Proc. Applied Telecommunication Symposium, San Diego, CA, April 2002, SCS Press, 2002

Time-Network Partitioning for Large-Scale Parallel Network
Simulation under SSFNet*

Boleslaw K. Szymanski, Qiuju Gu, and Yu Liu
Department of Computer Science, RPI, Troy, NY 12180, USA

Keywords: network, interoperability, distributed
processing, domain decomposition, fixed-point solu-
tion.

1 Introduction

The Internet is unique in its size, support for seam-
less interoperability, scalability and affinity for dras-
tic change. The collective computational power of
all Internet routers involved in network traffic routing
makes the Internet the most powerful computer in the
world. Network packets are processed and routed in a
very short time in the order of a fraction of a second.
These very characteristics make the Internet hard to
simulate efficiently.

We describe a novel approach to scalability and effi-
ciency of parallel network simulation and demonstrate
that it is able to use different network simulators as
components of the same simulation supporting inter-
operability and scalability. The described method can
be seen as a variant and modification of a general
scheme for optimistic simulation referred to as Time-
Space Mappings [1] where it occupies sparsely pop-
ulated place of methods based on iterative approxi-
mation of a solution in spatially separate parts at the
same simulation time.

Our approach partitions the network into parts,
called domains. The simulation time is partitioned
into disjoint intervals. Each domain is simulated in-
dependently of and concurrently with the others over
the same simulation time interval. At the end of
each interval metrics of inter-domain flows are ex-
changed between domains. The domain simulators it-
erate over the same time interval until the exchanged

*This work was partially supported by the DARPA Con-
tract F30602-00-2-0537 with the Air Force Research Laboratory
(AFRL/IF) and by the grant from the University Research Pro-
gram of CISCO Systems Inc. The content of this paper does
not necessarily reflect the position or policy of the U.S. Gov-
ernment or CISCO Systems—no official endorsement should be
inferred or implied.

metrics converge to constant values within the pre-
scribed precision. After convergence, all domains sim-
ulators move simulation to the next simulation time
interval. This approach is particularly efficient if the
simulation cost grows faster than linearly as a func-
tion of the network size, which is the case for computer
networks in general and the Internet in particular [7].

The main result of this paper is to demonstrate
that by judicious design of the domains and informa-
tion exchange, the proposed approach efficiently par-
allelizes network simulation run under SSFNet and
can interoperate with implemented earlier [6] ns-based
simulations. The method is useful in all applications
in which the speed of the simulation is of essence, such
as: on-line network simulation, network management,
ad-hoc network design, emergency network planning,
or Internet simulation.

2 Genesis

Although our approach has been described earlier
in the context of a simulator for verification of the
approach [8] and as applied to ns-simulator [6], we
provide a brief summary here, to make the paper self-
contained. The system enables integration of different
simulators into a coherent network simulation, hence
we called it General Network Simulation Integration
System, or Genesis in short.

In Genesis, each network domain consists of a sub-
set of network sources, destinations, routers and links
that connect them. It is simulated concurrently with
domains and repeatedly iterates over the same simula-
tion time interval, exchanging information with other
domains after each iteration. In the initial iteration,
each domain assumes either zero traffic flowing into it
from outside (when the entire simulation or a partic-
ular flow starts in this time interval) or the external
traffic characterization from the previous time inter-
val. External traffic into the domain for all other iter-
ation steps is defined by the activities of the external

Bolek
Text Box
Proc. Applied Telecommunication Symposium, San Diego, CA, April 2002, SCS Press, 2002

traffic sources and flow delays and packet drop rates
defined by the data received from the other domains
in the previous iteration step.

FEach domain is simulated by a separate simula-
tor which uses native traffic generator (either SSFNet
or ns based [5], depending on the actual simulator
used to for the domain) to create flows whose sources
are within this domain. The simulator approximates
flows with the sources that are external to the domain
but are routed to or through the domain. This ap-
proximation is achieved as follows. In addition to the
nodes that belong to the domain by the user designa-
tion, Genesis creates also domain closure that includes
all the sources of flows that reach or pass through
this domain. Since those are copies of nodes active
in other domains, we call them source prory. Each
source proxy uses the flow definition from the simula-
tion configuration file and the native traffic generator.

The flow delay and the packet drop rate experi-
enced by the flows outside the domain are approxi-
mated by the random delay and probabilistic loss ap-
plied to each packet traversing in-link proxies. These
values are generated according to the average packet
delay and its variance as well as the observer packet
loss frequency communicated to the simulator by its
peers at the end of simulation of each time inter-
val. Each simulator collects this data for all of its
own out-link proxies when packets reach the desti-
nation proxy. Consider flow from an external source
S to the internal destination T', passing through a
sequence of external routers rq,...7, and internal
routers T,41,...7g. The source of the flow is rep-
resented by the sequence of pairs (t1,p1), - - - (tm, Pm),
where ¢; denotes the time of departure of packet ¢ and
p; denotes its size. At router j, a packet ¢ is either
dropped, or passes with the delay d; ;. For uniformity,
dropping can be represented as as delay T greater
than the simulation time. Hence, to replicate the flow
with the source proxy P sending packets to router
rnt1, We just need to produce a sequence of packets
(tl + Dl,pl)a s (tk + Dkapk)a where D] = Zin:]_ di,j7
which in fact is creating the same sequence of packets
as S does and delaying packet j by the time D;. Each
delay at the router is the sum of constant process-
ing, transmission and propagation delays and a vari-
able queuing delay. If the total delay over all external
routers is relatively constant in the selected time in-
terval, the actual delay D; can be approximated by
randomly generated delay from the distribution with
the same average value and variance as D; and packet
loss can be applied randomly with the probability de-

fined by the observed frequency of the actual packet
loss on the external path. These three values (aver-
age packet delay and its variance and the frequency of
packet drop) are sent to the source proxy to be used
in generating the flow. Thanks to the aggregated ef-
fect of many flows on queue sizes, this delay changes
more slowly than the traffic itself, making such model
precise enough for our applications.

Our experience indicates that communication net-
works simulated by Genesis will converge thanks to
monotonicity of the path delay and packet drop prob-
abilities as a function of the traffic intensity (conges-
tion).

The efficiency of our approach is greatly helped
by the non-linearity of the sequential network sim-
ulation. It is easy to notice that the sequential sim-
ulation time grows faster than linearly with the size
of the network. Theoretical analysis supports this ob-
servation because for the network size of order O(n),
the simulation time include terms which are of or-
der O(n = log(n)), that correspond to sorting event
queue, and O(n(log(n))?) to O(n?), depending on the
model of the network growth, that result from number
and complexity of events that packets undergo flow-
ing from source to destination. The average length
of a path traversed by each packet, the number of
active flow sources, the number of flows generate by
each source and even the number of packets in each
flow may grow at the rate O(log(n)) to O(n?%), where
0.5 < a < 1, as the function of n, the number of nodes
in the network. They together create the superlinear
growth in the number of the events processed by the
simulation.

Some of our measurements [7] taken over the hier-
archical networks indicate that the dominant term is
of order O(n?) even for small networks.

We conclude that it is possible to speed up the
sequential network simulation more than linearly by
splitting it into smaller networks and parallelizing the
execution of the smaller networks. As we demonstrate
later, with modest number of iterations the total ex-
ecution time can be decreased by the order of magni-
tude or more. Our primary application is the use of
the on-line simulation for network management [7] to
which the presented method fits very well, especially
when combined with the on-line network monitoring.

3 SSFNet Framework

SSFNet is an open source, java based suite of mod-
els of protocols (IP, UDP, TCP, BGP4, OSPF and
others), network elements (hosts, router, links) and

assorted support classes for realistic multi-protocol,
multi-domain Internet modeling and simulation [3].
SSFNet uses a java-based discrete-event simulation
engine SSF [4] with well-defined Application Pro-
grammer Interface (API) [2], so all classes in SSFNet
can interact with the underlying simulation engine
transparently. In SSFNet, the network model is syn-
thesized with DML (domain modeling language) and
the simulation is instantiated with the configuration
databases.

The principle classes of SSFNet are organized into
two derivative frameworks: SSF.OS (for modeling of
hosts and protocols), and SSF.Net (for modeling of
connection, creating nodes and links). These classes
are extended from five base classes of SSF. Metamor-
phism achieved by class inheritance and method over-
loading is the principle mechanisms for SSFNet to
communicate with the underlying engine.

Entity serves as a container of components, which
are aligned, to a common local simulation time. In-
Channel and outChannel are communication end-
points for event exchange between entities. Event is
the base class for information exchange. Process is
the base class for describing dynamic behavior of an
entity. Each process is owned by a specific entity and
may wait for event arrival on channels owned by its
entity or wait for the elapse of simulation time, or
both.

Package SSF.NET includes four principle classes:
Net, Host/Router, NIC and link to model the net-
work topology. Class Net is extended directly from
SSF.Entity. It is the utmost container of all the
network components. It loads DML configuration
databases and controls the instantiation of the en-
tire model, which includes hosts/routers and their in-
stalled protocols, links which connects hosts and/or
routers, as well as traffic scenarios and so on.

Net is the container of all the network compo-
nents. It keeps track of the references to all the
hosts/routers configured. Similarly, every host/router
is a container of its installed protocols; it keeps track
of its attached interfaces. Link in SSFNet is imple-
mented as direct channel mapping between interfaces
attached to its endpoints. The receiver process of
NIC is responsible for receiving incoming packets and
pushing to its attached protocol. The queue man-
ager of NIC enqueues or drops outgoing packets in
an implementation-dependent manner. At IP level, a
route or, more precisely, the interface (NIC) is chosen
for every packet leaving the local host. The packets
to the local host are assigned to proper sessions.

4 Genesis Extensions to SSFNet

In order to integrate SSFNet simulator into Gen-
esis, SSFNet has been enhanced by the following ad-
ditions: Domain Definition, Source and Link Proxy,
Mapping Bridge, Data Collector, Checkpointing and
Freeze that further discussed below.

4.1 Implementation of Decomposable
SSFNet

In SSFNet, a network is modeled as a hierarchy of
Net that is a collection of hosts, routers, links and
component sub-Nets. Sub-Net inclusion is a power-
ful construct that facilitates building very large mod-
els from pre-configured sub-networks. Net is also a
convenient tool for network partitioning required by
Genesis. Hence, a domain definition is simply im-
plemented by specifying the NHI of active domain at
DML configuration databases. The modified Net class
will retrieve its domain identifier from DML configu-
ration database and store it at its global data area
making it is easily accessible by other components.

Dynamic flow replication is implemented with
source proxy and link proxy and controlled by the
freeze component described later.

In SSFNet, when traffic starts, the client will first
connect to the known port of the server. Then, the
client sends control data (including the size of the file
requested) and waits for data from the server. Once
the server is initialized, it listens to incoming connec-
tions from clients. After accepting a new connection,
the server builds a data socket and spawns a slave
server that transmits the data between the client and
the server. The interval over which packet are sent
is controlled by a Timer that is an abstract class ex-
tended from Entity. It wraps itself in a Timer Event,
and sends itself to its copy in the local channel with
the appropriate timeout delay. At delivery, the Timer
Event checks if it has been cancelled and if it has not,
it executes its own call-back method. An application
can overload the call-back method with appropriate
application-specific event handler, and can control the
behavior of Timer by invoking set or cancel methods
explicitly.

If a traffic source is not in the current active do-
main, it will be suspended after its initialization. The
slave server for this suspended traffic source is called a
source proxy. The reference to a source proxy is regis-
tered at global area with corresponding flow identifier,
so that it can be resumed by freeze. When a source
proxy is resumed during the simulation, it starts to
send packets via its link proxies. As shown in Fig-
ure 1, a source proxy will be connected directly to

Link proxy between source proxy and border router

—\ outChane inChannel ——
other host dummy | _
NIC NIC
inChannel outChannel

Channel mapping on link proxy

Figure 1: Proxy link implementation

border router by link proxies. Link proxies imple-
ment the link delay configured by the queue manager
defined at the freeze time.

4.2 Collecting Data About Flows

Class Collector has been added to SSFNet as
a global container to hold flow-based information.
The working mechanism of Collector is based on the
packet-level simulation in SSFNet. There are three
kinds of delay accumulated in the lifetime of a packet
transmission in SSFNet. Link delay is configured as
link latency. Queue delay is decided by the queue
size, link capacity and traffic volume. NIC delay is
defined by the NIC latency. There are three cases in
which packet gets dropped: (i) end of life time, (ii) no
reachable destination (IP layer), and (iii) dropped by
queue manager of its deporting interface (Link Layer).
Using these rules, the delay of outgoing packets is ac-
cumulated for every flow. The number of packets fired
and the number of packets dropped are also recorded.

Routing is done at IP-Level in SSFNet. By query-
ing routing tables, IP class is able to pick up an ap-
propriate NIC interface attached to the local host and
put the outgoing packets into its output queue. Since
link in SSFNet is implemented by channel mapping
between the two attached interfaces, “push” invoked
by one interface will put a packet into its peer’s in-
Channel with appropriate delay. This mechanism is
used for building link proxies which shortcut the path
from source proxy to the corresponding border router
of current domain. In addition, the IP class has also
been enhanced to (i) sent outgoing data through link
proxy instead of the normal route, (ii) dump infor-
mation about outgoing data into Collector, and (iii)
preserve the regular routing for control data. Some
additional new features were added to IP Header and

Host to facilitate the classifying of outgoing packets.
4.3 Simulation Freezing and Synchro-
nization

In Genesis, the simulation time is partitioned into
separate intervals and domain simulators iterate over
each interval until all simulations converge. To en-
able reruns the whole simulator is cloned at the be-
ginning of each interval. The cloned copy is activated
when the rerun is necessary. We use JNI technology
to do the memory checkpointing and the interaction
between Java and C copy routines is shown in Fig-
ure 2.

SSFNet Simulation C Rou
outines
N Copy of the
(Java Application) application
checkpointing fork achild nmemory
process and
Java suspend it
checkpointing again| fork anew child
Native and suspend it; New copy
R IE of the
kill the old child application
Interface nmemery
going back resume the child
process, kill the |
ent process
parent p Simulation
resume from
the last
memory copy

Figure 2: Checkpointing SSFNet simulation

A Freeze component paces suspensions of the simu-
lation. Frequency of suspension is defined in the DML
configuration database. The simulation is interrupted
by Freeze Events. Freeze object is wrapped with a
Freeze Timer extended from Timer class of SSFNet.
The call-back method of Timer is overloaded to fulfill
freeze-related tasks.

Freeze Object is instantiated and initialized by Net
object. At the end of initialization, it will register
at DML databases, and then it will instantiate and
set Freeze Timer. With self-channel mapping, Timer
Event fired by Freeze Timer will be received by itself
with some appropriate delay. Once a Timer Event is
delivered, the call-back method will be invoked im-
plicitly and executed the exchange of information be-
tween domains.

4.4 Interoperability

Java-based SSFNet and C++/TCL-based ns [5]
use different network models and different simulation
frameworks. To facilitate interoperability between

these two, we defined generic network model and flow-
based message exchange format.

We added a new class Mapping to SSFNet that is
instantiated by Net Object at initialization and uses
two configuration files: nodes.conf and flows.conf.
These files include information about generic network
model of the network to be simulated. While ex-
changing information with the outside world, SSFNet
simulators will query mapping tables to compose and
parse messages into generic format. We also modified
class ptpLinkLayer to facilitate the buildup of link
proxies with generic flow message. While link is ini-
tialized, ptpLinkLayer can register the NIC references
(call edge interface) of its two endpoints.

5 Experiments and Test Results

1: 1 /‘
| 7 e
/

interval
N /

—8—10 secs
1 4 16

Number of Domains

Speed-up

Figure 3: Speedup for 64-node simulation under dif-
ferent time intervals

We have measured the performance of the decom-
posable SSFNet in two experiments whose results are
presented below. One compared flows in a single do-
main simulation with those in the multiple domains
simulation. Another one involved a simulation in
which ns and SSFNet interoperated. These exper-
iment were performed on 27-node network and 64-
node network described in detail in [6] and included
hundred to thousand flows.

The speedup of the single iteration step for the 27-
node PNNI network is shown in Figure 4. Note the
speedup is slightly superlinear for 10 seconds of the
simulation interval time. In actual simulation, the
speedup is more modest because each iteration step
is repeated several times before the simulation moves
to the next time interval. The actual speedup for
the pure SSFNet simulation for up to 16 processors is
shown in Figure 3. Interestingly, using different simu-
lators on different domains does not decrease speedup

50000

40000

00 05 secs interval
20000 B 10secs interval

1000 ’_l
0 - |

Number of Domains

Average run-time per

Figure 4: Single iteration step timings for 27-node
PNNI network

significantly. Running half of domains under SSFNet
and half under ns resulted in high parallel efficiency
as shown in Figure 5.

The interesting question is how valid are results of
the simulation, compared with the sequential execu-
tion. Hence, we compare corresponding flows in the
sequential and four-domain simulations for 64-node
network. The results are shown in Table 1 and demon-
strate that the differences are small.

source desti- | number of | flow drop
nation | domains delay | rate

1.2.121 | 14114 | 1 0.0389 | 0.571
4 0.0366 | 0.553

12121 | 14114 | 1 0.0389 | 0.571
4 0.0366 | 0.553

1.2.121 | 1.4.114 | 1 0.0389 | 0.571
4 0.0366 | 0.553

1.2.121 | 14114 | 1 0.0389 | 0.571
4 0.0366 | 0.553

2.2.321 | 1.2.317 | 1 0.0867 | 0.714
4 0.0878 | 0.905

3.2.121 | 1.2118 | 1 0.0909 | 0.571
4 N/A 1.0

4.2.121 | 1.1.319 | 1 N/A 1.0
4 0.0924 | 0.975

Table 1: Flows in single and four domain simulations
of 64-node network

6 Conclusion
In this paper we present a novel approach to large
scale network simulation, that combines simulations

Number of Domains

Figure 5: Speedup for 64-node network with SSFNet
and ns domains

and models in a single system. Each model is fed by
the data produced by the simulation and as the com-
ponent simulations converge to the fixed point solu-
tions so do the models based on them. We intro-
duced this approach after questioning what it means
to simulate a network. Since the correctness of a sim-
ulation cannot be verified at the individual packet
level anyway, we adopted that view that the simu-
lation needs only to produce network traffic with the
same statistical properties as possessed by the traffic
in the simulated network. Accordingly, we measure
quality of the convergence of our iterative scheme by
the divergence of the statistical properties of the traf-
fic from the same properties of the fixed point solu-
tion. Thanks to this new approach, we are able to
deliver superlinear speedup for network simulations
running on distributed computer architectures. In the
paper, we demonstrate that this approach works un-
der SSFNet, a network simulator with different de-
sign that our initial implementation of Genesis that
targeted ns. Moreover, we were also able to run the
heterogeneous simulations in which ns and SSFNet
domains interoperated efficiently.

Several possible directions for improving efficiency
of the current implementation include:

e adaptive selection of time interval based on a
variance of the delay and packet drop rate of the
inter-domain traffic,

e graph-theoretic based network partitioning algo-
rithm that will optimize domain definitions by
minimizing inter-domain traffic,

e non-constant model of the flow delay, for exam-

ple using the linear model of the flow delay based
on empirical data or using empirically collected
delay time distribution should speed up conver-
gence to the fixed point solution,

aggregation

of inter-domain flows passing through the same
border router may improve efficiency by enabling
replacement of many individual source proxies by
a single aggregate proxy.

References

[1]

Chandy, K. M., and R. Sherman, 1989. “Space-
time and simulation.” Proceedings of the Work-
shop on Distributed Simulation. SCS Press, 53—
57.

J. H. Cowie, 1999. Scalable Simulation Frame-
work API Reference Manual, Version 1.0.
http://www.SSFNet.org/SSFdocs/ssfapiManual.pdf

Cowie, J. H., D. M. Nicol, and A. T. Ogiel-
ski, 1999. “Modeling 100,000 Nodes and Beyond:
Self-Validating Design.” Computing in Science
and Engineering.

Nicol D., M. Goldsby, and M. Johnson, 1999.
“Fluid-based Simulation of Communication Net-
works using SSF.” Proceedings of the European
Simulation Symposium (Erlangen-Nuremberg,
Germany).

ns(network simulator). See web site at
http://www-mash.cs.berkeley.edu/ns.

Szymanski, B., Y. Liu, A. Sastry, and K. Mad-
nani, 2001. “Real-Time On-Line Network Sim-
ulation.” Proceedings of the 5th IEEE Interna-
tional Workshop on Distributed Simulation and
Real-Time Applications DS-RT 2001. TEEE CS
Press, Los Alamitos, CA, 22-29.

Ye, T., D. Harrison, B. Mo, S. Kalyanaraman, B.
Szymanski, K. Vastola, B. Sikdar, and H. Kaur,
2001. “Traffic Management and Network Con-
trol Using Collaborative On-line Simulation.”
Proceedings of the International Conference on
Communication, ICC2001.

Zhang, J. -F., J. Jiang and B. K. Szymanski,
1999. “A Distributed Simulator for Large-Scale
Networks with On-Line Collaborative Simula-

tors.” Proceedings of the Furopean Multisimula-
tion Conference, vol. II. SCS Press, 146-150.

