versus themselves and the

source node).

The whole network is deployed over a 1000 m by 1000 m area, and it

is partitioned into 4-level squares for HG, ADJ and OPT as shown in Fig-

ure 1. For SALS, the network is partitioned into 3-level squares, 5×5 level-1

squares with side length of 100 m create a level-2 square, and 2 × 2 level-2

squares create one level-3 square. We use this different 3-level configuration

here because the simulation code of SALS we get from the authors of [13]

is written under this configuration. In order to compare the results of SALS

with other three methods fairly, we analyzed the theoretical performance of

SALS for 3-level configuration (referred to as SALS3) and 4-level configura-

tion (referred to as SALS4) in appendix, and estimated the performance of

SALS4 from the simulation results of SALS3.

IEEE 802.11 is used as the MAC and physical layer protocol. We used

two-ray-ground propagation model. Each node’s transmission range can vary

from 0 to Rmax. The power consumed by each transmission is 1.6 W for omni-

directional transmission of the maximum 250 m range and lower for shorter

transmit ranges. The power drained for reception is constant and equal to

1.2 W. The detailed energy consumption model for nodes with ranges less

than Rmax can be found in NS2 documentations [20].

4.2. Performance Metrics

To evaluate the performance of the proposed schemes, we used the fol-

lowing metrics:

30

1. The average total distance11 traveled by all location update packets for

all nodes, referred to as update distance.

2. The average number of packets forwarded by each node, referred to as

packet count.

3. The average distance traveled by location query packets, referred to as

query distance.

4. The average delay of location query packets, referred to as query delay.

5. The average energy usage12 per node in the network.

6. The average location query success rate.

The distance traveled by a location update or query packet is accumulated

during the packet forwarding procedure. For example, if a packet is forwarded

from node A to node B, its hop distance will increase by one and its traveled

distance will increase by the distance between node A and node B.

4.3. Simulation Results

This section presents the results of our evaluations of the four mentioned

algorithms according to the aforementioned metrics.

11We sum the total distance traveled by all location update packets for all nodes in a

single topology, then take the average of this sum for different topologies. Distance is

measured both in meters and hops. We provide different graphs for each.
12Since all the methods compared use hello messages with the same interval and packet

size, the cost of those messages is not included in total energy usage. Besides, all the

methods ran for the same time duration, all nodes almost have the same time in idle state,

which leads to same energy cost of idle state, thus it is not included in total energy usage

neither.

31

1 1.25 1.5 1.75 2
0

1

2

3

4

5

6
x 10

5

V
max

 (m/s)

T
o
ta

l
d
is

ta
n
c
e
 (

m
e
te

rs
)

HG
SALS3
SALS4
ADJ
OPT

(a) Update distance (in meters)

1 1.25 1.5 1.75 2
0

1000

2000

3000

4000

5000

6000

V
max

 (m/s)

T
o
ta

l
d
is

ta
n
c
e
 (

h
o
p
s
)

HG
SALS3
SALS4
ADJ
OPT

(b) Update distance (in hops)

1 1.25 1.5 1.75 2
0

5

10

15

V
max

 (m/s)

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
p
a
c
k
e
ts

HG
SALS3
SALS4
ADJ
OPT

(c) Packet count

Figure 6: Performance comparison of four algorithms in terms of location update distance

and packet count.

32

1 1.25 1.5 1.75 2
200

400

600

800

1000

1200

1400

V
max

 (m/s)

A
v
e
ra

g
e
 d

is
ta

n
c
e
 (

m
e
te

rs
)

HG
SALS3
SALS4
ADJ
OPT

(a) Query distance (in meters)

1 1.25 1.5 1.75 2
2

4

6

8

10

12

14

16

V
max

 (m/s)

A
v
e
ra

g
e
 d

is
ta

n
c
e
 (

h
o
p
s
)

HG
SALS3
SALS4
ADJ
OPT

(b) Query distance(in hops)

1 1.25 1.5 1.75 2

0.04

0.06

0.08

0.1

0.12

0.14

0.16

V
max

 (m/s)

A
v
e
ra

g
e
 d

e
la

y
 (

s
e
c
o
n
d
s
)

HG
SALS3
SALS4
ADJ
OPT

(c) Query delay

Figure 7: Performance comparison of four algorithms in terms of location query distance

and location query delay.

33

We randomly generated five topologies for each configuration. For each of

them we ran 20 groups of simulations. Each simulation ran for S+45 seconds,

where S is the number of nodes. For the first S seconds, node s sent location

update at sth second13. During this procedure, the location servers (including

both optimal and non-optimal) placement can be determined. All the nodes

start to move after (S + 20)th second, according to the random way-point14

mobility model with no pause time. New nodes near the location server points

will be assigned as new location server by the ”handover” procedure. The

moving speed for each node is chosen between zero and a maximum moving

speed Vmax. We keep the number of nodes in the network at 400 but vary

the maximum nodal speed Vmax from 1 m/s to 2 m/s. These are the moving

speeds of walking people or robots. Then, starting from (S + 20)th second,

each of five randomly selected source nodes generated five location queries

to randomly selected destination node, with 5 seconds interval between its

queries. The d(Li) used in lazy update procedure is set to Li

20
i and the

handover threshold is set to 90 m15.

For OPT method, it should be noted that the optimal placement is used

to select the initial assignment of server duties to nodes at the beginning of

the simulation. Then, all nodes move according to the random way-point

model and some original server nodes may pass their duties to the nodes

nearer than them to the optimal points through the ”Handover” procedure.

13Here, we applied this scheme to avoid packet collision in the initial location update

procedure. When nodes start to move, they will send location updates only when necessary.
14This model is also used in related previous work [13, 14]. Thus, we used it for fair

comparison to previous work.
15We chose these values after an extensive run of simulations with different values.

34

Figure 6 plots the average simulation results for update distance and

packet count as a function of maximum speed Vmax. The plots show that

the location update cost (both hop count and distance traveled) grows for

all methods with the increase of Vmax. This is because when the maximum

speed of nodes increases, nodes need to send location update packets more

frequently (as they move out of a certain level of the grid), which will increase

the location update cost.

But it is much lower for both of our methods than for HG and SALS for

two reasons. First, our methods send location update in one packet. Second,

we use the lazy update procedure which reduces the update cost when node

oscillates near the square boundaries. The location update cost for OPT is

even lower than for ADJ because the distance traveled by the location update

packets is further reduced by adjusting the positions of location servers. On

average, we get improvement of 10.8%, which is very close to the analysis

result 8.2% in Section 3.3, the better performance than estimation results

from node mobility. Since most of the packets forwarded are location update

packets and the average number of forwarded packets by each node is directly

proportional to the hop distance, the slopes of the plots (and the relations

between the slopes of plots) shown in Figure 6(c) look similar to the ones

in Figure 6(a) and 6(b), which also verifies the simulation results in these

figures.

Figure 7 shows the average simulation results for query distance and delay

as a function of Vmax. As the plots illustrate, the cost of the ADJ is lower than

HG, with an average improvement of 11.8%. The improvement comes from

two scenarios: 1) the source node finds the destination location information in

35

adjacent squares worthy visiting; 2) the visiting list is improved by Algorithm

2. Consequently, ADJ method decreases the location query delay in worst

case too. This is important for some time sensitive applications, which require

that there is an upper limit for the location query delay. Moreover, the cost

of OPT method is much lower than ADJ and HG because the optimized

positions of location servers provide additional cost savings.

The performance of SALS3 is almost the same as OPT. Here, note that

SALS3 uses 3-level structure, thus a lot of query packets will find desired

information within level-2 square, with higher location update cost, as shown

in Figure 6(a). When the simulation results of SALS3 are mapped to SALS4,

its performance is even worse than HG.

It is interesting to note that the location query cost decreases with the

increased maximum speed for all methods but for different reasons. The

location query packet in HG and SALS is always forwarded to level-1 location

server first and then forwarded to immediately higher level location servers.

Thus, the decrease of location query cost comes only from the increase of

node’s mobility. For ADJ and OPT, in addition to the reason discussed for

HG and SALS method, the chance of improvement by meeting higher level

location servers for each node increases with the increase of Vmax. According

to the location query scheme of ADJ and OPT introduced above, the location

query packets will be forwarded to higher level location servers directly, which

reduces the distance traveled by these packets.

Since the delay of location query packets is directly proportional to the

hop distance of location query packets, the relation between the slopes of

different algorithms shown in Figure 7(c) is very similar to the slopes of

36

1 1.25 1.5 1.75 2
0

0.5

1

1.5

2

Max Node Speed (m/s)

A
v
e
ra

g
e
 E

n
e
rg

y
 U

s
a
g
e
 (

J
o
u
le

s
)

HG
SALS3
SALS4
ADJ
OPT

Figure 8: Average energy usage per node.

results in Figs 7(a) and 7(b), which also verifies the simulation results in

these figures. Here, even though SALS3 has slightly shorter delay (due to the

usage of more update packets yielding more energy consumption, as shown

Figure 8) than our algorithms have, SALS4 incurs much longer delay when

showing its predicted performance in the same environment.

The energy usage of algorithms is shown in Figure 8. As expected, the

energy usage grows (slightly) with the increase of speed Vmax. This is because

the main energy cost results from location update, which increases with the

increase of maximum node speed. However, ADJ method uses only 69% of

the energy used by the HG method, while OPT method uses even less of it.

SALS3 and SALS4 use more energy than HG, which can be deduced from

average packet count forwarded by each node as shown in Figure 6(c).

Table 1 shows the average location server counts used in each method (we

still count a node as location server after it sends location handover packet

37

0 50 100 150 200 250 300 350 400 450
28.2

28.7

29.2

29.7

30.1

Time (seconds)

A
ve

ra
g

e
 R

e
m

a
in

in
g

 E
n

e
rg

y
(J

o
u

le
s)

HG Non Server
ADJ Non Server
OPT Non Server
HG Server
ADJ Server
OPT Server

(a) Vmax = 1

0 50 100 150 200 250 300 350 400 450
28.1

28.6

29.1

29.6

30.1

Time (seconds)

A
ve

ra
g

e
 R

e
m

a
in

in
g

 E
n

e
rg

y
(J

o
u

le
s)

HG Non Server
ADJ Non Server
OPT Non Server
HG Server
ADJ Server
OPT Server

(b) Vmax = 1.5

0 50 100 150 200 250 300 350 400 450
28.1

28.6

29.1

29.6

30.1

Time (seconds)

A
ve

ra
g

e
 R

e
m

a
in

in
g

 E
n

e
rg

y
(J

o
u

le
s)

HG Non Server
ADJ Non Server
OPT Non Server
HG Server
ADJ Server
OPT Server

(c) Vmax = 2

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

Time (seconds)

A
ve

ra
g

e
 R

e
m

a
in

in
g

 E
n

e
rg

y
(J

o
u

le
s)

HG Non Server
ADJ Non Server
OPT Non Server
HG Server
ADJ Server
OPT Server

(d) Vmax = 1

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

Time (seconds)

A
ve

ra
g

e
 R

e
m

a
in

in
g

 E
n

e
rg

y
(J

o
u

le
s)

HG Non Server
ADJ Non Server
OPT Non Server
HG Server
ADJ Server
OPT Server

(e) Vmax = 1.5

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

Time (seconds)

A
ve

ra
g

e
 R

e
m

a
in

in
g

 E
n

e
rg

y
(J

o
u

le
s)

HG Non Server
ADJ Non Server
OPT Non Server
HG Server
ADJ Server
OPT Server

(f) Vmax = 2

Figure 9: Average remaining energy and variance.

38

and transfers server duty to other nodes). We can see that ADJ has almost

the same location server number as HG, but OPT has much fewer location

servers. However SALS3 and SALS4 use home region not hash functions to

determine which nodes worke as location servers, thus there are fewer such

location servers than in case of other three methods.

In Figure 9, we illustrate the average remaining energy and its variance

(mean square error) of location server nodes and non-server nodes with re-

spect to time for HG, ADJ and OPT methods. Because location update cost

is much larger than location query cost, we only consider location update

energy usage here. For SALS method, we could not record the energy log

file due to its huge memory requirement and file size. As shown in Figure 9,

there are three distinct phases of energy usage by the network resulting from

the way that the simulations are organized. First, from 0 to 400 seconds,

all nodes send and forward location update packets. Then, from 400 to 420

seconds, there is a gap in node’s activities before they start to move. Final-

ly, after 420 seconds, as the result of movements, some of the nodes start

to send location update, location query and handover messages, according

to the rules introduced in the paper. From the figure, we observe that the

energy usage for location server nodes are a little higher than for non-server

nodes in all three methods. This is because the scattered location server-

s spend their energy on two activities. First is receiving location update,

receiving location query and sending location reply for itself. Second is for-

warding location update, location query and location reply for other nodes.

In contrast, non-server nodes only forward location update, location query

and location reply. Additionally, we observe that the difference between the

39

variance of server nodes and non-server nodes for each of the three methods

decreases with the increase of node speed, which indicates that the mobility

helps balancing the energy usage among all nodes [21].

OPT uses fewer location servers than HG, suggesting that the work and

energy usage per each location server will be higher in OPT than in HG. Yet,

the energy usage and variance for location server nodes and non-server nodes

are nearly the same in ADJ and OPT16. Both of them, however, are lower

than in HG, which means that 1) our two methods use less energy and have

better energy balancing than HG; 2) the energy usage is evenly distributed

in OPT even though its location server count is 38% less than the location

server count in ADJ. From these simulation results, we conclude that most

of the energy is spent by forwarding packets for other nodes, and therefore

evenly distributed among all nodes.

For SALS method, there are such few location servers and all the location

servers are within one level-1 square, which will cause the energy usage hot

spot problem.

Table 2 shows the average location query success rate for the compared

algorithms. Most of them drop with the increase of Vmax on average but still

OPT has better success ratio than ADJ, while ADJ is better than HG. From

Figure 6(c), we see that in HG method each node forwards more packets

than ADJ and OPT methods. This increases the chance of packet collision

that may result in location update or query packet loss, thus a decrease

16This is because in OPT average distance between two subsequent levels of location

servers is shorter than in ADJ, so packets sent to higher level servers travel shorter distance

in OPT than in ADJ. We explain this in more detail in [22].

40

Vmax (m/s) 1 1.5 2

HG 278 283 289

SALS3 37 38 41

SALS4 37 38 41

ADJ 277 282 289

OPT 174 176 182

Table 1: Average location server count.

Vmax (m/s) 1 1.5 2

HG 83.8% 78.2% 79.8%

SALS3 90.1% 90.4% 91.6%

ADJ 89.5% 84.9% 83.2%

OPT 91.0% 87.1% 88.2%

Table 2: Average location query success rate.

41

in success rate. SALS3 method has a little better performance than OPT

method because of two reasons: 1) its location server region shift scheme will

keep the location service stable when nodes are mobile; 2) it stores location

information at each location servers within the level-1 square. Yet this little

advantage is gained by increasing the cost of location update and storage.

5. Conclusion

In this paper, we present an analytical model for the performance of hi-

erarchical hashing-based location server protocols. Based on this analysis,

we introduced two novel location service protocols that optimize the overall

energy cost of location service by decreasing the distance traveled by the lo-

cation update and query packets. The first presented protocol, ADJ, adjusts

the path for location update and query packets, while the other one, OPT,

places the location servers at their optimal positions. Extensive simulations

were performed to demonstrate that the new schemes achieve significantly

higher energy efficiency and improve overall performance when compared to

the existing methods.

In future work, we will use these location services in designing routing

protocols and applications for mobile wireless networks. We also plan to

analyze the effect of utilizing such energy efficient location services in the

design of routing protocols such as [23, 24] for delay tolerant networks where

the intermittently occurring contacts between nodes and low node density

makes the routing challenging. Moreover, we will also look at the problem

of finding optimum N (number of hierarchical levels in the network) that

provides the best energy efficiency for the given number of nodes in the

42

1

2

2

1

1

2

3

1

11

1

Figure A.10: Location update and query in SALS.

network and its area of coverage. Furthermore, the influence of real-world

environment will also be considered in the future [25].

Appendix A. SALS Performance Analysis

Figure A.10 shows the location update and query in SALS under 3-level-

configuration. Detail of these procedures can be found in [13]. The area is

partitioned into 4 level-2 squares (referred to as L1−0 to L1−3 from lower left

to upper right) and each of them is further divided into 25 level-1 squares.

For each level-2 square, the level-1 square with most nodes in it serves as

location server region (referred to as R1 in Figure A.10), and one of the four

level-1 server regions serves as level-2 server region (referred to as R2).

The distance (referred to as d1 in Figure A.10) traveled from one random

43

selected node within L1 to the corresponding R1 equals to the average dis-

tance between two random points within L1. Similarly, the distance traveled

from one R1 to the R1 in the adjacent L1 equals to the average distance

between two random points within two adjacent L1 (referred to as d2 for two

L1s with same side, referred to as d3 for two L1s in diagonal positions, as

shown in Figure A.10).

For a random query, there is 1/4 chance that the source node is in L1−0,

and in such a case, the query cost is shown in table A.3. Similarly, we can

get the query cost when the source node is in other L1s and finally we can

get the average location query cost which is d1 +3d2/4+ 3d3/8. We can also

get the average location update cost which is d1 + d2/2 + d3/4.

Given the side length of the whole area, L, we can get the following

results from numerical integration: d1 = 0.5214 ∗ L/2, d2 = 1.088 ∗ L/2,

d3 = 1.4736 ∗ L/2. Thus, the location update and query cost are 0.7169L

and 0.945L, respectively.

Using the similar procedure, we can get the average location update and

query cost for level-4 configuration, which are 0.8147L and 1.5112L respec-

tively. Then, the performance of SALS4 can be estimated by SALS4sim =

SALS3sim ∗ SALS4ana/SALS3ana, where SALS3ana and SALS4ana are the

analysis results for SALS3 and SALS4 and SALS3sim is the simulation results

for SALS3.

The area of location server regions for SALS3 is 4 ∗ (L/2/5)2 = L2/25,

while for SALS4 it is 16 ∗ (L/4/5)2 = L2/25. Thus we can see that they

are the same, which results in the same number of location server nodes, as

shown in Table 1.

44

dst position chance query cost

L1−0 1/4 d1

L1−1 1/4 d1 + d2

L1−2 1/4 d1 + d2 + d3

L1−3 1/4 d1 + d2 + d2

Table A.3: Location query cost for SALS.

Acknowledgements

Research of Zijian Wang was supported by the China Scholarship Council

and by the Center for Network Science and Engineering at RPI during his

stay at RPI and by the National Basic Research Program of China (973 Pro-

gram) under Grant No.2011CB302803, and by the National Natural Science

Foundation of China (NSFC) under Grant No.61100179, and by the Strategic

Priority Research Program of the Chinese Academy of Sciences under Grant

No.XDA06030700. Research of Eyuphan Bulut and Boleslaw K. Szymans-

ki was sponsored by US Army Research Laboratory and the UK Ministry

of Defence and was accomplished under Agreement Number W911NF-06-3-

0001. The views and conclusions contained in this document are those of the

authors and should not be interpreted as representing the official policies,

either expressed or implied, of the US Army Research Laboratory, the U.S.

Government, the UK Ministry of Defence, or the UK Government. The US

and UK Governments are authorized to reproduce and distribute reprints for

Government purposes notwithstanding any copyright notation hereon.

45

References

[1] J. Zhu, and X. Wang, Model and Protocol for Energy-Efficient Routing

over Mobile Ad Hoc Networks, IEEE Transactions on Mobile Computing,

vol. 10, no. 11, pp. 1546-1557, Nov. 2011.

[2] R. Friedman and G. Kliot, Location Services in Wireless Ad Hoc and

Hybrid Networks: A Survey, Technical Report CS-2006-10, Technion -

Israel Institute of Technology, April, 2006.

[3] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward, A distance

routing effect algorithm for mobility (DREAM), in Proceedings of the 4th

Annual ACM/IEEE International Conference on Mobile Computing and

Networking (Mobicom), 1998, pp. 76-84.

[4] T. Camp, J. Boleng, and L. Wilcox, Location information services in

mobile ad hoc networks, in Proceedings of IEEE International Conference

on Communications, 2002, pp. 3318-3324.

[5] D. Liu, I. Stojmenovic, and X. H. Jia, A scalable quorum based location

service in ad hoc and sensor networks, in Proceedings of IEEE Interna-

tional Conference on Mobile Ad hoc and Sensor Systems (MASS), 2006,

pp. 489-492.

[6] F. Yu, Y. Choi, S. Park, E. Lee, M. S. Jin, and S.H. Kim, Sink Location

Service for Geographic Routing in Wireless Sensor Networks, In Proceed-

ings of the IEEE Wireless Communications and Networking Conference

(WCNC), 2008; pp. 2111-2116.

46

[7] H. Jeon, K. Park, D.-J. Hwang, and H. Choo,Sink-oriented Dynamic

Location Service Protocol for Mobile Sinks with an Energy Efficient Grid-

Based Approach, Sensors, Vol 9, No. 3, pp. 1433-1453, 2009.

[8] S. C. Woo, and S. Singh, Scalable routing protocol for ad hoc networks,

ACM Wireless Networks, Vol. 7, No.5, pp. 513-529, 2001.

[9] S. M. Das, H. Pucha, and Y. C. Hu, Performance comparison of scalable

location services for geographic ad hoc routing, in Proceedings of 24th

Annual Joint Conference of the IEEE Computer and Communications

Societies (INFOCOM), 2005, pp. 1228-1239.

[10] B.-C. Seet, Y. Pan, W.-J. Hsu. and C.-T. Lau, Multi-Home Region Loca-

tion Service for Wireless Ad Hoc Networks: An Adaptive Demand-driven

Approach, in Proceedings of the Second Annual Conference on Wireless

On-demand Network Systems and Services (WONS), pp. 258-263, 2005.

[11] J. Y. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and R. Morris,

A scalable location service for geographic ad hoc routing, in Proceedings

of ACM International Conference on Mobile computing and Networking

(MobiCom), 2000, pp. 120-130.

[12] Y. Yan, B. X. Zhang, H. T. Mouftah, and J. Ma, Hierarchical loca-

tion service for large scale wireless sensor networks with mobile sinks, in

Proceedings of IEEE Global Telecommunications Conference (GLOBE-

COM), 2007, pp. 1222-1226.

[13] S. Ahmed, G. C. Karmakar, and J. Kamruzzaman, Hierarchical adaptive

location service protocol for mobile ad hoc network, in Proceedings of

47

IEEE Wireless Communications and Networking Conference (WCNC),

2009, pp. 1-6.

[14] Y. Z. Yu, G.-H. Lu, and Z.-L. Zhang, Enhancing location service scalabil-

ity with HIGH-GRADE, in Proceedings of IEEE International Conference

on Mobile Ad-hoc and Sensor Systems (MASS), 2004, pp. 164-173.

[15] L. Cao, T. Dahlberg, and Y. Wang, Performance evaluation of energy

efficient ad hoc routing protocols, in Proceedings of IEEE Internation-

al Performance, Computing, and Communications Conference (IPCCC),

2007, pp. 306-313.

[16] I. Abraham, D. Dolev, and D. Malkhi, LLS: a locality aware location

service for mobile ad hoc networks, in Proceedings of Joint Workshop on

Foundations of Mobile Computing (DIALM-POMC), 2004, pp. 75-84

[17] R. Flury, and R. Wattenhofer, MLS: an efficient location service for

mobile ad hoc networks, in Proceedings of 7th ACM International Sym-

posium on Mobile Ad Hoc Networking and Computing, 2006, pp. 226-237.

[18] A. Savvides, C.-C Han, and M. B. Srivastava, Dynamic fine-grained lo-

calization in ad-hoc networks of sensors, in Proceedings of ACM/IEEE

International Conference on Mobile Computing and Networking (Mobi-

Com), pp. 166179, 2001.

[19] D. Niculescu and B. R. Badrinath, Ad Hoc Positioning System (APS)

Using AOA, in Proceedings of INFOCOM, 2003.

[20] http://www.isi.edu/nsnam/ns/

48

[21] M. Grossglauser and D. N. C. Tse, Mobility increases the capacity of

ad-hoc wireless networks, in Proceedings of IEEE Infocom, 2001.

[22] Z. Wang, E. Bulut, B. K. Szymanski, Energy-Efficient Location Service

Protocols for Mobile Ad Hoc Networks, Technical Report 11-1, Depart-

ment of Computer Science, RPI, 2011.

[23] E. Bulut, Z. Wang and B. K. Szymanski, Cost Effective Multi-Period

Spraying for Routing in Delay Tolerant Networks, in IEEE/ACM Trans-

actions on Networking, vol. 18, 2010.

[24] E. Bulut, S. Geyik and B. K. Szymanski, Efficient Routing in Delay

Tolerant Networks with Correlated Node Mobility, in Proceedings of 7th

IEEE International Conference on Mobile Ad-hoc and Sensor Systems

(MASS), Nov, 2010.

[25] S. Ahmed, G. C. Karmakar, and J. Kamruzzaman, Evaluating Perfor-

mance of Location Service Protocols of Ad-Hoc Wireless Network in Real-

World Environment Model, in Proceedings of Wireless Communications,

Networking and Mobile Computing (WICOM), pp. 1577-1580, 2007.

[26] Z. Wang, E. Bulut, and B. Szymanski, An Energy Efficient Location

Service for Mobile Ad Hoc Networks, in Proceedings of 25th International

Symposium on Computer and Information Sciences (ISCIS), Sept, 2010.

49

