
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2008; 00:1–7 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

Dynamic Malleability in

Iterative MPI Applications

K. EL Maghraoui∗,1, Travis J. Desell2,
Boleslaw K. Szymanski2, and Carlos A. Varela2

1IBM T.J. Watson Research Center, Yorktown Heights, NY, 10598 USA
2Department of Computer Science, Rensselaer Polytechnic Institute,
110 8th Street, Troy, NY 12180-3590, USA

SUMMARY

Malleability enables a parallel application’s execution system to split or merge
processes modifying granularity. While process migration is widely used to adapt
applications to dynamic execution environments, it is limited by the granularity of
the application’s processes. Malleability empowers process migration by allowing the
application’s processes to expand or shrink following the availability of resources. We
have implemented malleability as an extension to the PCM (Process Checkpointing and
Migration) library, a user-level library for iterative MPI applications. PCM is integrated
with the Internet Operating System (IOS), a framework for middleware-driven dynamic
application reconfiguration. Our approach requires minimal code modifications and
enables transparent middleware-triggered reconfiguration. Experimental results using
a two-dimensional data parallel program that has a regular communication structure
demonstrate the usefulness of malleability.

key words: Dynamic reconfiguration; Malleability; MPI

1. INTRODUCTION

Application reconfiguration mechanisms are becoming increasingly popular as they enable
distributed applications to cope with dynamic execution environments such as non-dedicated
clusters and grids. In such environments, traditional application or middleware models that
assume dedicated resources or fixed resource allocation strategies fail to provide the desired
high performance. Reconfigurable applications enjoy higher application performance because
they improve system utilization by allowing more flexible and efficient scheduling policies [12].
Hence, there is a need for new models targeted at both the application-level and the

∗Correspondence to: kelmaghr@us.ibm.com

Received 10 December 2007
Copyright c© 2008 John Wiley & Sons, Ltd. Revised 10 January 2008

szymansk
Text Box

szymansk
Text Box
vol. 21(3), March 2009pp. 393-413.

2 K. EL MAGHRAOUI ET AL.

middleware-level that collaborate to adapt applications to the fluctuating nature of shared
resources.

Feitelson and Rudolph [4] classify parallel applications into four categories from a scheduling
perspective: rigid, moldable, evolving, and malleable. Rigid applications require a fixed
allocation of processors. Once the number of processors is determined, the application cannot
run on a smaller or larger number of processors. Moldable applications can run on various
numbers of processors. However, the allocation of processors remains fixed during the runtime
of the application. In contrast, both evolving and malleable applications can change the number
of processors during execution. In case of evolving applications, the change is triggered by
the application itself. While in malleable applications, it is triggered by an external resource
management system. In this paper, we further extend the definition of malleability by allowing
the parallel application not only to change the number of processors in which it runs but also
to change the granularity of its processes. We demonstrated in previous work [3] that adapting
the process-level granularity allows for more scalable and flexible application reconfiguration.

Existing approaches to application malleability have focused on processor virtualization
(e.g [5]) by allowing the number of processes in a parallel application to be much larger
than the number of available processors. This strategy allows flexible and efficient load
balancing through process migration. Processor virtualization can be beneficial as more and
more resources join the system. However, when resources slow down or become unavailable,
certain nodes can end up with a large number of processes. The node-level performance is then
impacted by the large number of processes it hosts because the small granularity of each process
causes unnecessary context-switching overhead and increases inter-process communication. On
the other hand, having a large process granularity does not always yield the best performance
because of the memory-hierarchy. In such cases, it is more efficient to have processes with data
that can fit in the lower level of memory caches’ hierarchy. To illustrate how the granularity
of processes impacts performance, we have run an iterative application with different numbers
of processes on the same dedicated node. The larger the number of processes, the smaller the
data granularity of each process. Figure 1 shows an experiment where the parallelism of a data-
intensive iterative application was varied on a dual-processor node. In this example, having
one process per processor did not give the best performance, but increasing the parallelism
beyond a certain point also introduces a performance penalty.

Load balancing using only process migration is further limited by the application’s process
granularity over shared and dynamic environments [3]. In such environments, it is impossible
to predict accurately the availability of resources at application’s startup and hence determine
the right granularity of the application. Hence, an effective alternative is to allow applications’
processes to expand and shrink opportunistically as the availability of the resources changes
dynamically. Over-estimating by starting with a very small granularity might degrade the
performance in case of a shortage of resources. At the same time, under-estimating by
starting with a large granularity might limit the application from potentially utilizing more
resources. A better approach is therefore to enable dynamic process granularity changes
through malleability.

MPI (Message Passing Interface) is widely used to build parallel and distributed applications
for cluster and grid systems. MPI applications can be moldable. However, MPI does not provide
explicit support for malleability and migration. In this paper we focus on the operational

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

DYNAMIC MALLEABILITY IN ITERATIVE MPI APPLICATIONS 3

Figure 1. Throughput as the process data granularity decreases on a dedicated node.

aspects of making iterative MPI applications malleable. Iterative applications are a broad
and important class of parallel applications that include several scientific applications such
as partial differential equation solvers, particle simulations, and circuit simulations. Iterative
applications have the property of running as slow as the slowest process. Therefore they
are highly prone to performance degradations in dynamic and heterogeneous environments
and will benefit tremendously from dynamic reconfiguration. Malleability for MPI has been
implemented in the context of IOS [7, 6] to shift the concerns of reconfiguration from the
applications to the middleware.

The rest of the paper is organized as follows. Section 2 presents the adopted approach
of malleability in MPI applications. Section 3 introduces the PCM library extensions for
malleability. Section 4 discusses the runtime system for malleability. Split and merge policies
are presented in Section 5. Section 6 evaluates performance. A discussion of related work is
given in Section 7. Section 8 wraps the paper with concluding remarks and discussion of future
work.

2. Design Decisions for Malleable Applications

There are operational and meta-level issues that need to be addressed when deciding how
to reconfigure applications though malleability and/or migration. Operational issues involve
determining how to split and merge the application’s processes in ways that preserve the
semantics and correctness of the application. The operational issues are heavily dependent on
the application’s programming model. On the other hand, meta-level issues involve deciding
when should a process split or merge, how many processes to split or merge, and what is the
proper mapping of the processes to the physical resources. These issues render programming

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

4 K. EL MAGHRAOUI ET AL.

Figure 2. Example M to N split operations.

for malleability and migration a complex task. To facilitate application’s reconfiguration from
a developer’s perspective, middleware technologies need to address meta-level reconfiguration
issues. Similarly, libraries need to be developed to address the various operational issues at
the application-level. This separation of concerns allows the meta-level reconfiguration policies
built into middleware to be widely adopted by various applications.

Several design parameters come to play when deciding how to split and merge an
application’s parallel processes. Usually there is more than one process involved in the split
or merge operations. The simplest scenario is performing binary split and merge, which allows
a process to split into two processes or two processes to merge into one. Binary malleable
operations are more intuitive since they mimic the biological phenomena of cell division. They
are also highly concurrent since they could be implemented with a minimal involvement of the
rest of the application. Another approach is to allow a process to split into N processes or N

processes to merge into 1. This approach, in the case of communication intensive applications,
could increase significantly the communication overhead and could limit the scalability of the
application. It could also easily cause data imbalances. This approach would be useful when
there are large fluctuations in resources. The most versatile approach is to allow for collective
split and merge operations. In this case, the semantics of the split or merge operations allow
any number of M processes to split or merge into any other number of N processes. Figures 2
and 3 illustrate example behaviors of split and merge operations. In the case of the M to N

approach, data is redistributed evenly among the resulting processes when splitting or merging.
What type of operation is more useful depends on the nature of applications, the degree of
heterogeneity of the resources, and how frequently the load fluctuates.

While process migration changes mapping of an application’s processes to physical resources,
split and merge operations go beyond that by changing the communication topology of the
application, the data distribution, and the data locality. Splitting and merging causes the
communication topology of the processes to be modified because of the addition of new or
removal of old processes, and the data redistribution among them. This reconfiguration needs
to be done atomically to preserve application semantics and data consistency.

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

DYNAMIC MALLEABILITY IN ITERATIVE MPI APPLICATIONS 5

Figure 3. Example M to N merge operations.

We provide high-level operations for malleability based on the MPI paradigm for SPMD data
parallel programs with regular communication patterns. The proposed approach is high level in
that the programmer is not required to specify when to perform split and merge operations and
some of the intrinsic details involved in re-arranging the communication structures explicitly:
these are provided by the PCM library. The programmer needs, however, to specify the data
structures that will be involved in the malleability operations. Since there are different ways
of subdividing data among processes, programmers also need to guide the split and merge
operations for data-redistribution.

3. Modifying MPI Applications for Malleability

In previous work [7], we have designed and implemented an application-level checkpointing
API called Process Checkpointing and Migration (PCM) and a runtime system called PCM
Daemon (PCMD). Few PCM calls need to be inserted in MPI programs to specify the data
that need to be checkpointed, to restore the process to its previous state in case of migration,
to update the data distribution structure and the MPI communicator handles, and to probe
the runtime system for reconfiguration requests. This library is semi-transparent because the
user does not have to worry about when or how checkpointing and restoration is done. The
underlying PCMD infrastructure takes care of all the checkpointing and migration details.
This works extends the PCM library with malleability features.

PCM is implemented entirely in the user-space for portability of the checkpointing,
migration, and malleability schemes across different platforms. PCM has been implemented
on top of MPICH2 [2], a freely available implementation of the MPI-2 standard.

3.1. The PCM API

PCM has been extended with several routines for splitting and merging MPI processes. We have
implemented split and merge operation for data parallel programs with a 2D data structure

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

6 K. EL MAGHRAOUI ET AL.

Figure 4. Parallel domain decomposition of a regular 2-dimensional problem

and a linear communication structure. Figure 4 shows the parallel decomposition of the 2D
data structure and the communication topology of the parallel processes. Our implementation
allows for common data distributions like block, cyclic, and block-cyclic distributions.

PCM provides fours classes of services: environmental inquiry services, checkpointing
services, global initialization and finalization services, and collective reconfiguration services.
Table I shows the classification of the PCM API calls. MPI PCM Init is a wrapper for
MPI Init. The user calls this function at the beginning of the program. MPI PCM Init is a
collective operation that takes care of initializing several internal data structures. It also reads
a configuration file that has information about the port number and location of the PCM
daemon, a runtime system that provides checkpointing and global synchronization between all
running processes.

Migration and malleability operations require the ability to save and restore the current
state of the process(es) to be reconfigured. PCM Store and PCM Load provide storage and
restoration services of the local data. Checkpointing is handled by the PCMD runtime system
that ensures that data is stored in locations with reasonable proximity to their destination.

Upon startup, an MPI process can have three different states: 1) PCM STARTED, a
process that has been initially started in the system (for example using mpiexec), 2)
PCM MIGRATED, a process that has been spawned because of a migration, and 3)
PCM SPLITTED, a process that has been spawned because of a split operation. A process
that has been created as a result of a reconfiguration (migration or split) proceeds to restoring
its state by calling PCM Load. This function takes as parameters information about the keys,
pointers, and data types of the data structures to be restored. An example includes the size of
the data, the data buffer and the current iteration number. Process ranks may also be subject
to changes in case of malleability operations. PCM Comm rank reports to the calling process

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

DYNAMIC MALLEABILITY IN ITERATIVE MPI APPLICATIONS 7

Table I. The PCM API

Service Type Function Name

Initialization MPI PCM Init
Finalization PCM Exit, PCM Finalize
Environmental Inquiry PCM Process Status

PCM Comm rank
PCM Status
PCM Merge datacnts

Reconfiguration PCM Reconfigure
PCM Split, PCM Merge
PCM Split Collective
PCM Merge Collective

Checkpointing PCM Load, PCM Store

its current rank. Conditional statements are used in the MPI program to check for its startup
status.

The running application probes the PCMD system to check if a process or a group of
processes need to be reconfigured. Middleware notifications set global flags in the PCMD
system. To prevent every process from probing the runtime system, the root process
(usually process with rank 0) probes the runtime system and broadcasts any reconfiguration
notifications to the other processes. This provides a callback mechanism that makes probing
non-intrusive for the application. PCM Status returns the state of the reconfiguration to
the calling process. It returns different values to different processes. In the case of a
migration, PCM MIGRATE value is returned to the process that needs to be migrated, while
PCM RECONFIGURE is returned to the other processes. PCM Reconfigure is a collective
function that needs to be called by both the migrating and non-migrating processes. Similarly
PCM SPLIT or PCM MERGE are returned by the PCM Status function call in case of a split
or merge operation. All processes collectively call the PCM Split or PCM Merge functions to
perform a malleable reconfiguration.

We have implemented the 1 to N and M to N split and merge operations.
PCM Split and PCM Merge provide the 1 to N behavior, while PCM Split Collective and
PCM Merge Collective provide the M to N behavior. The values of M and N are transparent
to the programmer. They are provided by the middleware which decides the granularity of the
split operation.

Split and merge functions change the ranks of the processes, the total number of
processes, and the MPI communicators. All occurrences of MPI COMM WORLD, the global
communicator with all the running processes, should be replaced with PCM COMM WORLD.
This latter is a malleable communicator since it expands and shrinks as processes get added or
removed. All reconfiguration operations happen at synchronization barrier points. The current
implementation requires no communication messages to be outstanding while a reconfiguration

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

8 K. EL MAGHRAOUI ET AL.

function is called. Hence, all calls to the reconfiguration PCM calls need to happen either at
the beginning or end of the loop.

When a process or group of processes engage in a split operation, they determine the new
data redistribution and checkpoint the data to be sent to the new processes. Every data chunk is
associated with a unique key that is constructed from the process’s rank and a data qualifier.
Every PCMD maintains a local database that stores checkpoints for the processes that are
running in its local processor. The data associated with the new processes to be created is
migrated to their target processors’ PCMD databases. When the new processes are created,
they inquire about their new ranks and load their data chunks from their local PCMD using
their data chunk keys. Then, all application’s processes synchronize to update their ranks and
their communicators. The malleable calls return handles to the new ranks and the updated
communicator. Unlike a split operation, a merge operation entails removing processes from the
MPI communicator. Merging operations for data redistribution are implemented using MPI
scatter and gather operations.

3.2. Instrumenting an MPI Program with PCM

Figure 5 shows a sample skeleton of an MPI-based application with a very common structure
in iterative applications. The code starts by performing various initializations of some data
structures. Data is distributed by the root process to all other processes in a block distribution.
The xDim and yDim variables denote the dimensions of the data buffer. The program then enters
the iterative phase where processes perform computations locally and then exchange border
information with their neighbors. Figures 6 and 7 show the same application instrumented with
PCM calls to allow for migration and malleability. In case of split and merge operations, the
dimensions of the data buffer for each process might change. The PCM split and merge take
as parameters references to the data buffer and dimensions and update them appropriately.
In case of a merge operation, the size of the buffer needs to be known so enough memory
can be allocated. The PCM Merge datacnts function is used to retrieve the new buffer size.
This call is only meaningful for processes that are involved in a merge operation. Therefore
a conditional statement is used to check whether the calling process is merging or not. The
variable merge rank will have a valid process rank in the case the calling process is merging,
otherwise it has the value −1.

The example shows how to instrument MPI iterative applications with PCM calls. The
programmer is required only to know the right data structures that are needed for malleability.
A PCM-instrumented MPI application becomes malleable and ready to be reconfigured by IOS
middleware.

4. The Runtime Architecture

IOS [6] provides several reconfiguration mechanisms that allow 1) analyzing profiled application
communication patterns, 2) capturing the dynamics of the underlying physical resources,
and 3) utilizing the profiled information to reconfigure application entities by changing their
mappings to physical resources through migration or malleability. IOS adopts a decentralized

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

DYNAMIC MALLEABILITY IN ITERATIVE MPI APPLICATIONS 9

�
#include <mpi . h>

. . .

int main (int argc , char ∗∗ argv) {
// Dec lara t ions
. . . .

MPI Init (&argc , &argv) ;

MPI Comm rank(MPI COMM WORLD, &rank) ;
MPI Comm size (MPI COMM WORLD, &to t a lP r o c e s s o r s) ;

c u r r e n t i t e r a t i o n = 0 ;

//Determine the number o f columns fo r each processor .
xDim = (yDim−2) / t o t a lP r o c e s s o r s ;

// I n i t i a l i z e and D i s t r i b u t e data among proces sor s
. . .

for (i t e r a t i o n s=c u r r e n t i t e r a t i o n ; i t e r a t i o n s <TOTAL ITERATIONS;
i t e r a t i o n s++){

// Data Computation .
. . .

//Exchange o f computed data with ne ighbor ing proces se s .
// MPI Send () | | MPI Recv ()
. . .

}

// Data Co l l e c t i on
. . .
MPI Barrier (MPICOMMWORLD) ;

MPI Final ize () ;
return 0 ;

}

� �

Figure 5. Skeleton of the original MPI code of an MPI application.

strategy that avoids the use of any global knowledge to allow scalable reconfiguration. An IOS
system consists of collection of autonomous agents with a peer-to-peer topology.

MPI/IOS is implemented as a set of middleware services that interact with running
applications through an MPI wrapper. The MPI/IOS runtime architecture consists of the
following components:1)the PCM-enabled MPI applications, 2)the wrapped MPI that includes
the PCM API, the PCM library, and wrappers for all MPI native calls, 3)the MPI library, and
4)the IOS runtime components.

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

10 K. EL MAGHRAOUI ET AL.

�

#include "mpi.h"

#include "pcm_api.h"

. . .

MPI Comm PCMCOMMWORLD;
int main (int argc , char ∗∗ argv) {

// Dec lara t ions
. . . .
int c u r r e n t i t e r a t i o n , p r o c e s s s t a t u s ;
PCM Status pcm status ;

// de c l a r a t i on s f o r ma l l e a b i l i t y
double ∗ new buf f e r ;
int merge rank , mergecnts ;

PCM MPI Init(&argc , &argv) ;
PCMCOMMWORLD = MPICOMMWORLD;
PCM Init (PCMCOMMWORLD) ;
MPI Comm rank(PCMCOMMWORLD, &rank) ;
MPI Comm size (PCMCOMMWORLD, &to t a lP r o c e s s o r s) ;
p r o c e s s s t a t u s = PCM Process Status () ;

i f (p r o c e s s s t a t u s == PCM STARTED){
c u r r e n t i t e r a t i o n = 0 ;

//Determine the number o f columns fo r each processor .
xDim = (yDim−2) / t o t a lP r o c e s s o r s ;

// I n i t i a l i z e and D i s t r i b u t e data among proces sor s
. . .

}
else {

PCM Comm rank(PCMCOMMWORLD, &rank) ;
PCM Load(rank , "iterator" ,& c u r r e n t i t e r a t i o n) ;
PCM Load(rank , "datawidth" , &xDim) ;
prevData = (double ∗) c a l l o c ((xDim+2)∗yDim , s izeof (double)) ;
PCM Load(rank , "myArray" , prevData) ;

}
. . .
. . .

}

� �

Figure 6. Skeleton of the malleable MPI code with PCM calls: initialization phase.

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

DYNAMIC MALLEABILITY IN ITERATIVE MPI APPLICATIONS 11

�
. . .

for (i t e r a t i o n s=c u r r e n t i t e r a t i o n ; i t e r a t i o n s <TOTAL ITERATIONS;
i t e r a t i o n s++){

pcm status = PCM Status (PCMCOMMWORLD) ;
i f (pcm status == PCM MIGRATE){

PCM Store (rank , "iterator" ,& i t e r a t i o n s ,PCM INT, 1) ;
PCM Store (rank , "datawidth" ,&xDim ,PCM INT, 1) ;
PCM Store (rank , "myArray" , prevData ,PCM DOUBLE, (xDim+2)∗yDim) ;
PCMCOMMWORLD = PCM Reconfigure (PCMCOMMWORLD, argv [0]) ;

}
else i f (pcm status == PCM RECONFIGURE){

PCM Reconfigure(&PCMCOMMWORLD, argv [0]) ;
MPI Comm rank(PCMCOMMWORLD, &rank) ;

}
else i f (pcm status == PCM SPLIT){

PCM Split (prevData ,PCM DOUBLE,
&i t e r a t i o n s ,&xDim,&yDim,&rank ,
&to t a lP ro c e s s o r s ,&PCMCOMMWORLD, argv [0]) ;

} else i f (pcm status == PCMMERGE){
PCM Merge datacnts (xDim , yDim,&mergecnts ,&merge rank ,

PCMCOMMWORLD) ;
i f (rank == merge rank)

/∗Rea l l o ca t e memory fo r the data b u f f e r ∗/
new buf f e r = (double∗) c a l l o c (mergecnts , s izeof (double)) ;

PCM Merge(prevData ,MPI DOUBLE,&xDim,&yDim , new buf fer ,
mergecnts ,&rank ,& to t a lP ro c e s s o r s ,&PCMCOMMWORLD) ;

i f (rank == merge rank)
prevData = new buf f e r ;

}
// Data Computation .

. . .
//Exchange o f computed data with ne ighbor ing proces se s .
// MPI Send () | | MPI Recv ()

. . .
}
// Data Co l l e c t i on
. . .
MPI Barrier (PCMCOMMWORLD) ;
PCM Finalize (PCMCOMMWORLD) ;
MPI Final ize () ;
return 0 ;

}

� �

Figure 7. Skeleton of the malleable MPI code with PCM calls: iteration phase.

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

12 K. EL MAGHRAOUI ET AL.

Figure 8. PCM/IOS runtime environment.

4.1. The PCMD Runtime System

Figure 8 shows an MPI/IOS computational node running MPI processes. A PCM daemon
(PCMD) interacts with the IOS middleware and MPI applications. A PCMD is started in
every node that actively participates in an application. A PCM dispatcher is used to start
PCMDs in various nodes and used to discover existing ones. The application initially registers
all MPI processes with their local daemons. The port number of a daemon is read from a
configuration file that resides in the same host.

Every PCMD has a corresponding IOS agent. There can be more than one MPI process
in each node. The daemon consists of various services used to achieve process communication
profiling, checkpointing, migration, and malleability. The MPI wrapper calls record information
pertaining to how many messages have been sent and received and their source and target
process ranks. The profiled communication information is passed to the IOS profiling
component. IOS agents keep monitoring their underlying resources and exchanging information
about their respective loads.

When a node’s used resources fall below a predefined threshold or a new idle node joins
the computation, a Work-Stealing Request Message (WRM) message is propagated among
the actively running nodes. The IOS agent of a node responds to work-stealing requests if
it becomes overloaded and its decision component decides according to the resource sensitive
model which process(es) need(s) to be migrated. Otherwise, it forwards the request to an IOS
agent in its set of peers. The decision component then notifies the reconfiguration service in
the PCMD, which then sends a migration, split, or merge request to the desired process(es).
At this point, all active PCMDs in the system are notified about the event of a reconfiguration.

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

DYNAMIC MALLEABILITY IN ITERATIVE MPI APPLICATIONS 13

PCM code

instrumentation

PMPI library

PCM library

T
C

P
 S

o
ck

ets

Compiler/Linker

Instrumented

program

MPI user

program

Executable

IOS Reconfiguration Middleware

PCM Daemon

MPI libraryPCM code

instrumentation

PMPI library

PCM library

T
C

P
 S

o
ck

ets

Compiler/Linker

Instrumented

program

MPI user

program

Executable

IOS Reconfiguration Middleware

PCM Daemon

MPI library

Figure 9. Library and executable structure of an MPI/IOS application.

This causes all processes to cooperate in the next iteration until migration is completed and
application communicators have been properly updated. Although this mechanism imposes
some synchronization delay, it ensures that no messages are being exchanged while process
migration is taking place and avoids incorrect behaviors of MPI communicators.

4.2. The Profiling Architecture
MPI processes need to send periodically their communication patterns to their corresponding
IOS profiling agents. To achieve this, we have built a profiling library that is based on the
MPI profiling interface (PMPI). The MPI specification provides a general mechanism for
intercepting calls to MPI functions using name shifting. This allows the development of
portable performance analyzers and other tools without access to the MPI implementation
source code. The only requirement is that every MPI function be callable by an alternate
name (PMPI_Xxxx instead of the usual MPI_Xxxx.). The built profiling library intercepts all
communication methods of MPI and sends any communication event to the profiling agent.

All profiled MPI routines call their corresponding PMPI_Xxxx and, if necessary, PCM
routines. Figure 9 shows the library structure of the MPI/IOS programs. The instrumented
code is linked with the profiling library PMPI, the PCM library, and a vendor MPI
implementation’s library. The generated executable passes all profiled information to the IOS
run-time system and also communicates with the local PCMD. The latter is responsible for
storing local checkpoints and passing reconfiguration decisions across a socket API from the
IOS agent to the MPI processes.

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

14 K. EL MAGHRAOUI ET AL.

5. Malleability Policies

5.1. Transfer Policy

The purpose of the transfer policy is to determine when to transfer load from one agent to
another and how much load needs to be transfered, whenever a WRM message is sent from an
agent nj to an agent ni. We identify the load of a given agent simply by the number of running
application’s processes hosted by this agent. We denote by Nbi the number of application’s
processes running on agent ni before a given reconfiguration step, and by Nai the number of
application’s processes running on agent i after a given reconfiguration step. Since processes
may have different granularities. We measure the number of processes in units of the process
with the smallest data sizes. For example if two processes are running and one of them has
twice the size of the other, the total number of processes will be reported as 3. This accounts for
the heterogeneous sizes of processes and simplifies our analysis. Let APWi be the percentage
of the available CPU processing power of agent ni and UPWj be the percentage of the used
CPU processing power of agent nj . Let PWi and PWj be the current processing powers of
agents ni and nj respectively. We use the Network Weather Service [15] to measure the values
of APW and UPW . The transfer policy tries to adjust the load between two peer agents based
on their relative machine performances as shown in the equations below:

Ntotal = Nbi + Nbj = Nai + Naj (1)

Nai

APWi ∗ PWi

=
Naj

UPWj ∗ PWj

(2)

Nai =
APWi ∗ PWi

APWi ∗ PWi + UPWj ∗ PWj

∗ Ntotal (3)

Naj =
UPWj ∗ PWj

APWi ∗ PWi + UPWj ∗ PWj

∗ Ntotal (4)

Ntransfer = Naj − Nbj (5)

Equation 5 allows us to calculate the number of processes that need to be transfered to
remote agent ni to achieve load balance between ni and nj . All the processes in host nj are
ranked according to a heuristic decision function [6] that calculates their expected gain from
moving from agent ni to agent nj . Only the processes that have a gain value greater than a
threshold value θ are allowed to migrate to the remote agent. So the number of processes that
will migrate can be less than Ntransfer. The goal of the gain value is to select the candidate
processes that benefit the most from migration to the remote host.

5.2. Split and Merge Policies

5.2.1. The Split Policy

The transfer policy discussed above shows how the load in two agents needs to be broken up to
reach pair-wise load balance. However, this model will fail when there are not enough processes

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

DYNAMIC MALLEABILITY IN ITERATIVE MPI APPLICATIONS 15

n − l − r = 0 (6)

APWr ∗ PWr

APWr ∗ PWr + UPWl ∗ PWl

∗ n − r = 0 (7)

UPWl ∗ PWl

APWr ∗ PWr + UPWl ∗ PWl

∗ n − l = 0 (8)

n ≥ Ntotal (9)

n ∈ IN+ (10)

r ∈ IN+ (11)

l ∈ IN+ (12)

to make such load adjustments. For example, assume that a local node nl has only one entity
running. Assume also that nr, a node that is three times faster than nl, requests some work
from nl. Ideally, we want node nr to have three times more processes or load than node nl.
However the lack of enough processes prevents such adjustment. To overcome this situation,
the entity running in node nl needs to split into enough processes to send a proportional
number remotely.

Let Ntotal be the total number of processes running in both nl and nr. Let n be the desired
total number of processes, l be the desired number of processes at local node nl, and r be
the desired number of processes at node nr. APWr and PWr denote the percentage of the
available processing power and the current processing power of node nr respectively. UPWl

and PWl denote the percentage of the used processing power and current processing power of
node al. The goal is to minimize n subject to constraints shown in the set of equations 6 to 12
and to solve for n, l, and r in the set of positive natural numbers IN+.

A split operation happens when n > Ntotal and the entity can be split into one or more
processes. In this case the number of processes in local node will be split refining the granularity
of the application’s processes running in the local node nl.

5.2.2. The Merge Policy

The merge operation is a local operation. It is triggered when a node has a large number of
running processes and the operating system’s context switching is large. To avoid a thrashing
situation that causes processes to be merged and then split again upon receiving a WRM
message, merging happens only when the surrounding environment has been stable for a
while. Every peer in the virtual network tries to measure how stable it is and how stable
its surrounding environment is.

Let Si = (APUi,0, APWi,1, . . . , APWi,k) be a time series of the available CPU processing
power of an agent ni during different consecutive k measurement intervals. Let avgi denote the

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

16 K. EL MAGHRAOUI ET AL.

avgi =
1

k
∗

k
∑

t=0

APWi,t (13)

σi =

√

√

√

√

1

k
∗

k
∑

t=0

(APWi,t − avgi)2 (14)

avg =
1

p
∗

p
∑

i=0

σi (15)

σ =

√

√

√

√

1

p
∗

p
∑

i=0

(σi − avg)2 (16)

average available CPU processing power of series Si (see Equation 13). We measure the stability
value σi of agent ni by calculating the standard deviation of the series Si (see Equation 14).

A small value of σi indicates that there has not been much change in the CPU utilization
over previous periods of measurements. This value is used to predict how the utilization of
the node is expected to be in the near future. However, the stability measure of the local
node is not enough since any changes in the neighboring peers might trigger a reconfiguration.
Therefore the node also senses how stable its surrounding environment is. The stability value
is also carried in the WRM messages within the machine performance profiles. Therefore,
every node records the stability values σj of its peers. The nodes periodically calculate σ (see
Equation 16), the standard deviation of the σj ’s of its peers.

A merging operation is triggered only when σi and σ are small, σi < ǫ1, and σ < ǫ2.
In other words, the local node attempts to perform a merge operation when possible if its
surrounding environment is expected to be stable and the context switching rate of the host
operating system is higher than a given threshold value. The OS context switching rates can
be measured using tools such as the Unix vmstat command.

6. Performance Results

6.1. Application Case Study.

We have used a fluid dynamic problem that solves heat diffusion in a solid for testing purposes.
This applications is representative of a large class of highly synchronized iterative mesh-based
applications. It has been implemented using C and MPI and has been instrumented with PCM
library calls. We have used a simplified version of this problem to evaluate our reconfiguration
strategies. A two-dimensional mesh of cells is used to represent the problem data space. The
cells are uniformly distributed among the parallel processors. At the beginning, a master

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

DYNAMIC MALLEABILITY IN ITERATIVE MPI APPLICATIONS 17

Figure 10. Overhead of the PCM library

process takes care of distributing the data among processors. For each iteration, the value of
each cell is calculated based on the values of its neighbor cells. So each cell needs to maintain
a current version of them. To achieve this, processors exchange values of the neighboring cells,
also referred to as ghost cells. To sum up, every iteration consists of doing computation and
exchanging ghost cells from the neighboring processors.

For the experimental testbed we used a heterogeneous cluster that consists of 4 dual-
processor SUN Blade 1000 machines with a processing speed of 750M cycles/s and 2 GB
of memory and 18 single-processor SUN Ultra 10 machines with a processing speed of 360M
cycles/s and 256 MB of memory. The SUN Blade machines are connected with high-speed
gigabit ethernet, while the SUN Ultra machines are connected with 100 MB ethernet. For
comparative purposes, we used MPICH2 [2], a free implementation of the MPI-2 standard.
We run the heat simulation for 1000 iterations with 1000x1000 mesh and a total data size of
7.8MB.

6.2. Overhead Evaluation.

To evaluate the overhead of the PCM profiling and status probing, we have run the
heat diffusion application with the base MPICH2 implementation and with the PCM
instrumentation. We run the simulation with 40 processes on a different numbers of processors.
Figure 10 shows that the overhead of the PCM library does not exceed 11% of the application’s
running time. The measured overhead includes profiling, status probing, and synchronization.
The library supports tunable profiling, whereby the degree of profiling can be decreased by
the user to reduce its intrusiveness.

For a more in-depth evalation of the cost of reconfiguration and the overhead of the
PCM/IOS reconfiguration, we conducted an experiment that compares a reconfigurable

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

18 K. EL MAGHRAOUI ET AL.

Non−reconfigurable Execution Time�
�
�
�

�
�
�
�

Reconfigurable Execution Time

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

 400

 600

 800

 1,000

 1,200

 1,400

3.812.441.370.95

T
im

e(
s)

Data Size (Megabytes)

 200

 0

Figure 11. Total running time of reconfigurable and non-reconfigurable execution scenarios for different
problem data sizes for the heat diffusion application.

execution scenarion with a baseline MPICH2 execution scenario. In the conducted experiments,
the application was started on a local cluster. Artificial load was then introduced in one
of the participating machines. Another cluster was made available to the application. The
baseline implementation using MPICH2 was not able to reconfigure the running application,
while the PCM/IOS implementation managed to reconfigure the application by migrating
the affected processes to the second cluster. The experiments in Figures 11 and 12 show
that in the studied cases, reconfiguration overhead was negligible. In all cases, it accounted
for less than 1% of the total execution time. We also used an experimental testbed that
consisted of 2 clusters that belong to the same institution. So the network latencies were
not significant. The reconfiguration overhead is expected to increase with larger latencies and
larger data sizes. However, reconfiguration will still be beneficial in the case of large-scale long-
running applications. Figure 12 shows the breakdown of the reconfiguration cost. The overhead
measured consisted mainly of the costs of checkpointing, migration, and the synchronizations
involved in re-arranging the MPI communicators. Due to the highly synchronous nature of
this application, communication profiling was not used because a simple decision function that
takes into account the profiling of the CPU usage was enough to yield good reconfiguration
decisions.

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

DYNAMIC MALLEABILITY IN ITERATIVE MPI APPLICATIONS 19

Synchronization�
�
�
�

�
�
�
�

��Checkpointing
Loading Checkpoints

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

����
����
����
���� ���

���
���

���
���
���

���
���
���
���

���
���
���
���

 0.6

 0.8

 1

 1.2

 1.4

 1.6

3.812.441.370.95

O
ve

rh
ea

d
(s

)

Data Size (Megabytes)

 0.4

 0.2

 0

Figure 12. Breakdown of the reconfiguration overhead for the experiment of Figure 11.

6.3. Split/Merge Features.

An experiment was setup to evaluate the split and merge capabilities of the PCM malleability
library. The heat diffusion application was started initially on 8 processors with a configuration
of one process per processor. Then, 8 additional processors at iteration 860 were made available.
8 additional processes were split and migrated to harness the newly available processors.
Figure 13 shows the immediate performance improvement that the application experienced
after this expansion. The sudden drop in the application’s throughput at iteration 860 is due
to the overhead incurred by the split operation. The collective split operation was used in this
experiment because of the large number of resources that have become available. The small
fluctuations in the throughput are due to the shared nature of the cluster used for experiments.

6.4. Gradual Adaptation with Malleability and Migration.

The following experiment shown in Figure 14 illustrates the usefulness of having the 1 to N split
and merge operations. When the execution environment experiences small load fluctuations, a
gradual adaptation strategy is needed. The heat application was launched on a dual-processor
machine with 2 processes. Two binary split operations occurred at events 1 and 2. The

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

20 K. EL MAGHRAOUI ET AL.

Figure 13. Expansion and shrinkage Capabilities. Figure 14. Adaptation using malleability and migration.

throughput of the application decreased a bit because of the decrease of the granularity of the
processes on the hosting machine. At event 3, another dual-processor node was made available
to the application. Two processes migrated to the new node. The application experienced an
increase in throughput as a result of this reconfiguration. A similar situation happened at
events 5 and 6, which triggered two split operations, and then two migrations to another dual-
processor node at event 7. An increase in throughput was noticed after the migration at event
7 due to a better distribution of work. A node left at event 8 which caused two processes to
be migrated to one of the participating machines. A merge operation happened at event 9 in
the node with excess processes, which improved the application’s throughput.

7. Related Work

Malleability for MPI applications has been mainly addressed through processor virtualization,
dynamic load balancing strategies, and application stop and restart.

Adaptive MPI (AMPI) [5] is an implementation of MPI built on top of the Charm++
runtime system, a parallel object oriented library with object migration support. AMPI
leverages Charm++ dynamic load balancing and portability features. Malleability is achieved
in AMPI by starting the applications with a very fine process granularity and relying on
dynamic load balancing to change the mapping of processes to physical resources through
object migration. The PCM/IOS library and middleware support provide both migration and
process granularity control for MPI applications. Phoenix [11] is another programming model
which allows virtualization for a dynamic environment by creating extra initial processes and
using a virtual name space and process migration to balance load and scale applications.

The EasyGrid middleware [8] embeds a hierarchical scheduling system into MPI applications
with the aim of efficiently orchestrating the execution of MPI applications in grid environments.
In this work a hybrid of static and dynamic scheduling policies are utilized to map MPI
processes to grid resources initially. The number of MPI processes in this scheme remains the

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

DYNAMIC MALLEABILITY IN ITERATIVE MPI APPLICATIONS 21

same throughout the execution of the application. PCM/IOS allows for more flexible scheduling
policies because of the added value of split and merge capabilities.

In [12], the authors propose virtual malleability for message passing parallel jobs. They apply
a processor allocation strategy called the Folding by JobType (FJT) that allows MPI jobs to
adapt to load changes. The folding technique reduces the partition size in half, duplicating the
number of processes per processor. In contrast to our work, the MPI jobs are only simulated
to be malleable by using moldability and the folding technique.

Process swapping [9] is an enhancement to MPI that uses over-allocation of resources and
improves performance of MPI applications by allowing them to execute on the best performing
nodes. The process granularity in this approach is fixed. Our approach is different in that we do
not need to over-allocate resources initially. The over-allocation strategy in process swapping
may not be practical in highly dynamic environments where an initial prediction of resources
is not possible because of the constantly changing availability of the resources. Dyn-MPI [14]
is another system that extends iterative MPI programs with adaptive execution features
in non-dedicated environment through data redistribution and the possibility of removing
badly performing nodes. In contrast to our scheme, Dyn-MPI does not support the dynamic
addition of new processes. In addition Dyn-MPI relies on a centralized approach to determine
load imbalances, while we utilize decentralized load balancing policies [6] to trigger malleable
adaptation.

Checkpointing and application stop and restart strategies have been investigated as
malleability tools in dynamic environments. Examples include CoCheck [10], starFish [1], and
the SRS library [13]. Stop and restart is expensive especially for applications operating on
large data sets. The SRS library provides tools to allow an MPI program to stop and restart
where it left off with a different process granularity. Our approach is different in the sense that
we do not need to stop the entire application to allow for change of granularity.

8. Conclusions and Future Work

The paper describes the PCM library framework for enabling MPI applications to be
malleable through split, merge, and migrate operations. The implementation of malleability
operations is described and illustrated through an example of a communication-intensive
iterative application. Different techniques for split and merge are presented and discussed.
Collective malleable operations are more appropriate in dynamic environments with large load
fluctuations, while individual split and merge operations are more appropriate in environments
with small load fluctuations. Our performance evaluation has demonstrated the usefulness
of malleable operations in improving the performance of iterative applications in dynamic
environments.

This paper has mainly focused on the operational aspect of implementing malleable
functionalities for MPI applications. The performance evaluation experiments that we
conducted were done using small to medium size clusters. Future work should address the
scalability aspects of our malleable reconfiguration. IOS reconfiguration decisions are all based
on local or neighboring node information and use decentralized protocols. Therefore, we expect
our scheme to be scalable in larger environments. Future work aims also at improving the

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

22 K. EL MAGHRAOUI ET AL.

performance of the PCM library, and thoroughly evaluating the devised malleability policies
that decide when it is appropriate to change the granularity of the running application, what is
the right granularity, and what kind of split or merge behavior to select. Future work includes
also devising malleability strategies for non-iterative applications.

REFERENCES

1. A. Agbaria and R. Friedman. Starfish: Fault-tolerant dynamic MPI programs on clusters
of workstations. In Proc. The Eighth IEEE International Symposium on High Performance
Distributed Computing, page 31. IEEE Computer Society, 1999.

2. Argone National Laboratory. MPICH2, http://www-unix.mcs.anl.gov/mpi/mpich2.
3. T. Desell, K. E. Maghraoui, and C. Varela. Malleable components for scalable high performance

computing. In Proc. HPDC’15 Workshop on HPC Grid programming Environments and
Components (HPC-GECO/CompFrame), pages 37–44, Paris, France, June 2006. IEEE Computer
Society.

4. D. G. Feitelson and L. Rudolph. Towards convergence in job schedulers for parallel
supercomputers. In D. G. Feitelson and L. Rudolph, editors, JSSPP, volume 1162 of Lecture
Notes in Computer Science, pages 1–26. Springer, 1996.

5. C. Huang, G. Zheng, L. Kalé, and S. Kumar. Performance evaluation of adaptive MPI. In
PPoPP ’06: Proc. eleventh ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 12–21, New York, NY, USA, 2006. ACM Press.

6. K. E. Maghraoui, T. J. Desell, B. K. Szymanski, and C. A. Varela. The Internet Operating System:
Middleware for adaptive distributed computing. International Journal of High Performance
Computing Applications (IJHPCA), Special Issue on Scheduling Techniques for Large-Scale
Distributed Platforms, 20(4):467–480, 2006.

7. K. E. Maghraoui, B. Szymanski, and C. Varela. An architecture for reconfigurable iterative
MPI applications in dynamic environments. In R. Wyrzykowski, J. Dongarra, N. Meyer, and
J. Wasniewski, editors, Proc. of the Sixth International Conference on Parallel Processing and
Applied Mathematics (PPAM’2005), number 3911 in LNCS, pages 258–271, Poznan, Poland,
September 2005.

8. A. P. Nascimento, A. C. Sena, C. Boeres, and V. E. F. Rebello. Distributed and dynamic self-
scheduling of parallel mpi grid applications: Research articles. Concurr. Comput. : Pract. Exper.,
19(14):1955–1974, 2007.

9. O. Sievert and H. Casanova. A simple MPI process swapping architecture for iterative
applications. International Journal of High Performance Computing Applications, 18(3):341–352,
2004.

10. G. Stellner. Cocheck: Checkpointing and process migration for MPI. In Proc. 10th International
Parallel Processing Symposium, pages 526–531. IEEE Computer Society, 1996.

11. K. Taura, K. Kaneda, and T. Endo. Phoenix: a Parallel Programming Model for Accommodating
Dynamically Joininig/Leaving Resources. In Proc. of PPoPP, pages 216–229. ACM, 2003.

12. G. Utrera, J. Corbalán, and J. Labarta. Implementing malleability on mpi jobs. In IEEE PACT,
pages 215–224. IEEE Computer Society, 2004.

13. S. S. Vadhiyar and J. Dongarra. Srs: A framework for developing malleable and migratable
parallel applications for distributed systems. Parallel Processing Letters, 13(2):291–312, 2003.

14. D. B. Weatherly, D. K. Lowenthal, M. Nakazawa, and F. Lowenthal. Dyn-mpi: Supporting mpi
on non dedicated clusters. In SC ’03: Proc. 2003 ACM/IEEE conference on Supercomputing,
page 5, Washington, DC, USA, 2003. IEEE Computer Society.

15. R. Wolski. Dynamically forecasting network performance using the network weather service.
Cluster Computing, 1(1):119–132, 1998.

Copyright c© 2008 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 00:1–7
Prepared using cpeauth.cls

