T1B2 1555

Proceedings of the 2002 IEEE
‘Workshop on Information Assurance and Security
United States Military Academy, West Point, NY, 17-19 June 2002

Methodology of Risk Assessment in Mobile Agent System Design

Ingo McLean, Boleslaw Szymanski, Alan Bivens

Abstract— Current practices of software development use
incomplete security models and result in implementations
that leave security features either dangling in the midst of
afterthoughts, or relegated to “future” upgrades or patches.
Yet, security functions should be considered at the outset
of any system design process. In Mobile Agent Systems,
depending on their purpose, various paths may be taken
to provide security based on the vulnerability of the fea-
tures. Starting early to plan security and its implementa-
tion in such systems is particularly important because by
design they operate in open environments with little cen-
tral control. With widespread information sharing between
potential system breakers ranging from amateur hackers to
professional crackers, system security features are tested ev-
ery day. As evident from frequent break-ins, security is
often proven either inefficient or non-existent. Clearly, a
pragmatic methodology of determining the system security
requirements is needed.

The purpose of this paper is two-folded. First, we cata-
log and classify numerous security techniques and practices
for mobile agent systems. We also provide the definitions
and describe implementations of security features relevant
to mobile agent systems. Additionally, we measure their
impact on agent system design and performance. The sec-
ond purpose is to illustrate the discussed methodology in
the context of DOORS, a mobile agent system developed by
us for network performance data collection. We will discuss
which security features are suitable for DOORS and how
they impact the performance of the DOORS system.

I. INTRODUCTION

Mobile Agents play a significant role in today’s comput-
ing environment, from brokering [1] and auction [2] to net-
work management [3] and military simulation [4], [5]. De-
mand for reliable, unaltered data and/or operations require
that their implementations includes assurance of some form
of safety and integrity of the agent system. By agent sys-
tem, we refer to all components of the system that are
involved in or impacted by the agent activities. Typically,
these components include the agent itself, agent host, agent
home, communications between either agents or hosts, and
data transfers initiated by or directed to the agents. Each
component of the agent system presents a security risk

Ingo McLean: Rensselaer Polytechnic Institute, Troy, NY and
United States Military Academy, West Point, NY.

Boleslaw K. Szymanski: Rensselaer Polytechnic Institute, Troy,
NY. The author acknowledge a partial support from the URP Grant
from CISCO Systems.

Alan Bivens: Rensselaer Polytechnic Institute, Troy, NY.

The content of this paper does not necessarily reflect the position
or policy of the U.S. Government or CISCO Systems—no official en-
dorsement should be inferred or implied.

ISBN 0-7803-9814-9/$10.00 (©2002 IEEE

that requires a security solution. Addressing these risks re-
quires proper planning throughout the systems life-cycle,
yet most often, security holes, risk management or pro-
gramming glitches become “top priority” once something
goes wrong [6]. To start this process, we must first an-
swer a few basic questions. At what point in time should
security be involved? What approaches are there to be
applied? How should the selected approaches be imple-
mented? What impact will the security measures have on
the system performance and robustness?

Security: This can be broadly defined as the protection
of any or all components of an agent system. Security
should be planned and integrated from the start of any
programming project. This not only reduces the risk of
a compromised system, but also lowers the complexity of
rewriting code. Additionally, the system users have deeper
trust in the system and use it more eagerly if they know
that their data remain intact.

There are numerous mobile agent architectures [7] in ex-
istence that range from insecure to highly secure. How-
ever, a higher level of security usually means higher over-
head and more cumbersome system access. Hence, the sys-
tem designers need to take a close look to determine which
risks are acceptable for them and which risks need securing.
These decisions will determine how security will be imple-
mented. We will discuss and categorize the main security
features for agent systems in this paper.

Each agent system sets unique goals for itself during
design and development. In this paper, we focus on an
agent system called Distributed Online Object Reposito-
ries (DOORS). The goal of this system is to provide a
flexible, robust and scalable infrastructure for collecting
network performance data. The DOORS system manages
and schedules client data requests at its repositories. The
repositories then configure mobile agents to travel to a node
very close to the managed device. Once the agent arrives
at its destination, it polls the managed device, performs
client requested procedures, and sends the result back to
the repository to be forwarded to respective clients. The
use of agents allows us to place more functionality into what
the client perceives as the “request.” In order to evaluate
what security measures need to be set, a methodological
dissection of requirements, capabilities and functions needs
to be evaluated. Once done, a risk factor analysis based on
those requirements will be developed which will allow us

30

to focus on those security aspects that need to be handled.
For instance, a routine agent used for fetching basic web-
pages for a PDA will most likely sacrifice the overhead of
an encrypted link for the sake of performance, while a bank
transaction would pay the overhead to ensure security of
data, possibly adding encrypted transaction data and user
authentication.

This paper first covers agent basics which will lay the
groundwork for the upcoming detailed sections. The fol-
lowing sections will cover both the motivation and imple-
mentations of security in the application implementation.
An Abstract Mobile Agent Model demonstrating the most
common to somewhat esoteric components of an agent sys-
tem will also be presented followed by the Risk Assessment
process.

The security methods discussed in the Risk Assessment
will then be evaluated in relation to an agent system
DOORS for which a selection of features will be made.
Finally, a discussion of future work and possible additional
considerations for this methodology will be given together
with the conclusion.

I1I. AGENT BASICS

In this paper, we will focus our discussion on mobile
agents as opposed to stationary agents. For clarity, we
provide here a basic framework of agents systems and their
associated parts [8], [9], [10]. Let us first start with the
agent. Agents are autonomous, mobile programs with vari-
able levels of complexity [11], [12], depending on their role
which changes from system to system.

0S
0S

—

LTI B
FYTaT
CHIOS A (R oo
Clostt”
/

\é

s
—

/I

L ™S [most
™~
|HOST | |[HOST| |[HOST] [HOST]|
N N

Fig. 1. Basic Agent Architectures

Figure 1 encapsulates various forms of architectures of
mobile agent systems. Element A illustrates the clas-
sic example of an agent migrating from one host to an-
other, performing tasks such as gathering information or
installing patches. This is typical for distributed and net-
work management computing. Element B shows a typical
client /server construction effectively used for agent moni-
toring and granular control of agent actions. This approach
in the scope of agents, produces a less dynamic, more re-
strictive method of agent use, yet is still viable and provides
a high level of security [13]. The Peer-to-Peer architecture

ISBN 0-7803-9814-9/$10.00 (©2002 IEEE

will not be discussed here because this framework does not
allow for a higher level of authority or security.

There are many different common forms of mobile agents
in use today: applets downloaded via the web, applica-
tions in email attachments, proxies used in Remote Proce-
dure Call(RPC), Remote Method Invocation(RMI) or Jini
technologies [7]. The type of agents discussed herein deal
with complete code mobility, meaning that at a minimum,
code and data will be transmitted from host to host pri-
marily through basic communication and synchronization
tools such as RMI, RPC, CORBA or TCP/IP. More com-
plex systems will also provide the means to transfer the
state of execution of the agent, though this feature is be-
yond the scope of this paper.

III. CONSIDERATIONS FOR SECURITY

As stated previously, agent systems provide many av-
enues where malicious hackers may threaten a component
or communication of the agent system. As Fisch and White
state in [14] “The goals of a risk assessment are to identify
the areas of a computer or network that are susceptible to
compromise and to determine the most appropriate pro-
tection for those areas. This is accomplished by analyzing
three risk attributes: Asset Value, Threat and Vulnerabil-
ity.” The following list enumerates various forms of Secu-
rity Threats:

Alteration: While executing, agents may be modified in
their respective object space. When agents are transferred
to the next host, modifications to the code and/or data
are probable. Communications between agents or between
agents and hosts may have message transmissions altered.
This poses a risk to the agent and data held within the
agent.

Unauthorized Access: Pulling or reading data from agent
or host without explicit consent by monitoring communi-
cations either within the communications stream or within
the virtual machines object space. Unauthorized retrieval
of data.

Masquerading: Pretending to be a part of the Agent Sys-
tem through a copy of an agent or duplicating a communi-
cation to glean information, or confuse the system.

DoS: Abusing the resources of the host. Flooding a part
of the Agent System with messages to either disrupt the
current work in progress or make it halt.

Repudiation: Denying that an action or communication
ever happened.

This list may be used within the Risk Analysis Process
to identify threats to the system. Once these threats are
labeled, and evaluated for the amount of risk that they
introduce to the system, then they can be used in an edu-
cated risk analysis to determine how much security should
be implemented. To further round out the foundations of
security, Asset Values should be analyzed, including Avail-
ability, Confidentiality and Integrity along with the severity

31

of Vulnerabilities.

A. Levels of Security

When determining the security risks of an Agent Sys-
tem, the interaction of the Agent Hosts, Agent issuing
point (which could be a simple Agent host or a Central
Server) and the Agent itself must be taken into consid-
eration. Through these considerations multiple levels of
security can be implemented. One of the drawbacks of any
type of encryption, be it single key or a pair Private/Public
keys, relates to the fact that additional processing power
will be used, thus slowing agent execution. This is highly
dependent on the type of host and the desired level of en-
cryption. A PDA will take quite a bit longer to decrypt a
128 bit code than a multiprocessor server will. But first let
us look at the some ways of hardening an agent system:
Link Encryption: Encryption of the links between two
hosts. This is typically done through SSL.

Agent Authentication: Verification of agent through a
central source, ensuring the validity of the agent that is
about to be run.

Awuthorization: Security Policy set in place that grants or
denies privileges to agents. Through the Security Policy, a
programmer may severely restrict an agent or allow control
of system functions.

Agent Server/Host Authentication: A security pre-
caution on the agent side verifying the authenticity of the
agent server it will be run on.

Message Digest/Digital Signature: A digital finger-
print used to check for message tampering during transmis-
sion. A digest used with a key is called a Digital Signature
and requires the use of a public key to decrypt the digest.
Code Signing: Digitally signing a part of the Agent sys-
tem, from the Agent/Agent Server file(s) to transmitted
Agent and/or Agent data files.

Awuditing: Auditing logs in the agent server, agent and
central server are used to protect the system and services.
If unchecked, this could lead to a large data block, based
on what elements are being logged.

Code Filtering: Jumping Beans implements a powerful
method of code filtering in which the agent returns to
the central server for “cleansing.” The agent code will be
checked for alterations when compared to the Agent file
stored on the Server. If there are modifications to the code
from the last Agent Host, it will be discarded and a fresh
copy of the locally stored agent will be used. The agents
audit logs will also be copied to the local Central Server
making it impossible for the next Agent Host to glean the
past history of the agent that it receives. However, this
feature requires complex implementation and therefore it
was not included in the test reported later.

Agent Encryption: A theoretical concept, where the
agent remain encrypted, even during execution. Due to
its complexity, it will not be discussed here.

ISBN 0-7803-9814-9/$10.00 (©2002 IEEE

Resource =—>

fewe= 1ol 2 | 2 | g |z
] e % 2 2 %S

Security |} 2 © aé 2

3 : | %
= &
=2

SSL Low Low ~ 2sec | > 4kB 22

MD5/SHA1 Low | ~ 700kB | ~ 1lsec | 150B 2

Authorization | Min > 1kB Min > 1kB

Agent

Authentication | Min Min Min Var 0

Host/Server

Authentication | Min Min Min Var >2

Code Signing Min ~ 1kB Min ~ 1kB 1

Auditing Min Var Min Var 0

Rating Scheme

Min- Minimal usage < 5%

Low- Low Usage < 10%

Var- Variable Values, based on programming

Fig. 2. Resource Matrix

B. Costs of Security

In order to determine the feasibility of a particular se-
curity implementation, a gauge of the resources consumed
must be established. Total execution time, memory used,
cpu utilization, network bandwidth consumed and the
number of transmissions are factors tested to determine
resource consumption. Baseline measurements were taken
on Unix Solaris and Linux systems through the use of top,
ps, time, and tcpdump evaluating simple JAVA programs
implementing each specific security feature. Other meth-
ods were also used with the testing programs themselves
and will be noted accordingly.

To gauge the cost of security implementation, numerous
tests were conducted on basic programs that did minor
functions. After measuring the amount of resources used,
each program implemented a specific security function in
order to determine the overhead incurred. The matrix in
Figure 2 depicts the amount of overhead each element in-
troduced.

Link encryption through SSL has numerous resource fac-
tors to consider. Bandwidth, number of network transmis-
sions, CPU overhead, memory usage and time are all af-
fected through SSL. The connection consisted of 9 to 14
separate additional transmissions (14 if client authentica-
tion is required) on top of the normal tcp setup and tear-
down connection. Further communications between hosts
will remain the same throughout the connection without
regard to data being encrypted or not. We can see that
through extended use, as the amount of data gets higher,
the cost of the connection, with respect to bandwidth and
number of messages, is negligible, while the overhead of
memory and cpu utilization due to encryption and decryp-
tion remains a constant factor. When dealing with non-

32

persistent connections and small data transfers, bandwidth
and the number of messages become a major factor of con-
cern on slow or congested links. Due to different computer
system architectures, various CPU and memory values were
gathered, due to encryption/decryption. Hardware solu-
tions are available to perform these functions in realtime
but none were used in any testing. Yet none effected per-
formance or reached levels high enough to warrant higher
than a Low rating.

Agent and Agent Server/Host Authentication provides
the simplest application of security for an Agent System.
Actual measurements of this implementation depending on
how it is programmed into the system. A simple method
would include setting a simple password at either point
and a verification of passwords, while a complex method
consists of a central server managing all hosts and agents
with a unique key so mileage may vary. But for the sake
of the paper, we will entertain the concept of the central
server holding a valid list of hosts that are allowed to ac-
cept and run agents. This server will also maintain a list of
agents that are allowed to traverse the network to various
hosts. We will not differentiate between an Agent Sys-
tem that uses a push method and the one that employs a
pull method for agent transportation. However, we assume
that prior to an agents transmission, the central server and
destination will authenticate, and an agent transmission
will also be authenticated once with the central server.
Through this process, cpu utilization and memory usage
have minimal impact on the system, but the number of
transmissions and bandwidth used are contributing factors
of an overhead at the start of agent execution by adding to
the total execution time. Yet, with network speeds growing
faster, time would not be a factor on small networks, but
will be effected greatly by the number of hosts that can
accept agents and the frequency of agent transmissions.
A basic authentication resulted in additional 6 transmis-
sions (3 for server/host authentication and 3 for agent au-
thentication) with an 8 byte payload consuming additional
(64 + 8) x 6 = 492 bytes.

The process of adding a security policy in JAVA requires
programming and takes little system resources to imple-
ment. Once programmed, only the additional steps of pro-
gramming the agents with a security policy, or modifying
the policy on each host are time consuming parts. The
only incurred penalty for using a security policy is a little
extra bandwidth and a minimal amount of memory to hold
the policy, unless the default security policy is used. Yet,
when creating an enterprise level Agent System, this will
be a standard programming procedure to allow for the ca-
pability of file access, granular control and access to system
properties.

Calculating the Message Digest or Digital Signature of
an agent also provides a means of authentication, but does
not put the process of authentication within control of the

ISBN 0-7803-9814-9/$10.00 (©2002 IEEE

agent. Hence, it can prove authenticity of an agent or its
data’s transmission. The only concern with regard to re-
source consumption is the time added to execute, but with
systems getting faster, even this is negligible. We mea-
sured execution time and memory overhead for multiple
file sizes ranging from 64kb to 1Mb. The checksum is of
fixed size, thus resulting in the same bandwidth and num-
ber of transmissions for all test cases. A simple verifica-
tion requires transmitting the checksum separately form
the data, and sending a reply back of checksum valid-
ity. Thus, two extra messages are sent with a total of
send(64 + 20) + receive(64 + 2) = 150 bytes transmitted.
Memory used averaged about 700kB for the corresponding
computations.

The process of applying a signature to a file adds one
message (confirmation from the receiving side of file au-
thenticity) and adds to the bandwidth the size of the sig-
nature that is about 1kB. Added resource usage comes from
generating the signature and attaching it to the file. This
can be done during agent’s compilation, eliminating this
execution overhead.

Agent auditing will require more resources in terms of
memory, number of messages and bandwidth than time
and cpu. This is also dependent on the usage of audit-
ing. If adding data to the agent audit log is frequent, then
more memory is needed for storage. This also adds to the
bandwidth used upon each subsequent transmission to a
new host, or return to the central server. Unless periodi-
cally purged, this additional memory will continue to grow.
With the growth of the audit data, the number of messages
may increase because of fragmentation, thus also increasing
the total execution time. For example, consider Agent A
that visits 20 company servers to install a 100KB software
patch. It will maintain an audit log that will record the
host IP address, time of arrival, time of completion, sta-
tus of completion, and time of departure. Assuming that
each IP address is 4 bytes (unless IPv6 is used, in which
case this number will jump to 32 bytes), each timestamp
is a number of seconds expired from the time the agent
left the Central Server and stored in 4 bytes, plus a 2 byte
status. Hence, we can calculate that each audit host will
generate a minimum of 4 +4 + 4 + 2 + 4 = 22 bytes of
data at each server visited. A total of 20 % 22 = 440 bytes
will be collected in the audit log, estimating conservatively.
For those agents that are traversing large number of hosts,
or generating detailed data in the audit logs, this number
could be proportionally higher.

IV. ABSTRACT MOBILE AGENT MODEL

Many agent systems are comprised of numerous basic
fundamental functions. Once identified, we can sort and
arrange the functions into an abstract agent model. This
model will be applied to the existing/planned agent sys-
tem to point out what is pertinent to the overall system.

33

Such an approach will allow the designers and program-
mers a better understanding of the feasible methods that
need to be incorporated into the agent system. The model
depicted in Figure 3, shows the basic four functions of an
Agent System, namely Originator, Executor, Communica-
tion Network and Agent Communication. They depict the
fundamental abstract components of most Agent Systems.
Each function may be encompassed in one computer or nu-
merous distributed systems. Descriptions of each compo-
nent of the Abstract Agent Model are given below. Within
these basic functions, we identify the needs for any secu-
rity implementation. A prime example consists of the dif-
ference between the type of connection a bank would use
versus a general purpose chat program. A bank would not
want to have clear text transaction going over the wire for
fear of having customers account numbers sniffed, while a
simple chat program will not require the security of an en-
crypted connection for simple text messages. Utilizing this
abstract model coupled with the Risk Management process
described later, afford us the opportunity to visualize and
make a decision of where liability may be accepted and
what solutions are available for those places where security
plays a prominent role. This abstract agent model demon-
strates the common traits of most agent systems. The for-
mat for this abstract model uses the following Template:

a) Specific task/function: Definition of task/function(s)
o Security issues(s)
— Security Issue Solution(s)

Originator Executor

Communication
Network

v

Fig. 3. Abstract Agent Model

Agent
Communiation

Though not inclusive to all agent systems, this model
covers a substantial portion of any agent system.

a) Agent Launcher/Originator: a platform that creates an
agent and sends it on a specific task.

« How to identify who created an agent

— Agent Authentication through central approving site

— Trusted digital signatures/code signing

« How to authenticate that the agent would not exceed
its authority

— Mobile Agent policy

— Agent policy on Agent Host

— Level of authorization of various agents/deploying users

« How to negotiate with the originator what the agent
can do

— Permission set on agent,

ISBN 0-7803-9814-9/$10.00 (©2002 IEEE

— Agent “Security Level” listed on Central Site for veri-
fication

b) Agent Executor: any computer that provides the means
for the agent to run on. This may also be the Originator
on single systems.

o How to verify that the agent has not changed during
execution

— Signed Code

— “Cleansing”

— Checksum Verification

— Platform Authentication

« How to verify if the host belongs to the list platforms
authorized to received the agent

— Negotiation between agent and host

— Central Site that holds a list of authorized hosts

o How to protect agent from revealing privileged informa-
tion to the host

— Code interface specifications

o How to protect platform from malicious agent

— Agent verification/authentication through a Central
Site

— Trusted digital signatures/code signing

¢) Communication network for transporting agents: the
method and media of transporting agents from platform to
platform. Possible mediums of communication consist of
Ethernet, fiber, wireless, local system

« How to avoid tapping, clogging etc.

— “Cleansing”

— Central Server agent Verification
Trusted digital signatures/code signing

« How Hostile is the communication media

— Encrypted links

— Verified list of hosts through Central Server
d) Agent Communication: Inter agent or agent to host
communication messages.

o All the problems of the regular communication.

— Known list of trusted agents

— Send messages to Central server for disbursement

— Specific broadcast address and port number

— Encrypted messages

— Encrypted connection

Now we can classify the threats according to vulnerabil-
ities that they target and method according to vulnerabili-
ties that they try to protect. Moreover, we can also assign
costs, negative to attacks (what happens if the adversary
is successful) and to defenses (what is the cost of applying
a method such as encryption).

V. RISK MANAGEMENT

To decide what security aspects to integrate, let us eval-
uate which risks are considered acceptable and which are
critical. Clearly, it would be best if a system completely
devoid of risks could be implemented. Yet, because of time
constraints, limits of available hardware, and priorities of

34

the customer needs, programming a perfect secure system
may not always be practical. To identify what is deemed
important to the overall goal of the system, a developer
must run through multiple levels of analysis to determine
the security hazards present in the system. Of these haz-
ards, the designer must assess, if any, what risks are willing
to be taken. A formal method of identification and or-
ganization makes tracking, solving and implementing less
chaotic. To do this, we will use a system that the military
uses for every mission, a Risk Management Worksheet [15].
This worksheet is constructed to identify risks to the mis-
sion. A project leader plans for anything that will deter
or detract from the systems success, from the type of en-
vironment and systems in which the programs run to the
different levels of access that the ordinary and specific users
have.

Initial planning requires that the risk be identified using
the criteria described before. Once identified, then a risk
level is applied. This risk level will be plotted on a matrix
on the basis of severity and probability that determines
the comfortable level of risk that is acceptable. Next, mea-
sures of control are addressed to combat the risk previously
stated. Once done, pseudocode is written to layout the im-
plementation to provide a feasible plan. For the sake of the
paper’s brevity, pseudocode will not be created, for there
are various sources out there that describe how to imple-
ment such codes in each specific programming language.

STEP1:
Identify Risks

\

STEP 2:
Assess Risks

STEP3:
Develop Controls and
Make Risk Decision

STEP4:
Implement Controls

\

Fig. 4. Risk Management Process

STEPS:
Supervise and Evaluate

A. The Five Step Process

The Risk Management Process is conducted in five sim-
ple steps. Figure 4 demonstrates a simple flow of how the
steps are worked through from genesis to evaluation.

A.1 Step 1, “Identify Risks”

The initial step of security risk assessment is identify-
ing what will break the system or compromise data of its
confidentiality. Numerous points may be broken within

ISBN 0-7803-9814-9/$10.00 (©2002 IEEE

the Agent System, but a careful gauge of importance is
also required. This is one of the most crucial steps, not
only does “Identifying Risks” initiate the security posture
of the Agent System but also sets the tone for what the
programmer /designer/company deems as important.

Some issues to consider would include, data protection,
agent protection, link protection, authenticity of executor
and all other risks listed in section IV. Example: Sniffed
packets on the data stream would provide user ID and pass-
word.

A.2 Step 2, “Assess Risks”

This step identifies the impact of breaches on the sys-
tem. The designer or programmer needs to assess each risk
through a three level process. The first process relates to
the probability of occurrence of an incident as depicted in
Table I. These values will be subject to change for each
type of risk. Example: A controlled closed network would
not rate the same probability of a malicious host sniffing a
data stream as the threat of sniffing from the Internet.

The second process in Step 2, refers to the severity of each

Frequent(A): Occurs often,
continuously experienced
Probability: | Occurs continuously during the ex-
ecution of the program. It is ex-
pected to happen frequently. Ex-

pected to happen continuously.
Likely(B): Occurs several times
Probability: | Occurs very often. Expected to
happen several times.
Occasional(C): Occurs sporadically
Probability: | Will occur at some point. Occur-
rence is not surprising.
Seldom(D): Remotely possible
Probability: | May occur during execution. Oc-
currence is rare and isolated.
Unlikely(E): Will not occur,
but not impossible
Safe to assume it will not occur.

Occurs very rarely, but not impos-
sible.

TABLE 1
STEP 2: RISK PROBABILITY

Probability:

hazard. Possible ways to evaluate the severity are past oc-
currences, financial obligations to the customer, or overall
reliability of system performance. Table II provides differ-
ing levels of severity. The final process in Step 2, combines
what we have gathered into a Matrix such as Table III, to
show the estimated level of risk for each identified hazard in
Step 1. The matrix presented may change with each Agent

35

Catastrophic(I)
Extreme loss of vital information that
will compromise an individual’s or cor-
poration’s privacy of financial informa-
tion or equivalent privacy. Fatal com-
promise in system integrity allowing
for the loss of vital information or ex-
ecution of malicious code

Critical(II)

Greatly degraded capability in execu-
tion or loss in information.

Marginal (III)
Degraded functionality in system us-
age. Information lost does not hinder
or effect system integrity or capability

Negligible(IV)
Loss does not effect or greatly impact
system performance or capability. In-
formation lost is trivial.

Severity:

Severity:

Severity:

Severity:

TABLE II
STEP 2: RISK SEVERITY

System and one is depicted as an example of an average ma-
trix. The levels of risk may be modified to encompass the
specific goals of the project. Plotting the gathered severity
and probability values to extract the level of risk is pretty
straight forward. Through both steps 1 and 2, we deter-

Risk Management Matrix
Probability
Severity Frequent| Likely | Occasional| Seldom| Unlikely
w | ® © | o] ®
Catastrophic I E E H H M
Critical 11 E H H M L
Marginal 111 H M M L L
Negligible IV M L L L L
E- Extremely High Risk
H- High Risk
M- Moderate Risk
L- Low Risk
TABLE II1

STEP 2: RISK MATRIX

mine what liabilities the agent system presents and how
detrimental these liabilities are to the overall execution.
The risks involved include malicious hackers gathering data
from the network stream, power outages that would result
in loss of an agent, host or data, or network congestion
that would delay possibly time sensitive processes, or loss
in data transmission. Amount of programming knowledge,

ISBN 0-7803-9814-9/$10.00 (©2002 IEEE

time to create the agent system and resources available also
pertain to considerations for development.

A.3 In Step 3, “Develop Controls and Make Risk Deci-

sions”

Once security hazards have been identified and classi-
fied at various risk levels, controls must be established to
eliminate or at least reduce the level of identified risks.
Then, an evaluation of the relevance and capabilities must
be made. Are the resources available to implement the
stated controls? Will the benefit of the control justify the
resources/time to develop and execute? Will implementing
this control, create more risks that will threaten the Agent
System? These are some of the decisions that require care-
ful attention. Once complete, reevaluation of the identified
security hazard is made against the Risk Matrix (Table III)
to determine if risk had been reduced or eliminated.

A.4 In Step 4, “Implement Controls”

Programmers ensure compliance with the overall deci-
sions made.

A.5 In Step 5, “Supervise and Evaluate”

After the completion of the Agent System, trial runs are
made to evaluate the success/failure of decisions made to
thwart the security hazard.

VI. CASE STUDY: AprprLICATION TO DOORS

The methods mentioned above was applied to an agent
system called DOORS, that, as we stated earlier, is a sys-
tem for agent based network performance data collection.
Agents travel to the specified network device to measure,
collect, process and then send performance data to the
repositories distributed over the network.

Building an outline of the detrimental risks to the system
became the first step of our study. As mentioned before,
Agents are constructed to perform tasks and return with or
send back the data. In this case, agents are built dynam-
ically on a repository server based on user needs. During
the creation, an agent is assigned the router to poll and
performance data to collect, including any processing that
needs to be done before the collected data is sent to the
repository. DOORS operates on both a local network and
over the Internet. Protection of the specific agent data is
paramount because this data shows a router, and its com-
munity name. With this information, a malicious hacker
could launch a wave of Denial of Service attacks during
which too many SNMP request could overwhelm a router
causing it to be incapable of functioning properly.

Task Transmit agent from repository to polling station and
back.

Identify Risk: Router IP and Community name in Agent
Data.

Assess Risk: High.

36

Dewvelop Controls ITmplement link encryption for the trans-
mission of initial agent transfer.

Determine Residual Risk Low

Implement Controls: Require link encryption, from the
Repository to the Polling Station, through SSL. Modify
code to allow for modular switching between normal and
encrypted transmissions.

Impact on System: Additional processing needed for en-
crypting and decrypting of keys. Registration of key con-
trol is needed as well.

Viewing Figure 5 again, we see a reduction to the risk of
line sniffing, between the repository and the polling station,
though link encryption.

CORBA

)
V
Client B s

Repository

Agent travel,

?
data updates returned Dataretrieval

Fig. 5. DOORS Architecture

To prevent any user from requesting SNMP data, an ac-
tion which would be a security risk since sending multiple
agents may flood a polling station and the SNMP requests
from those multiple agents would overwhelm the polled de-
vice, client authentication should be used.

Task Client request of SNMP data

Identify Risk: Unauthorized request of SNMP data
Assess Risk: Moderate

Develop Control Employ user client authentication
Determine Residual Risk Low

Measure of Control: Only registered users/client licenses
have authorized access to the repository, verify it through
encrypted user/password tables or registered licenses on
the repository

Impact on System: Integration with existing user /password
database through Kerberos or other OS specific means may
simplify implementation of this feature. Cataloged used
and issuance of licenses increase complexity of system man-
agement.

VII. CONCLUSION

Combined testing of various security solutions provides
a detailed picture of resource usage and allows a granular
approach to allocating resources to security, when the same
platforms are used for a variety of systems.

We described a formal method of identifying the risks
involved with an agent system through a “Risk Manage-
ment” approach. This approach allows a system designer
to clearly identify the level of detail needed for security im-
plementation. Also presented were the methods of security
that a designer could use. Choice of particular methods

ISBN 0-7803-9814-9/$10.00 (©2002 IEEE

for a system can then be based on an educated analysis of
resource usage for each type of solution implemented.

VIII. ACKNOWLEDGMENTS

The authors express their gratitude to the following peo-
ple and organizations for the help and support. David
Kotfila of Cisco Academy made the Cisco Lab at RPI
available to us for benchmarking. The Aramira Corpo-
ration and its CTO Chris Rygaard donated their software,
JumpingBeans®and their expertise to this project. Our
colleagues, Rashim Gupta, Jerome White and Kenneth
Fritzsche assisted us with testing and editing.

REFERENCES

[1] D. Chieng, I. Ho, A. Marshall, and G. Parr, “A mobile agent bro-
kering environment for the future open network marketplace,”
in Proc. of 7th International Conference on Intelligence in Ser-
vices and Networks, (ISEBN 2000), (Athens, Greece), pp. 3 — 15,
Febuary 2000.

[2] M. Yokoo and K. Suzuki, “Secure multi-agent dynamic program-
ming based on homomorphic encryption and its application to
combinatorial auctions,” in Proceedings of the First Interna-
tional Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS-2002), 2002.

[3] J. A. Bivens, L. Gao, M. Hulber, and B. Szymanski, “Agent-
based network monitoring,” in Agent based High Performance
Computing, (Seattle, Washington), Autonomous Agents: Spon-
sered by ACM Sigart, May 1999.

[4] B. A. Osborn, An Agent-Based Architecture for Generating
Interactive Stories. PhD thesis, Naval Postgraduate School,
September 2002. Computer Science.

[5] J. A. Dickie, “Modeling robot swarms using agent-based simu-
lation,” Master’s thesis, Naval Postgraduate School, June 2002.

[6] R. S. Pressman, Software Engineering : A Practitioner’s Ap-
proach, 4th Edition. McGraw-Hill, August 1996.

[7] B.Tarr, D. Nebesh, and S. Foster, “Introduction to mobile agent
systems and applications,” in Tools USA 2000, (Santa Barbara,
CA), July 2000.

[8] T.Sundsted, “Agents talking to agents,” Java World, September
1998. http://www.javaworld.com/javaworld /jw-09-1998 /jw-09-
howto.html.

[9] T. Sundsted, “Agents can think too!,” Java World, November

1998. http://www.javaworld.com/javaworld /jw-10-1998/jw-10-

howto.html.

T. Sundsted, “Agents on the move,” Java World, July

1998. http://www.javaworld.com/javaworld /jw-07-1998 /jw-07-

howto.html.

M. Wooldridge, “The computational complexity of agent design

problems,” in Proceedings of the Fourth International Confer-

ence on Multi-Agent Systems (ICMAS 2000), IEEE Press, July

2000.

M. Wooldridge and P. E. Dunne, “The computational complex-

ity of agent verification,” in Intelligent Agents VIII Springer-

Verlag Lecture Notes in AI Volume, March 2002.

Aramira, “Jumping beans security,” white paper, Aramira Corp,

September 2002.

E. A. Fisch and G. B. White, Secure Computers and Networks:

Analysis, Design, adn Implementation. Boca Raton, FL: CRC

Press, 2000.

[15] D. of the Army, FM 100-14, Risk Management, April 1998.

(10]

(11]

(12]

(13]

14]

37

