Communication of the ACM, vol. 38, no. 10, Oct. 1995, pp. 88-100

Object Oriented Parallel Computation for Plasma
Simulation

Charles D. Norton

Department of Computer Science, Rensselaer Polytechnic Institute, Troy NY, USA
and

Boleslaw K. Szymanski

Department of Computer Science, Rensselaer Polytechnic Institute, Troy NY, USA
and

Viktor K. Decyk

Physics Department, University of California at Los Angeles, Los Angeles CA, USA

Categories and Subject Descriptors: C.1.2 [Computer Systems Organization]: Multiple Data
Stream Architectures—parallel processors; D.1.5 [Software]: Programming Techniques—object
oriented programming; J.2 [Computer Applications|: Physical Sciences and Engineering—
Physics

General Terms: Languages, Design

Additional Key Words and Phrases: Concurrent object oriented programming, Fortran 90, physics
computing, supercomputing

Object oriented techniques promise to improve the software design and program-
ming process by providing an application oriented view of programming while facil-
itating modification and reuse. Since the software design crisis is particularly acute
in parallel computation, these techniques have stirred the interest of the scientific
parallel computing community. Large-scale applications of ever-growing complex-
ity, particularly in the physical sciences and engineering, require parallel processing
for efficiency. Since its introduction in the 1970’s, Fortran 77 has been the language
of choice to model these problems thanks to its efficiency, numerical stability, and
the body of existing Fortran codes. However, the introduction of object oriented

This work is supported by the National Aeronautics and Space Administration under Grant #
NASA NGT-70334. The content does not necessarily reflect the position or policy of the U.S.
Government. No official endorsements should be inferred or implied. Access to the Intel Paragon
and Cray T3D at the Jet Propulsion Laboratory was provided by NASA’s Offices of Aeronautics,
Mission to Planet Earth and Space Science. The IBM SP1/SP2 was provided by the Scientific
Computation Research Center (SCOREC) at Rensselaer.

ACM Copyright Notice

Copyright ©1995 by the Association for Computing Machinery, Inc. Permission to make digital
or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or direct commercial advantage and
that copies bear this notice and the full citation on the first page. Copyrights for components of
this work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212)
869-0481, or (permissions@acm.org).

Bolek
Text Box
Communication of the ACM, vol. 38, no. 10, Oct. 1995, pp. 88-100

2 . NORTON, SZYMANSKI & DECYK

languages provides new alternatives for parallel software development. Fortran 90
adds modern extensions (including object oriented concepts) to the established
methods of Fortran 77. Alternatively, object oriented methodologies can be ex-
plored through languages such as C++, Eiffel, Smalltalk and many others. Our
selection among these required a language which was widespread and supported
across multiple platforms (particularly supercomputers) with strong compiler opti-
mizations. C++, while not a “pure” object oriented language, was our choice since
it meets these criteria.

Currently, the most promising technique for parallel programming combines a
standard high-level language with an explicit message-passing library for interpro-
cessor communication. However, languages can also be extended with new con-
structs in direct support of parallelism. The principal explicitly parallel Fortran-
based language is High Performance Fortran (HPF) [High Performance Fortran
Forum 1993], which introduces directives for data placement and alignment. Addi-
tional research languages include Fortran D, Fortran 90D/HPF, Fortran M, Opus
and Vienna Fortran. Some of these languages support operations on virtual proces-
sors which separates the problem partitioning and mapping from the physical pro-
cessors. Research activities in object oriented parallel languages include ACT++,
C** Charm++, Compositional C++, Concert, Concurrent Aggregates, Concur-
rent C+4+, COOL, DC++, DCE++, HPC++, Mentat, Parallel C++, pC++,
POOL-T, and puC++. These languages support shared memory (address space
is common to all processors), distributed memory (address space is local to each
processor) and/or workstation cluster parallel environments. Each language adds
extensions, typically to C++ and often with complex runtime systems, to support
task and/or data parallel computation.

Many of the research based modifications for parallelizing Fortran and C++ have
very promising ideas, yet the proposed techniques may not receive overwhelming
support unless clear, empirical, and measurable evidence establishes their benefits.
Although valuable progress continues, until these methods become commonplace,
as demonstrated by supercomputer manufacturer support and standards commit-
tees, most developers may remain apprehensive to adopting new languages. Thus,
the future of scientific programming will depend on establishing standards and rec-
ognizing educational trends in software design. Even though Fortran 77 remains
the most popular language in scientific computing, larger codes and generalization
of computational kernels for reuse create an incentive to consider languages that
support abstractions and modularity. Many of the new features of Fortran 90 can
support, the object oriented programming methodology. C++ has become an in-
formal standard, as evidenced by widespread training programs in academia and
industry. As a result, we believe that standard Fortran 90 and C++ with standard
message-passing libraries provide an attractive basis for parallel programming.

We evaluate object oriented programming methods in high performance comput-
ing by discussing our software development experiences with Plasma Particle in Cell
(PIC) simulation skeleton codes. Beginning with the parallel Fortran 77 version, we
convert the application into an object oriented form using the Intel Paragon, IBM
SP1/SP2 and Cray T3D distributed memory parallel computers. We also show
how Fortran 90 supports object oriented programming by mirroring every language
feature used in the sequential C++ program. Our objective is to determine if

OBJECT ORIENTED PLASMA SIMULATION . 3

the object oriented paradigm is actually beneficial in high performance scientific
computation. Our study focuses on the practical issues encountered in software de-
velopment on parallel machines including programming abstractions, modifiability,
portability (across message-passing libraries, machines and compilers), numerical
accuracy, and computational efficiency.

Overview of Plasma PIC Simulation

When a material is subjected to conditions under which the electrons are stripped
from the atoms, acquiring free motion, the mixture of heavy positively charged ions
and fast electrons forms an ionized gas called a plasma. Ionization can be introduced
by extreme heat, pressure or electric discharges. Fusion energy is an important ap-
plication area of plasma physics research, but more familiar examples of plasmas
include the Aurora Borealis, neon signs, the ionosphere, and solar winds. The
plasma Particle In Cell simulation model [Birdsall and Langdon 1991] integrates
in time the trajectories of millions of charged particles in their self-consistent elec-
tromagnetic fields. The method assumes that particles do not interact with each
other directly, but through the fields which they produce. Particles can be located
anywhere in the spatial domain; however, the field quantities are calculated on a
fixed grid. In our example application only the electrostatic (coulomb) interactions
are included.

The General Concurrent Particle in Cell (GCPIC) Algorithm [Liewer and Decyk
1989] partitions the particles and grid points among the processors of the MIMD
(multiple-instruction, multiple-data) distributed-memory machine. The particles
are evenly distributed among processors in the primary decomposition, which makes
advancing particle positions and velocities in space efficient. A secondary decom-
position partitions the simulation space evenly among processors, which makes
solving the field equations on the grid efficient. As particles move among parti-
tioned regions, they are passed to the processor responsible for the new region. For
computational efficiency, field/grid data on the border of partitions are replicated
on the neighboring processor to avoid frequent off-processor references. We illus-
trate the interaction between the particles and the field/grid in Figure 1 to show
the data dependency which must be modeled in our class design. Particles scatter
charge and gather force data to/from their nearest grid points. Force components
from each dimension are required to advance particles to new positions.

We perform a Beam-Plasma instability experiment in which a weak low den-
sity electron beam is injected into a stationary (yet mobile) background plasma of
high density, driving plasma waves to instability. Beam-Plasma interactions cause
particle bunching, forming potential wells which are self-enhanced. This leads to
particle trapping creating vortices in phase space. The ions are modeled as a fixed
neutralizing background. Although the number of particles per processor will vary
during this simulation, the load remains sufficiently well balanced. This is not the
case for all kinds of plasma simulations where dynamic load balancing may be re-
quired [Ferraro et al. 1993]. (Our codes which support dynamic load balancing of
the particles by rebuilding the primary decomposition will not be discussed in this
article). An experiment such as this can be used to verify plasma theories and to
study the time evolution of macroscopic quantities such as potential and velocity
distributions. The GCPIC method can model a variety of sophisticated plasma

4 . NORTON, SZYMANSKI & DECYK

i iti i 1 Periodic
Particle Charge Deposition to Charge Density Field Boundary

Procemor Partition

Processor 0 Processor 3

Particle Advance (Push) from Force Field

r Partition Penodlc

Processor 3

Fig. 1: Particle/Field Interaction in the Plasma PIC Algorithm (Two-Dimensional
Tlustration). Red arrows indicate non-local charge/force data operations. Blue
arrow operations are local due to the slab partitioning. Orange arrows show the
new particle positions.

simulations.

The Fortran 77 program is organized into two major sections referred to as the
initialization section and the loop section as shown in Figure 2. The initialization
section builds the particle and field partitions, constructs tables, and creates the ini-
tial particle distribution and charge density deposition. The loop section calculates
the electric field forces using the Fast Fourier Transform and Poisson’s Equation,
advances the particles under these forces, and finds the new charge density for the
field at the grid points. Each loop represents a simulated time step during which
diagnostics such as field, kinetic and total energy are monitored.

Object Oriented Simulation in C++ and Fortran 90

Various object oriented designs have been proposed in plasma simulation [Haney
and Crotinger 1991; Reynders 1994]. The following issues motivated our design:

—The impact of Fortran 77 program structure on class design.

—The interdependence between efficiency and class design.

—Numerical reliability, when compared to Fortran 77.

—The appropriate usage of C++ features and their expressibility in Fortran 90.

Plasma simulation inherently depends upon interactions between particles and
fields. We seek to model this relationship from a physical and computational per-

OBJECT ORIENTED PLASMA SIMULATION . 5

Initialization Section

Partition Border Char ge Deposition

Create Particle/Field Partitions Charge Update onto Grid
Distributed Across Processors Exchange Guard Cells Scatter Step

v

Create Particles Solve Field Move Particles Among
Spatial & Velocity Distribution Poisson’s Eqn. Using FFT Processors As Needed

i :

Initial Ch D it Partition Border Advance Particle
(g QUUEEERCEIIOT Force Update Positions & Velocities
Scatter Step - Electron & lon Background Exchange Guard Cells Gather Step

Fig. 2: Plasma PIC Computation Loop Overview: Diagnostic operations and ex-
tensions for load balancing are not shown.

spective with object oriented methods. Although the Fortran 77 version is well
organized, non-object oriented languages do not establish a relationship between
the data and characteristic operations. We discuss how this relationship was cap-
tured in our C++ and Fortran 90 programs.

Analysis of the application and the Fortran 77 source identifies the field/grid,
particles (individually and collectively), and diagnostics as potential modeling ab-
stractions. However, organization of the classes requires consideration of their in-
teraction (use-relationship) and commonality (inheritance).

GaussianRandomNum
Class ParticleDistribution Virtual ParallelMachine

Inheritance

Use Relationship .
o | e [o
ClockTimer |ACLdlERAS = EnergyDiagnostic

Fig. 3: Object Oriented Class Hierarchy Version 1: The classes utilize inheritance
in the definition of specific particles and use-relationships to support interaction
among abstractions.

6 . NORTON, SZYMANSKI & DECYK

Class

MultiDimPointVector<T> GaussianRandomNum Virtual ParallelMachine

Inheritance

ChargedParticle<T> Plasma
Use Relationship
i

Fig. 4: Object Oriented Class Hierarchy Version 2: This alternate model generalizes
particles and fields by extending the original model with template classes.

Figure 3 shows the class hierarchy for the initial version of the one-dimensional
C++ program. The Particle class, through its public methods (access functions),
provides the interface for position and velocity information used by derived classes
such as Electron. Inheritance implies that the Electron class has all the properties
of the Particle class in addition to the specific features that define an electron.
The Plasma class provides operations on the collection of electron objects that make
up the plasma. Therefore, the Plasma class uses objects from the Electron, Grid,
EnergyDiagnosticand VirtualParallelMachine classes. The Grid class provides
operations to deposit charge and solve Poisson’s Equation for the electric field,
which requires an interaction with the Plasma class. The EnergyDiagnostic class
is used by both the Plasma and Grid classes to record this diagnostic. Additionally,
there is a need for classes which provide specialized services such as random numbers
and timing measurements.

Although the original object oriented version models the PIC simulation accu-
rately, refinements and extensions can be introduced to ease the transition to higher
dimensional codes. Furthermore, the original version makes salient assumptions re-
garding the simulation, such as fixed particle and field partitions, which may not
hold in more general experiments that require dynamic load balancing. Hence, we
designed an alternative class hierarchy in which the definition of a particle and the
design of the simulation space have been reorganized. The new design reused much
of the original code. We believe that such a refinement process is a necessary part
of proper class hierarchy design for software generalization and modification.

Figure 4 shows the modified class hierarchy which uses templates to operate on a
vector space of particles. A particle is generalized by a vector which represents the
position/velocity components in the corresponding dimensions. These vectors are
inherited into a ChargedParticle class which enhances the physical description of
a particle. The plasma is modeled as a vector space of charged particles by the
Vector<ChargedParticle> template class, which allows for vector operations on
the collective group of particles. (Templates allow classes to be parameterized by an
object type.) The Species class maintains specific information about the collective
initial distribution conditions of particles, such as their thermal and drift velocities.
The EnergyDiagnostic class collects and monitors plasma parameters associated

OBJECT ORIENTED PLASMA SIMULATION . 7

// Program Objects are Created

VPMachine vpm;

Vector< ChargedParticle > elec_pos(PTMAXNP), elec_vel(PTMAXNP);

Species backgnd(N.BKELE X, N BKELE_Y, BKTHERMAL_VEL X,
BKTHERMAL_VEL.Y, BKDRIFT_VEL X, BKDRIFT_VEL_Y);

Species beam(N.BMELE_X, N BMELE_Y, BMTHERMAL_VEL X,
BMTHERMAL_VEL_.Y, BMDRIFT_VEL_X, BMDRIFT_VEL_Y);

Plasma plasma;

EnergyDiag energy;

Field field(vpm, energy);

// Object Methods Partition the Plasma and Field,
// Distribute Particles and Deposit Charge

vpm.Parlnit();

vpm.startclk();

plasma.Partition(vpm);

field.Partition(vpm);

plasma.UniformSpcMaxwellVelDist(elec_pos, elec_vel, backgnd, vpm);
plasma.UniformSpcMaxwellVelDist(elec_pos, elec_vel, beam, vpm);
field.ChargeDeposition(elec_pos, plasma, ChargedParticle::e_charge);
field.BackgroundlonDensity ();

Fig. 5. C++ Initialization Section Sketch (Two-Dimensional Program,).

with system energy. The VPMachine class aids in portability by parameterizing and
encapsulating all of the machine specific features.

The Field consists of computational grid points of Grid<T> template class ob-
jects which unify force/charge data in multiple dimensions. A PartitionRegion
object maintains field partitioning information across the processors. Operations
associated with depositing charge and calculating the background ion density are
members of the Field class since they modify the field. The Plasma class per-
forms collective operations on the vector space of particles. These include speci-
fying spatial/velocity distributions, advancing particles under field forces and re-
distribution of particles when processor domain boundaries are crossed. Another
PartitionRegion object specifies plasma partitions since particles may be dis-
tributed differently from the field across processors. The initialization and loop
sections of the program are shown in Figures 5 and 6, respectively. Note that the
vector space of electrons is specified using two separate objects. Since mathemati-
cal vector operations on electron velocities (such as scalar multiplication) must not
influence position components, this distinction is necessary.

The program classes directly represent physical and computational constructs
through an organization that allows for interaction via use relationships. Properly
designed classes and objects allow for straightforward modifications and extensions
to the basic model. Additionally, the design of proper abstractions aids in the read-
ability of the code. Readability in Fortran 77 can be difficult since the underlying

8 . NORTON, SZYMANSKI & DECYK

// Calculate Electric Field and Exchange Field Border Force/Charge

field.CalcEField(vpm, energy);
field.InitChargeDensity ();
energy.ke(0.0);

// Push Particles and Update to New Partitions

plasma.Advance(elec_pos, elec_vel, field, energy, vpm);
plasma.UpdateDistribution(elec_pos, elec_vel, vpm);

// Deposit Charge and Ion Background with Energy Diagnostic

field.ChargeDeposition(elec_pos, plasma, ChargedParticle::e_charge);
field.BackgroundlonDensity ();

energy.tote(energy.pe() + energy.ke());

vpm.endclk(curOFile);

Fig. 6: C++ Loop Section Sketch: Method arguments illustrate use-relationships
among classes.

data is not bound to the associated routine, hence large parameter lists are often
required. The tradeoff in using C++ involves the complex interdependence be-
tween class abstraction and its impact on efficiency; nevertheless appropriate usage
of language features can achieve satisfactory efficiency.

The new features of Fortran 90 provide support for the object oriented method-
ology. An initial investigation modeled a curve fitting application [Dupée 1994].
Our goal was to determine if more extensive scientific computations could be rep-
resented. To address this issue, we have rewritten the initial sequential version of
the one-dimensional C++ plasma PIC simulation code in Fortran 90 based on the
C++ class hierarchy of Figure 3. We give examples of the Fortran 90 statements
that can support object oriented programming.

Figure 7 compares the C++ Particle class to an equivalent Fortran 90 module
which allows for the encapsulation of data with associated operations. Access to
the position and velocity data can be restricted to the functions defined as part
of the class or module by using the protected and private qualifiers. Function
overloading (which allows functions to share the same name, but perform different
operations based on the arguments) is modeled using the optional qualifier with
the present statement in Fortran 90. Operator overloading is also supported.

Typically, the Fortran 90 use statement makes the public part of a module ac-
cessible to subprograms. However, inheritance can be supported through the use
statement, which permits all or part of a module to be used in another module.
C++ classes also have special member functions called constructors and destructors
which allow for the automatic initialization and destruction of objects. Inheritance
complicates the definition of constructors and destructors. Fortran 90 does not sup-
port the automatic initialization of module variables; however this can be simulated
by calling a user-defined Create routine once a variable is declared. Destructors

OBJECT ORIENTED PLASMA SIMULATION . 9

C++ Class Segment
class Particle{
protected:
float xpos, xvel;
public:
void pos_x(float pos) {xpos = pos;}
float posx() const {return xpos;}

};

// Creation and Usage of C++ Object
Particle part;

part.pos_x(10.4);

val = part.posx();

! Creation and Usage of Fortran 90 Object

Fortran 90 Module Segment
module Particle_m

type particle
private
real xpos, xvel
end type particle
contains
real function pos_x(part,pos)
type (particle) part
real, optional::pos
if (present(pos)) then
part%xpos = pos
posx = 0.
else
posx = part%xpos

type (particle) part endif
void = pos_x(part, 10.4) end function pos_x
val = pos_x(part) end module Particle_m

Fig. 7: C++ Particle Class & Fortran 90 Particle Module: Data can be encapsulated
in Fortran 90 by using the derived type within a module. The module acts as a
class, providing an interface to member data through routines defined within the
contains statement.

would be more cumbersome to simulate through subroutine calls since they would
have to be provided in every context under which a module variable could be de-
stroyed. Therefore, we did not model this concept in our Fortran 90 simulation.
C++ static class variables can be modeled in Fortran 90 by using the save qualifier
in a module, thus only one copy of the module data will be used across multiple
module instances. A snapshot of inheritance and static variables are shown in
Figure 8.

C++ Class Segment Fortran 90 Module Segment
class Electron : public Particle{ module Electron_.m
public: use Particle.m
static const float charge; real, parameter :: CHARGE = -1.0
} save
end module Electron_m

Fig. 8. Sketch of Inheritance & Static Data Usage in C++ and Fortran 90.

10 . NORTON, SzZYMANSKI & DECYK

The friend construct in C++ gives a class direct access to the private part of
another class, usually for efficiency reasons. Although Fortran 90 does not sup-
port friends, this property can be emulated using the use only statement which
selects specific parts of the module for usage. For instance, the particle advance
routine is very time consuming, requiring field/grid information to update particle
positions. By using C++ friends, Grid class data becomes directly accessible to
the Plasma class advance routine, improving efficiency. The Fortran 90 Plasma m
module definition (not shown) uses the use only statement on the Grid m module
field data, simulating C++ friends. However, in contexts where the Grid_m module
field data should not be accessible, any other module routines of interest must be
used explicitly via the use only statement. Modeling the friend construct of C++
in this way was the only awkward construct encountered.

Dynamic memory allocation allows for flexibility in data structure design and
manipulation. In C++, the new statement is used to dynamically allocate memory.
In Fortran 90 we can declare a variable to be allocatable where the allocate
statement in a module subroutine provides physical memory. Array operations
in Fortran 90 allow for mathematical operations on entire arrays. In C++, the
associated operators must be overloaded explicitly with boundary checking since
no effort is made to guard against illegal indexing of arrays. An example is shown
in Figure 9.

C++4 Class Segment Fortran 90 Module Segment
class Grid{ module Grid_m
protected: use Ion_m
float *q, *fx; real, dimension(:), allocatable::q
public: real, dimension(:), allocatable::fx
friend class Plasma; save
Grid() {q = new float[SYSLEN _X]; subroutine Grid_Create()
fx = new float[SYSLEN X]; allocate (q(NX),stat=ierr)
if (ierr.ne.0) void=MemException()
void AddIonDensity() { q=0.
for (register int i=0; i < SYSLEN.X; i++) allocate (fx(NX),stat=ierr)
q[i] += Ion::qion; if (ierr.ne.0) void=MemException()
fx = 0.
}; end subroutine Grid_Create
real function Grid_AddIonDensity/()
q = q + gion

Grid_AddIonDensity = 0.
end function Grid_AddIonDensity
end module Grid_m

Fig. 9: Dynamic Memory Allocation: A portion of the Grid class is shown with the
corresponding Grid module illustrating dynamic memory allocation. Array opera-
tions are also illustrated in the Grid_AddlonDensity routine.

OBJECT ORIENTED PLASMA SIMULATION . 11

The manner in which operations are performed on C++ objects and Fortran 90
module variables are related. In C++, the member functions are bound to the ob-
ject using the syntax object.MemberFunction(). In Fortran 90, variables are created
from modules (within the scope of the use statement) using the type statement;
hence, they are not bound to module functions and subroutines. The module vari-
able must be provided as an argument to its functions and subroutines using the
syntax call MemberFunction(variable, ...). This resembles the manner in which
the C++ method calls are actually translated by most compilers. Additionally,
Fortran 90 performs type checking on function arguments so the proper variable
type is applied to a valid associated module member. A small illustration of this is
shown in Figure 10 for the C++ and Fortran 90 programs.

C++ Main Program Segment Fortran 90 Main Program Segment
main() program bepslk

{ use Electron_m, EnergyDiag m, Plasma_m
Plasma plasma; Electron elec[NP]; use Grid_m, only: Grid_Create, Grid_Setup,
Grid grid; EnergyDiag energy; 1Grid_InitChargeDensity, Grid_AddIonDensity

plasma.Advance(elec, grid, energy, NP); 2Grid_CalcEField, Grid DepositCharge
grid.DepositCharge(elec, Electron::charge,
NP); type (particle) elec(NP)
} type (energy) energ
call Plasma_Advance(elec,energ,NP)
call Grid DepositCharge(elec, CHARGE,NP)

Fig. 10. Illustration of C++ object and Fortran 90 variable creation and usage.

It should be noted that certain important features of C++ have not been used. In
particular, we did not use virtual functions which allow for the runtime selection
of the routine that will be called on an object. Fortran 90 can support virtual
functions by the generic subprogram feature. When an argument is provided to
a generic subprogram the appropriate routine is executed based on the argument’s

type.

Program Development Experiences Across Compilers and Machines

Our development environment consists of the Intel Paragon XP/S, IBM SP1/SP2
and Cray T3D distributed memory MIMD parallel machines. Each Paragon node
contains two or more i860 computational processors and a message-passing proces-
sor. Interprocessor communication over the rectangular mesh uses the NX message-
passing library. The SP series uses RS6000 processors interconnected via a high
performance switch (as well as Ethernet) with the MPL communication library.
The T3D supports shared and distributed memory paradigms using DEC Alpha
processors over a three-dimensional toroidal-wrap topology. Communication on the
T3D uses a modified version of PVM. The Paragon, SP series (and soon T3D) also

12 . NORTON, SzZYMANSKI & DECYK

support the Message Passing Interface (MPI) standard. We used GNU g++ and
Intel C++ on the Paragon, IBM xIC on the SP1/SP2 and Cray C++ on the T3D.

The Fortran 77 versions of the plasma simulations compiled without difficulty
across these machines due to the extensive support provided for this language in
scientific computing. A major goal of our C++ development effort was to main-
tain machine and compiler independent versions of the programs. Modifications to
system files were introduced to support g++ on the Paragon; also, template usage
required special attention in code generation across compilers.

The non-template based one-dimensional PIC program performed properly under
v2.4.5 of the GNU g++ compiler on the Paragon, but when recompiled using v2.5.7,
incorrect energy diagnostics were reported. Although porting the two-dimensional
template-based program from the SP1 to the Paragon was straightforward, numer-
ical errors arose in the template references on the Paragon, which disappeared in
v2.6.1 of g++. These compiler inconsistencies resulted in five months of lost devel-
opment time. The Intel C++ compiler performed well in our two-dimensional and
three-dimensional template-based programs.

The IBM SP1/SP2 and xIC C++ compiler performed extremely well; however,
the SP1 would hang indefinitely, failing to release the processors, after large sim-
ulations executed to completion. Although this issue could not be experimentally
characterized, IBM representatives stated that recent system software releases have
resolved this problem. In fact, this issue did not occur on the SP2. Template in-
stantiation and usage were never a problem with the x1C compiler.

The Cray T3D C++ 1.0 compiler could not instantiate template classes used
across multiple files. Interestingly enough, the identical program did compile cor-
rectly on the Cray Y-MP. Cray responded to our difficulty and installed Cray C++
1.0.3.1 in December 1994. The template class instantiation problem was corrected,
yet problems with the creation of template functions still persisted. We removed
the template functions from the source program to force compilation, but the exe-
cutable would not run on the T3D. The ¢dentical program works correctly on the
Paragon and the SP series. Our difficulties with the C++ compiler on the T3D
remain unresolved as of June 1995. Software problem reports have been filed and
are under investigation.

Experiences in Portability. The VPMachine class provides a standard interface
to the machine-specific message-passing environment and system calls. Utility rou-
tines, such as timing and processor communication routing operations, are also
provided with facilities to allow for object-based interprocessor communication.
Thus, rather than performing a send/receive on an array of floating point numbers
representing particle positions, we actually transmit full Particle objects. This
preserves the object oriented nature of the simulation environment. As MPI be-
comes more widespread, we expect that machine-specific classes should decrease in
importance; yet the ability to perform message-passing on objects should remain
valuable. We maintain MPI versions of our programs, as well as an MPI virtual
machine class.

Program design and testing evolved simultaneously across multiple compilers and
machines using the VPMachine class; hence, our codes were easily ported among
machines. This was particularly useful in finding and reporting bugs in the GNU

OBJECT ORIENTED PLASMA SIMULATION . 13

and Cray compilers. Without this capability, a C++ code developed on one machine
with a single compiler would have required organizational changes for portability.

Ezperiences with Efficiency. Fortran is well known for its efficiency while C++
has a reputation (perhaps unjustified) for being much less efficient. Designing effi-
cient and portable C++ codes is difficult due to differences in compiler implemen-
tations. Inlining is touted as “the solution” to the overhead associated with calling
methods on objects. Programmers must note that compilers are free to ignore the
inline directive. One major source of inefficiency results from the casual use of
the mathematical operations. Our initial sequential C++ plasma simulations exe-
cuted five times slower than the sequential Fortran 77 versions due to inefficiencies
in the standard C++ pow() routine. We realized that Fortran could optimize this
routine based on the arguments to the function, so we overloaded the pow () routine
in C++ to include this distinction. This change reduced the total time used for
exponentiation from 65% of the total computation time to less than 1% for the
sequential C++ programs.

Memory overhead and data access time also contribute to inefficiency. Many
plasma simulation models represent particles by dynamic lists which severely re-
stricts the size of the simulations due to the memory consumed by pointers. Our
particle representations use object arrays, which require special algorithms to main-
tain data structure consistency when particles cross processor partitions. This ap-
proach allows for larger simulations since arrays use memory more productively
than lists. Static class variables also optimize memory since data, such as the elec-
tron charge, is not replicated over millions of electron objects, only a single copy is
stored.

Active object creation or usage results in an overhead which is larger for inher-
itance relationships in class design than in use-relationships. Consequently, when-
ever possible, we defined use-relationships to increase the efficiency of interaction
among class abstractions. Finally, when writing numerical routines in an object
oriented framework, mathematical functions should be designed to work within an
object class structure: they do not need to be object-oriented themselves. The
FFTs and Poisson solver do not belong to mathematical classes; however, they do
operate on simulation class objects.

The Fortran programs have been tuned for efficiency in ways that can be awk-
ward for C++ programs. For example, in Fortran arrays can be used directly in
message-passing parameters, eliminating the need for temporary buffers and data
copying involved in user send/receive calls. The C++ versions do not make data
directly accessible to communication routines, often due to template related issues,
hence buffers are required. These buffers collect the transmitted data which is
then assigned to the associated object using its interface, to preserve encapsula-
tion and protect non-public data. Although direct access to protected data by the
message passing routines would violate encapsulation this may be appropriate for
efficiency reasons, similar to usage of the C++ friend statement. However, our
field model consists of grid template points that maintain both the charge and mul-
tidimensional force data. The interprocessor data-flow requirements in the GCPIC
algorithm require transmission of charge data and force data as separate operations.
Transmission of charge (force) data directly to the template field will overwrite the

14 . NORTON, SzZYMANSKI & DECYK

force (charge) data, since the memory for each grid template point is allocated con-
tiguously. The derived datatype feature of MPI, which allows for transmission of
non-contiguous data, can address this issue. Nevertheless, this illustrates how the
program abstraction features of C++ can influence the efficiency of accessing data.

Reliability Issues. Many useful features for programming abstraction are pro-
vided by C++; nevertheless, the reliability of existing compilers must be consid-
ered. Reliability issues are noticed most clearly during the compilation process.
Valid C++ programs which compiled correctly under one compiler could not be
moved verbatim to other compilers. Difficulties with memory alignment and prob-
lems with linkers not resolving every external constant reference also arose. These
issues cannot be detected at compile-time, requiring extensive run-time analysis
followed by minor alternative implementation techniques.

In general C++ can be stable but, as more sophisticated programming tech-
niques are used, compiler bugs can severely restrict development. Often program
development on the parallel machines was delayed while compiler issues were being
resolved. In such circumstances, the ability to continue development using simula-
tors or sequential machines is of great importance.

Comparisons Among Programming Paradigms

Developing the plasma PIC simulation in Fortran 77, C++ and Fortran 90 allows
for comparisons among the paradigms. Although Fortran 77 remains robust across
compilers and machines, increasingly extensive work in simulation continues to
strain the capabilities of this language. Grand Challenge “type” problems require
new approaches and methodologies which must be supported by the implementation
language. Representing abstractions is a prominent issue causing object oriented
methods to gain acceptance as a viable alternative for high performance parallel
computation. An unresolved question is whether it is always possible to decompose
a problem into appropriate classes with communicating objects that interact. We
argue that parallel computation is fundamentally dependent upon interactions and
programming abstractions and that C++ and Fortran 90 can support these view-
points very well. C++ is a young, evolving language which requires more extensive
support by compiler developers and machine manufacturers before its full potential
in scientific programming can be realized. Fortran 90 provides the robustness of
Fortran 77 with programming abstractions relevant to the object oriented method-
ology. This is an exciting language and our early experience indicates it shows a
lot of promise.

The parallelization strategy in our application, partitioning data across pro-
cessors with message passing for communication, is the same across Fortran 77
and C++ paradigms. Development and implementation are where object oriented
methods are beneficial since abstractions relevant to the application can be cre-
ated to simplify the programming process. The development of these abstractions
does represent a major portion of the effort involved in rewriting an existing For-
tran 77 program into an object oriented framework. Construction of the C++
programs required an in-depth understanding of the design of the Fortran 77 code
and the characteristics of the physical application. With this understanding, the
C++ versions were written from scratch. In contrast, the object oriented features

OBJECT ORIENTED PLASMA SIMULATION . 15

of Fortran 90 were incrementally introduced into the existing sequential Fortran 77
program (using the class hierarchy of the sequential C++ program). As a result,
construction of the Fortran 90 program was achieved in only a few days.

Conceptual abstractions introduced by object oriented methods can be extended
into benefits toward the programming of parallel distributed memory machines.
Maintaining distributed data requires mechanisms for preserving consistency across
processor boundaries. Using object oriented paradigms, the definition of classes
that represent distributed data, such as the field and particle classes, can provide
features to maintain consistency. Abstractions, such as the VPMachine class sup-
port parallel programming with object methods that transport data using its full
object type. Fortran 77 or C implementation paradigms with message passing calls
differ from the object paradigm due to abstraction modeling. Implementation of
the abstractions at the lowest level must be created to work within the class hierar-
chy and features of the architecture but once created, many parallel programming
details can be information hidden.

The efficiency of Fortran programs is commonly cited as the major benefit over
C++, yet this was not as important an issue as compiler stability across machines.
Abstraction representation in C++ class hierarchies must allow for ease of exten-
sion. Unfortunately, hierarchies are nearly impossible to design correctly on the
first attempt. Moreover, when the design is poorly organized, it is difficult to
modify it without triggering something close to a complete redesign. Reuse of the
relevant portions of the early design is often possible but, if the new class hierarchy
cannot be defined with clean interfaces, the best approach is to redesign it from the
beginning.

The C++ program syntax necessarily caused our programs to be longer (about
2.5 times) than the equivalent Fortran 77 versions in the plasma simulations. To
design efficient C++ programs, the programmer must be aware of many “behind
the scenes” operations that take place during execution. The learning curve for
C++ is much longer than for Fortran 90. Readability, while dependent on the
style, taste and experience of the programmer, can be enhanced through the object
oriented methodology. Viewing programs in terms of object types with well defined
operations, such as particles, fields and partitions, adds clarity as code is shared
and reused. C++ programs, in general, are necessarily slower than Fortran 77 since
optimization across pointer structures is more limited than across static arrays.
This issue must be weighed against the costs of program maintenance which is a
growing concern of many application programmers.

Our experience indicates that the efficiency of Fortran 77 and abstraction model-
ing capabilities of C++ are desirable features for scientific programming. The new
constructs of Fortran 90 modernize Fortran 77 with features to represent abstrac-
tion.

Parallel Simulation Results and Performance

In our Beam-Plasma instability experiment, we measure the field, kinetic and total
energies of the system at each simulated time step. Since the original Fortran 77
codes have been well benchmarked [Decyk 1995], we will restrict our performance
overview to rather arbitrarily selected cases across the machines of interest. These
results are only intended to illustrate how this code performs in Fortran 77 and

16 . NORTON, SZYMANSKI & DECYK

| Features | Intel Paragon | IBM SP2 | Cray T3D |
Processor Power 50 MHz 66.7 MHz 150 MFlops (peak)
Network Speed 175 MB/sec 40/80 MB/sec (switch) 300 MB/sec

Table I: Paragon XP/S, SP2 & T3D Basic System Characteristics (From Spec.
Reports).

C++ with standard optimization (—O) on various machines using the same number
of processors. Although these architectures differ in technical specifications we show
two basic parameters, the processor power and interconnection speed, in Table I.

In Table IT we show processor simulation results for a few million particles across
various simulation dimension sizes. Additional simulation comparisons are shown
in Table ITI. Note that the Paragon 3D C++ (MPI) timings are much larger than
the Fortran 77 timings. These runs were performed with the Intel C++ compiler
which seemed to “ignore” our more efficient overloaded mathematical routines. The
remaining Paragon runs used GNU g++ v2.6.1. Additionally, we did not make any
attempts to manipulate cache usage in the C++ programs. Work performed in
this area for sequential PIC codes have reported up to 90% of Fortran 77 efficiency
[Turner 1994].

The C++ version appears more competitive as more processors are used since the
problem size remains fixed as illustrated in Figure 11. This shows how performance
results can be misleading since the ratio of computation to communication dropped
with decreasing numbers of particles within critical loop iterations. Outstanding
C++ compiler problems prevented us from providing simulation results for the
Cray T3D. IBM xIf90 was used for the sequential Fortran 90 program, but the lack
of compilers for our parallel machines prevent timing comparisons to the Fortran 77
and C++ codes. We can give some indication of the performance of the object
oriented sequential Fortran 90 code by comparison to the Fortran 77 and C++
one-dimensional sequential codes shown in Table IV. (The original sequential C++
program executed correctly with GNU g++ v2.6.3 on the Sun Sparcstations. When
recompiled on the RS6000 under g++ v2.5.8 and IBM xIC, incorrect numerical

Machine PEs Language & Number of Time
MP Library Particles (sec)
Intel Paragon XP/S 32 | Fortran 77 (NX) 4,505,600 (1D) | 231.00
Intel Paragon XP/S || 32 C++ (NX) 4,505,600 (1D) | 377.00
IBM SP1 16 Fortran 77 (MPL) 3,571,712 (2D) 802.00
IBM SP1 16 C++ (MPL) 3,571,712 (2D) | 1228.00
IBM SP2 16 | Fortran 77 (MPL) | 3,571,712 (2D) | 364.00
IBM SP2 16 C++ (MPL) | 3,571,712 (2D) | 715.00
IBM SP2 32 | Fortran 77 (MPL) | 7,062,624 (3D) | 1649.00
IBM SP2 32 C++ (MPI) 7,962,624 (3D) | 2797.00
Cray T3D 32 | Fortran 77 (PVM) 7,962,624 (3D) | 2582.50
Cray T3D 256 | Fortran 77 (PVM) | 127,401,984 (3D) | 5637.10

Table II: Paragon XP/S, SP1/SP2 Multi-Million Particle Parallel Performance
Characteristics.

OBJECT ORIENTED PLASMA SIMULATION . 17

Ezecution Time (seconds)
Processors Paragon 1D Paragon 2D Paragon 3D
Fortran 77 | C++ | Fortran 77 ‘ C++ | Fortran 77 ‘ C++ (MPI)

4 115.52 269.25 392.17 998.19 1542.64 5,681.90

66.57 140.27 201.57 498.38 767.22 2,882.84

16 42.06 76.55 112.47 259.87 393.41 1,483.62
32 33.11 47.12 70.09 141.15 N/A N/A
450,560 PARTICLES | 327,680 PARTICLES 294,912 PARTICLES

2,048 GRID POINTS | 8,192 GRID POINTS 32,758 GRID POINTS
Ezecution Time (seconds)

Processors SP1 2D SP2 2D SP2 3D
Fortran 77 | C++ | Fortran 77 ‘ C++ | Fortran 77 ‘ C++ (MPI)

4 175.95 412.00 119.34 257.00 392.25 826.00
92.82 205.00 71.49 133.00 164.11 400.00

16 53.39 111.00 46.55 80.00 87.05 192.00
327,680 PARTICLES 294,912 PARTICLES

8,192 GRID POINTS 32,758 GRID POINTS

Table III: Paragon XP/S and SP1/SP2 Fized Problem Size Parallel Performance
Characteristics.

results in complex arithmetic were detected. Reorganizing the memory layout of the
data structures corrected this problem). Modeling the C++ technique of invoking
a method to access private data probably contributed a performance overhead to
the Fortran 90 program.

Machine Language | Compiler | Number of Time
Particles | (seconds)
IBM RS6000 || Fortran 77 | IBM xIf 450,560 245.49
IBM RS6000 || Fortran 90 | IBM xIf90 450,560 364.25
IBM RS6000 || C++ IBM xI1C 450,560 508.00

Table IV. One-Dimensional Sequential Performance Characteristics.

Conclusion and Commentary

We have given an overview of the design of C++ and Fortran 90 skeleton particle
simulation codes based on existing Fortran 77 codes. The design concepts involved
in reorganizing the Fortran program into an object oriented form have been dis-
cussed. Additionally, we have given performance results which indicate that the
execution speed of C++ may be acceptable, given the organizational advantages.
The codes were designed with both execution and implementation scalability in
mind.

18 . NORTON, SzZYMANSKI & DECYK

1000 T T

900 F "Paragon w/C++" —— |
"Paragon w/F77" -+~
800 - "SP2 w/C++" -8-- |
"SP2 W/IF77" -
700 | E
4
< 600 - 4
o
(=3
@ 500 b
g 400 + b
T 00 f g
=
200 B
100 * E

8
Number of Processors

Fig. 11: Paragon & SP2 Two-Dimensional Fortran 77 and C++ Ezecution Profile
for a Fized Problem Size.

When considering design comparisons between Fortran 77 and C++, we no-
ticed that the class structure provides a programming perspective that reflects
the problem domain. Modifications and extensions to the object oriented version
are straightforward, however classes must be carefully designed with extensions in
mind. The object modeling paradigm also enhances code readability through well
defined interfaces enforced by the C++ syntax.

There is a growing interest in the development of C++ class libraries for par-
allel simulation of plasma and other applications. The OOPS C++ class library
[Reynders 1994] defines four main groups of objects for the parallel architecture,
field, particles and I/O. High level objects hide from the user details of the spe-
cific machine in use, providing an interface that looks data parallel but which is
actually message-passing based. C++ based libraries have also been developed
for VLSI CAD applications [Parkes et al. 1994], finite-element /finite-volume com-
putations (DIME++) [Williams 1993] and materials science (LPARX) [Kohn and
Baden 1995]. Generally, library based approaches try to preserve existing C++
codes rather than introducing new languages or language extensions.

We were amazed by the Fortran 90 statements which reflect object oriented state-
ments in C++4. The most general features such as inheritance and encapsulation
are covered, as well as certain details including static member variables and class
friends. We illustrated how various Fortran 90 statements compare to the equiv-
alent C++ statements in the sequential PIC code. In most cases, the mapping
was straightforward and precise, although the implementation of class friends was
somewhat awkward. Given these new language statements we believe that For-
tran 90 (and HPF) programmers would benefit from a knowledge of object oriented
methods when putting these constructs into practice.

Our experience indicates that the object oriented programming paradigm is ben-
eficial in scientific computation when class hierarchy decisions are made with care.
The two-dimensional codes were designed with modest extensions from the one-
dimensional versions. Our three-dimensional C++ codes were quickly developed
from the two-dimensional template versions. This demonstrates the usefulness of
object oriented programming methods in high performance computing. Simulation
extensions were based on modifying existing abstractions supported in a parallel en-
vironment. Since these abstractions incorporated the scientists view of simulation,

OBJECT ORIENTED PLASMA SIMULATION . 19

we experienced a rapid increase in the programming and reliability of new codes
in higher dimensions. Although we described our experiences with object oriented
methods for an experiment which does not require load balancing, we are exploring
ways in which this methodology can enhance the programming of more dynamic
problems. Our ongoing research on using C++ for runtime efficiency of unstruc-
tured and irregular parallel computations, as in more advanced plasma simulations,
is the focus of our current and future efforts.

The C++ programming language is still evolving: greater conformance to stan-
dards and numerical computational kernels are needed. Programming in an object
oriented manner takes practice and patience. As numerical classes are introduced
and as new techniques are found to improve the efficiency of C++ programs, the
benefits of object oriented design will influence scalable high performance com-
puting. In assessing the tradeoffs between Fortran efficiency and object oriented
design, the increasing costs of software maintenance must be considered. The ability
to reuse existing software and to develop computation kernels represents a grow-
ing need as high performance computing becomes more complex. Object oriented
methods can help to achieve this goal.

ACKNOWLEDGMENTS

We appreciate the technical assistance of Edith Huang, Nooshin Meshkaty, and
Jack Miller from JPL and Mark Miller from Rensselaer regarding the compilers on
the parallel machines. We also thank Joyce Brock and Eva Ma from Rensselaer for
their valuable insights during the preparation of this article.

REFERENCES

BIrDsALL, C. K. AND LANGDON, A. B. 1991. Plasma Physics via Computer Simulation. The
Adam Hilger Series on Plasma Physics. Adam Hilger, New York.

DECYK, V. K. 1995. Skeleton PIC Codes for Parallel Computers. Computer Physics Commu-
nications 87, 1&2 (May II), 87-94.

DUPEE, B. J. 1994. Object Oriented Methods using Fortran 90. ACM Press SIGPLAN Fortran
Forum, 21-30.

FERRARO, R. D., LIEWER, P. C., AND DECYK, V. K. 1993. Dynamic Load Balancing for a 2D
Concurrent Plasma PIC Code. J. Computational Physics 109, 2 (December), 329-340.
HANEY, S. W. AND CROTINGER, J. A. 1991. C++ Proves Useful in Writing a Tokamak Systems

Code. J. Computers in Physics 6, 5 (Sep/Oct), 450-455.

High Performance Fortran Forum 1993. High Performance Fortran Language Specification (Ver-
sion 1.0 ed.). High Performance Fortran Forum. Technical Report CRPC-TR92225, Rice
University, Houston, January 1993.

KouN, S. R. AND BADEN, S. B. 1995. The Parallelization of an Adaptive Multigrid Eigen-
value Solver with LPARX. In Proc. Seventh SIAM Conference on Parallel Processing for
Scientific Computing, San Francisco, California, pp. 552-557.

LIEWER, P. C. AND DECYK, V. K. 1989. A General Concurrent Algorithm for Plasma Particle-
in-Cell Simulation Codes. J. of Computational Physics 85, 302-322.

PARKES, S., CHANDY, J. A., AND BANERJEE, P. 1994. A Library-based Approach to Portable,
Parallel, Object-Oriented Programming: Interface, Implementation and Application. In
Proc. Supercomputing ’94, Washington, D.C., pp. 69-78. IEEE Computer Society.

REYNDERS, J. V. W. 1994. Object-Oriented Particle Simulation on Parallel Computers. In
15th International Conference on the Numerical Simulation of Plasmas, King of Prussia,
Pennsylvania, pp. 1B2 1-4.

20 . NORTON, SzZYMANSKI & DECYK

TURNER, M. 1994. Experience with PIC-MCC and C++. In 15th International Conference on
the Numerical Simulation of Plasmas, King of Prussia, Pennsylvania.

WitLiams, R. D. 1993. DIME++: A Parallel Language for Indirect Addressing. Technical
Report CCSF-29 (January), CCSF, California Institute of Technology, Pasadena, CA.

About the Authors:

Charles D. Norton is a Ph.D candidate in the Department of Computer Sci-
ence at the Rensselaer Polytechnic Institute. His research interests in parallel
computation include scientific computing, algorithms, object oriented program-
ming and visual programming environments. He holds a NASA HPCC Gradu-
ate Student Researchers Program Fellowship. email: nortonc@cs.rpi.edu, URL:
http://www.cs.rpi.edu/ nortonc.

Boleslaw K. Szymanski is a professor of computer science and a founding mem-
ber of the Scientific Computing Research Center at the Rensselaer Polytechnic
Institute, Troy, NY. His research interests include the design and optimization of
compilers and algorithms for parallel and distributed processing and the simulation
and modeling of ecological systems. He is a senior member of IEEE and has been
an ACM National Lecturer.

email: szymansk@cs.rpi.edu, URL: http://www.cs.rpi.edu/ “szymansk.

Authors’ Present Address: Amos Eaton Hall, Rensselaer Polytechnic Institute,
110 8th Street, Troy, NY 12180-3590.

Viktor K. Decyk is a computational physicist at the University of California
at Los Angeles as well as a member of the technical staff at the Jet Propulsion
Laboratory. His research interests are in computational plasma physics, partic-
ularly the use of particle simulation to model fusion plasmas and basic plasma
processes. In recent years, he has worked on developing algorithms for massively
parallel computers. He is a Fellow of the American Physical Society. Author’s
Present Address: Physics Dept., UCLA, Los Angeles, CA 90024-1547 e-mail:
decyk@physics.ucla.edu.

