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Abstract This paper describes predictive load balancing
schemes designed for use with parallel adaptive finite element
methods. We provide an overview of data structures suitable
for distributed storage of finite element mesh data as well as
software designed for mesh adaptation and load balancing.
During the course of a parallel computation, processor load
imbalances are introduced at adaptive enrichment steps. The
predictive load balancing methods described here use a priori
estimates of work load for adaptive refinement and subsequent
computation to improve enrichment efficiency and reduce total
balancing time. An analysis code developed with these compo-
nents for solving compressible flow problems is used to obtain
predictive load balancing results on an IBM SP2 computer.
Our test problem involves the transient solution of the three-
dimensional Euler equations of compressible flow inside a per-
forated shock tube. We also present a message passing library
extension in development which allows for automated packing
of messages to improve communication efficiency.

1. Introduction

Partial differential equations (PDEs) arise in many
areas of scientific interest. The finite element method
(FEM) is a standard analysis tool for solving systems
of PDEs. In order to provide greater reliability, robust-
ness, and efficiency in time and space, the discretization
may be changed periodically during the solution pro-
cess. These adaptive methods include spatial refinement
or coarsening (

�
-refinement), method order variation (� -

refinement), and/or moving the mesh to follow evolv-
ing phenomena ( � -refinement). Each technique concen-
trates or dilutes the computational effort in areas need-
ing more or less resolution.

Three-

dimensional problems are computationally demanding,
making parallel computation essential to obtain solu-
tions for large problems in a reasonable time. However,
parallelism introduces complications such as the need
to balance processor loading, to coordinate interproces-
sor communication, and to manage distributed data. Of-
ten, the parallelization of FEM programs is done using
a static partitioning of the mesh across the cooperating
processors. However, a good initial partition is not suffi-
cient to assure high performance throughout an adaptive
computation. A dynamic repartitioning is needed to cor-
rect for load imbalance introduced by adaptive enrich-
ment. In Section 2, we briefly describe reusable tools
developed by the Scientific Computation Research Cen-
ter (SCOREC) at Rensselaer that facilitate the develop-
ment and use of parallel adaptive finite element soft-
ware.

These tools have been used in many applications,
including in the construction of a parallel finite ele-
ment code described in [10] which can solve three-
dimensional conservation laws. Parallel mesh enrich-
ment routines are used for spatial refinement and coars-
ening (

�
-refinement) [18]. Refinement is also per-

formed in time using a spatially dependent local refine-
ment method [10]. The consideration of heterogeneous
element weights allows us to balance processor loads
based on the temporal as well as spatial refinement.

Typically, balancing follows mesh refinement and
coarsening. The ability to predict and correct for im-
balance prior to refinement can improve performance
during the refinement stage while maintaining computa-
tional load balance during the successive solution phase
similar to that achieved by an a posteriori balancing.
Strategies for this are described in Section 4. This work
focuses on balancing the spatial enrichment process it-
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self in addition to balancing the subsequent computa-
tion.

The capabilities of the parallel adaptive system are
demonstrated by the solution of compressible transient
flow problems on an IBM SP2 computer. The solution
of a transient flow in a perforated shock tube is shown in
Section 5 along with results illustrating the advantages
of our predictive balancing methods.

Interprocessor communication is implemented in our
software using the Message Passing Interface (MPI).
Its wide availability and portability make it an attrac-
tive choice; however, the communication requirements
of parallel adaptive computation are sometimes incon-
venient or inefficient when implemented using the prim-
itives provided by MPI. Section 6 describes a set of
library functions currently under development that are
layered on top of MPI and accomplish these operations
more easily and efficiently. We concentrate here on is-
sues of dynamic buffer allocation and automatic mes-
sage packing.

Finally, in Section 7, we discuss results and present
future research directions.

2. SCOREC tools

To allow the author of an analysis code to concentrate
on issues specific to a given problem rather than the de-
tails of the underlying data structures or parallelization
issues, a number of tools have been developed. They
provide a uniform way to implement reusable parallel
adaptive software.

2.1. Mesh data structures

The SCOREC Mesh Database (MDB) [2] provides
an object-oriented representation of a finite element
mesh and operators to query and update the mesh data
structure. The mesh entity hierarchy consists of three-
dimensional regions, and their bounding faces, edges,
and vertices, with bidirectional links between mesh en-
tities of consecutive dimensional order. Tetrahedral re-
gions are used as finite elements in three-dimensional
meshes, while triangular faces serve as elements in the
two-dimensional case. Initial meshes are created from a
CAD model of the problem domain using the SCOREC
Finite Octree Automatic Mesh Generator [19]. In order
to maintain appropriate domain geometry as the mesh is
generated, and later as it is enriched, mesh entities are
explicitly classified relative to a geometric model of the
domain.

A Parallel Mesh Database (PMDB) [9, 18] is built on
top of MDB. Using PMDB, each processor holds MDB
data associated with a subset of the complete mesh, and

operators are provided to create and manipulate dis-
tributed mesh data. A partition boundary data struc-
ture is maintained to account for entities along parti-
tion boundaries that are shared by more than one pro-
cessor. Fast boundary query and update operations are
provided. PMDB allows arbitrary multiple migration
of elements between processors to maintain a balanced
computation. Although any element may be marked for
migration, it is frequently boundary elements which are
moved. An owner-updates rule is used to coordinate
the update of partition boundary structures during mi-
gration.

2.2. Dynamic load balancers

Since a parallel adaptive computation generally in-
volves large partitioned meshes, any dynamic load bal-
ancing scheme must operate on distributed mesh data.
Recursive spectral bisection (RSB) [16] and, more re-
cently, MeTiS [12] are generally regarded as good static
partitioners. Multilevel Recursive Spectral Bisection
(MRSB) has improved the efficiency of RSB but relies
heavily on a shared-memory architecture and is likely to
be inefficient in a true message passing environment [1].
Other enhancements to RSB [20, 21, 22] may make it
more useful as a dynamic repartitioner, but doubts re-
main. MeTiS has recently been extended to operate in
parallel (ParMeTiS [17]) and may be a viable option.

Several dynamic load balancing techniques are avail-
able for use with our software. Iterative Tree Bal-
ancing [9, 18] (ITB) is a diffusive algorithm based
on repeated local migration. Processors request load
from their most heavily loaded neighbors, and these
requests form a forest of trees. Load flows are com-
puted on linearized representations of these trees us-
ing a logarithmic-time scan. Elements on interproces-
sor boundaries are moved from heavily loaded to lightly
loaded processors to achieve balance within each tree.
This process is iterated to achieve a global balance
within the required tolerance. Parallel Sort Inertial Re-
cursive Bisection [18] (PSIRB) is an implementation of
inertial bisection. The domain is bisected repeatedly in a
direction orthogonal to its principal axis of inertia. Iner-
tial coordinates are sorted in parallel to allow operation
on a distributed mesh. Octree Partitioning [10] (OCT)
uses a one-dimensional ordering of the nodes of an oc-
tree structure underlying the mesh. The ordered list of
nodes is divided into segments corresponding to nearly
equal load. Octants adjacent to one another in the or-
dered list tend to be spatially adjacent and, thus, form a
good partition. The use of space-filling curves [15] pro-
duces similar results, keeping neighboring elements of
the ordering in close spatial proximity. A recent addi-



tion to our software is an interface to convert our data
structures into a format usable by the ParMeTiS pack-
age.

With
�

-refinement, the cost function that reflects the
computational load on each processor is often chosen to
be the number of elements on a processor. However,
heterogeneous costs (weighted elements) are necessary
when ( � ) using � -refinement or spatially-dependent so-
lution methods, ( ��� ) using spatially-dependent time steps
(Section 3), ( ����� ) enforcing boundary conditions, or ( ��� )
using predictive load balancing (Section 4). PMDB in-
cludes an element weighting scheme that can be used to
address each of these needs. ITB, PSIRB, and OCT each
honor such weights when determining partitions.

3. Adaptive techniques

Results presented here were obtained using our Par-
allel Adaptive Euler Solver in which three-dimensional
conservation laws are discretized using a discontinuous
Galerkin finite element method [3, 5, 6]. More details
may be found in [10]. The software makes use of both
spatial and temporal refinement to concentrate compu-
tational effort in areas of the problem domain where it
is most needed.

3.1. Spatial refinement

The SCOREC mesh enrichment procedure [18] is
used to perform spatial (

�
-) refinement and coarsening

in parallel. Error indicator information and threshold
values, provided by an application code, are used to
mark mesh edges to be coarsened, refined, or to remain
unchanged. Stages of the enrichment process follow
the order of ( � ) coarsening, ( ��� ) optimization, ( ����� ) re-
finement, ( ��� ) optimization, ( � ) refinement vertex snap-
ping, and ( ��� ) optimization, with each mesh optimiza-
tion stage being optional. Coarsening is done by an
edge-collapsing process. Mesh optimization improves
the quality of triangulations with respect to a given crite-
rion (e.g. , element shape). Refinement is performed us-
ing subdivision patterns. After faces on partition bound-
aries with marked edges have been triangulated using
two-dimensional refinement templates, each processor
independently applies three-dimensional patterns which
account for all possible configurations of marked edges
(Figure 1). An over-refinement option may be used to
reduce element shape degradation at the expense of cre-
ating more elements. A global shape control parame-
ter can prevent any step of the enrichment process from
creating elements with shapes worse than a specified
value of an element shape quality measure. In the re-
finement vertex snapping stage, any newly created ver-

tex classified as belonging to a curved model bound-
ary must be “snapped” to the appropriate model entity
to ensure mesh validity with respect to the geometry of
the problem domain. With a small per-iteration cost,
ITB is often executed for a few iterations between stages
of mesh enrichment to improve balance without a large
time penalty.

3.2. Temporal refinement

In a time-dependent calculation, such as the one de-
scribed in Section 5, elements may choose spatially-
dependent time steps based upon the “Courant stability
condition” for explicit time integration. When this tem-
poral Local Refinement Method (LRM) [10] advances
the global solution time, a small number of larger time
steps will be taken on large elements, while smaller el-
ements, with smaller stable time steps, will require a
larger number of time steps. Periodic synchronizations
are used to calculate error estimates or indicators and to
perform

�
-refinement. The sychnronization “goal time”

is typically a small multiple of the smallest time step on
any element of the mesh. The simpler Method of Lines
(MOL) approach, where each element is advanced only
by the smallest stable time step of any element in the
mesh, is far less efficient than the LRM.

The time step for an element ��� is determined from
the Courant condition as

�
	 ���� ���
� ��� ���� � (1)

where ��� is the radius of ��� ’s inscribed sphere and ��� is
the maximum signal speed on ��� . For the Euler equa-
tions, ��� is the sum of the fluid’s speed and the speed of
sound. The parameter  is introduced to maintain sta-
bility in areas of mesh gradation. A value of ������ ���
is chosen empirically, but a more thorough analysis of
the selection of this value is necessary.

While LRM greatly improves the efficiency of the
computation, it complicates load balancing as work con-
tributions vary from element to element. A size-based
weighting scheme is used to account for this. Each ele-
ment � � is assigned weight � �

� �!� �
��� (2)

where ��� is the radius of �"� ’s inscribed sphere. Smaller
elements are thus given larger weights to account for the
additional time steps they will take during the compu-
tation phase. Balancing in this situation is achieved by
distributing weight evenly among the processors.



4. Predictive load balancing

Generally, load balancing follows the entire enrich-
ment process, although a few ITB iterations may be per-
formed between stages of the enrichment. However,
balancing the work done during the refinement stage is
not necessarily the same as balancing the computation
phase. Thus, using a cost function designed to maintain
computational balance may not be appropriate for ensur-
ing an efficient enrichment process. Additionally, by an-
ticipating the results of the refinement stage in conjunc-
tion with a user-supplied weighting function, one can
achieve a reasonable computational load balance while
moving a coarser (smaller) structure between processors
as compared to migration after refinement.

4.1. Uniform workloads

Error indicator data generated during the computa-
tion phase may be used to select element weights and
to perform load balancing before the refinement stage
of the enrichment process. A similar technique has also
been used by Oliker, Biswas, and Strawn [14] in their
enrichment procedure. Without predictive balancing,
some processors may have nearly all of their elements
scheduled for refinement which can lead to a memory
overflow. In such an instance, the predictive technique
would tend to disperse these elements among several
other processors, thus reducing the likelihood of a mem-
ory allocation problem. For the results presented in
Section 5, predictive load balancing is performed using
OCT; however, any load balancing procedure that sup-
ports elemental weights may be used.

In preparation for refinement, mesh edges are marked
for splitting based on error indicator information and
a refinement threshold. These markings determine the
three-dimensional refinement templates that will be ap-
plied during refinement (Section 3). The weighting fac-
tors assigned during predictive balancing are based on
these subdivision patterns. The numbers in parenthe-
ses in Figure 1 indicate the weights associated with each
edge marking. For an element that has no edges marked,
a weighting factor of one is used.

Several factors may lead to a small imbalance during
the refinement even with predictive balancing. An el-
ement is an atomic unit regardless of its weight, so its
weight cannot be subdivided, which may be necessary
to achieve an exact balance. Topological constraints,
which cannot be determined efficiently beforehand, may
force more subdivisions than predicted by the original
edge marking. Imbalance would also result during re-
finement if many elements with large weights (those for
which refinement will take place) come to reside on a
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Figure 1. Weights for subdivision patterns and pre-
dictive load balancing.

few processors while the remaining processors have pri-
marily lightly weighted elements (which will be left un-
changed by the refinement procedure). The last case has
not been seen in the tests performed thus far.

Predictive balancing proved effective in balancing a
transient flow problem solved using our Parallel Adap-
tive Euler Solver with time steps determined by the
MOL [9]. Since the workload per element in the compu-
tation phase was homogeneous in this case, the Uniform
element workload Predictive balancing (UP) technique
described above also balanced the numerical calcula-
tions subsequent to each adaptive step. The UP method
has also been used in tests with two different weighted
balancing algorithms to improve enrichment and bal-
ancing times for a nonhomogeneous workload per ele-
ment solution technique [11]. A standard partitioner was
used to balance the computation.

When a UP method is used, an additional source of
computational imbalance may arise as a result of (i) the
mesh element migration that occurs during refinement
vertex snapping and (ii) the migration, deletion, and cre-
ation of elements during the optimization stage. In prac-
tice, however, these changes tend to be small and local-
ized with little impact on the subsequent computational
load balance.

4.2. Variable workloads

A uniform workload per element is not appropriate
in many situations where predictive balancing is desir-
able. UP has been extended to accept a user-defined cost
function to be used in conjunction with the predictive
method. This cost function is an element-based load es-
timator which can be tailored to the solution technique.
The predictive balancing library provides access to the
element subdivision weights (Figure 1), so the function



can consider the effects of spatial refinement when gen-
erating load values.

As an example, consider the LRM technique dis-
cussed in Section 3. To balance the computation after
spatial enrichment, element weights are assigned as in
(2). If an element �"� is to be subdivided into � elements,
� ��� , . . . , � ��� , we may approximate the inscribed radius
of � ��� , � � � ��� , as

� ��� � �	�
����� ������� (3)

where � � is the volume of the inscribed sphere of ele-
ment � � . The element weight is then computed as in (2).

Like UP, Variable element workload Predictive bal-
ancing (VP) generates less data movement during bal-
ancing than a posteriori balancing and, given a good es-
timator, eliminates the need for balancing after refine-
ment. However, since the weighting used in the balanc-
ing is based not only on the number of elements pro-
duced by refinement but also on other factors needed
to balance the computational load afterwards, this is a
compromise between balancing the refinement stage of
enrichment and allowing computation to be balanced
without an a posteriori balancing. In addition, there
may be solution techniques that generate heterogeneous
workloads which are not easily estimated before new el-
ements are created.

5. Results

Consider the three-dimensional unsteady compress-
ible flow in a cylinder containing a cylindrical vent.
This problem was motivated by flow studies in perfo-
rated muzzle brakes for large calibre guns [8]. A quasi-
steady flow exists behind the contact surface for a short
time. The larger cylinder (the shock tube) initially con-
tains air moving at Mach 1.23 while the smaller cylin-
der (the vent) is quiescent. A Mach 1.23 flow is pre-
scribed at the tube’s inlet. Simulation flow parame-
ters match those of shock tube studies of Dillon [8] and
Nagamatsu et al. [13]. The simulation begins with an
initial mesh of 69,572 tetrahedral elements distributed
across 16 processors of an IBM SP2 computer. Figure 2
shows the Mach number with velocity vectors at time	 � ��� � in the simulation. Flow features compare favor-
ably with experimental and numerical results of Naga-
matsu et al. [13].

Iterative balancing methods like ITB tend to have
low per-iteration costs. However, global repartitioners
generally maintain better partition quality than ITB [4].
Thus, the standard nonpredictive method executes a few
iterations of ITB between spatial enrichment stages fol-
lowed by a global size-weighted repartitioning (using

Figure 2. Projections of the Mach number and
velocity vectors onto the surfaces of a perforated
cylinder at time 0.6.

OCT) after enrichment. No such global repartitioning
is necessary after VP, since it is designed to balance
the computation stage. However, OCT is used with VP
(VPOCT) in order to maintain good partition quality
even with repeated application.

Over-refinement and mesh optimization options were
disabled in these runs. For each given quantity, � , being
compared, the relative percent differences given in this
section were computed as

����� � � ���������! #"%$'&(���� #"�$� �������! #"%$ ) � � � (4)

where ���������! #"%$ is the quantity for the nonpredictive
method and �*�! #"�$ is the quantity for a predictive tech-
nique. Thus, a positive � ��� � indicates that the predictive
method outperforms the nonpredictive one.

While this is essentially the same problem solved
in [11], the test conditions have changed enough to war-
rant presenting a new set of results to ensure that im-
provements in other areas, such as solver efficiency and
estimator performance, did not impact the advantages of
VP. These changes include the addition of global shape
control to the spatial enrichment, improvements to the
predictive library, and an adjustment to the estimator for
LRM.

5.1. Migration volume

The improvement in data migration over the non-
predictive method using VPOCT is shown in Figure 3.
Since VPOCT attempts to balance the computational
load without an a posteriori rebalancing, its data move-
ment is compared to the combined migration generated



by ITB during enrichment and by OCT afterwards. The
average improvement on a mesh by mesh basis ranged
from 55-83%. Thus, VP consistently outperforms non-
predictive balancing to a large degree in this area.
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Figure 3. Comparison of data migrated for the
nonpredictive method vs. VPOCT.

5.2. Enrichment and balancing times

Combined time spent in spatial enrichment and bal-
ancing for a sequence of runs is presented in Figure 4.
These results are expressed as percent differences com-
paring each predictive run to a corresponding nonpre-
dictive run. The values compare the VPOCT enrich-
ment time against the combined enrichment and a poste-
riori OCT balancing time for the nonpredictive method.
The graph shows a 38-71% improvement in combined
enrichment and balancing times for VP.

The same graph also gives the percent improvements
in the average combined time taken by refinement and
balancing for the method as compared to the nonpredic-
tive scheme. On average, VP bests nonpredictive bal-
ancing by 47-69% in this comparison.

5.3. Estimator accuracy

The accuracy of the LRM estimator function for the
VP method is reflected in the resulting weight imbal-
ance. The values given in Figure 5 were computed us-
ing the weight function given by (2). Preliminary results
presented in [11] showed a 15-45% imbalance level with
an average imbalance of 28%; however, this has been
improved to imbalances from 4-23% with an average
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Figure 4. Time spent in enrichment and balanc-
ing for a sequence of five predictive runs relative
to nonpredictive runs.

imbalance of 10%. Note that the 23% is a spike. The
percentages returned to 10% for the subsequent mesh
which is not shown because corresponding data is not
available for the nonpredictive run. This indicates that
while not exactly matching OCT, the estimator under
the current system provides a good approximation of the
size weighting used in a posteriori balancing. Such a
level of accuracy means that the efficiency of the com-
putation stage will remain high. More evidence of this
follows.
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Figure 5. Estimator accuracy for VPOCT.



5.4. Computational imbalance

The variation seen in some comparisons between
runs is due in large part to variations in the spatial en-
richment process. Mesh data migrated to a processor are
added to the local data structure’s linked lists in the order
they arrive. Because enrichment is performed in the or-
der that elements are encountered, different meshes can
result from the same input mesh and error indicators.
Additionally, the enrichment process may perform dif-
ferent mesh operations depending on the partitioning so
as to avoid unnecessary element migration. The impact
of this on enrichment and balancing times across runs
has already been seen. There is also a large influence on
solution times because the size distribution of elements
has a major effect on the LRM used by the solver. Thus,
variations in solution times prevent drawing any conclu-
sions on the relative performance of VPOCT and size-
weighted OCT after enrichment in terms of time spent
in computation.

However, two important and accurate measures of
computational imbalance that exhibit less variation be-
tween runs have been developed [7, 10]. Time-step im-
balance is defined as the maximum number of elements
time stepped on a processor normalized by the average
number stepped on all processors. Likewise, the flux im-
balance is the maximum number of fluxes computed on
a processor relative to the average number computed on
all processors. In either case, let the average imbalance
at simulation time

	
be a weighted average of all imbal-

ances to time
	
. The weighting is the wall-clock dura-

tion of an imbalance relative to the total wall-clock time
of the computation.

Average flux and time-step imbalances are shown in
Figures 6 and 7 for a series of five runs using both the
nonpredictive technique and VPOCT. As seen in the
graphs, VPOCT maintains good flux and time-step im-
balances as compared to size-weighted OCT performed
after enrichment. In these runs, it differed from OCT by
1-6% in average flux imbalance and by 1-4% in average
time-step imbalance. Thus, despite balancing before re-
finement to move a coarser structure, VPOCT still main-
tains a reasonable computational load balance for this
problem.

6. Message passing enhancements

MPI is a portable and widely available library for
sending messages in a multiprocessor environment.
However, parallel adaptive computation has particu-
lar communications requirements, and in several sit-
uations the primitives provided by MPI make imple-
menting these inconvenient or inefficient. We describe
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Figure 6. Average flux load imbalances for a se-
quence of five runs using nonpredictive and pre-
dictive balancing.

here a set of library functions layered on top of MPI
that accomplish these operations more easily and effi-
ciently. Specifically, we focus on dynamic send and re-
ceive buffer allocation and automatic message packing.

6.1. Message buffer allocation

Sending messages. An adaptive solution typically in-
volves dynamic linked data structures such as those of
PMDB (Section 2). Communication may be performed
selectively depending on the contents of a data structure.
However, it is often impossible to determine the num-
ber of messages to be sent without actually traversing
the data structure, effectively doing the work that would
be required to send the messages. It is desirable to send
messages during the initial traversal, but buffer space for
the outgoing messages cannot be allocated in advance
because the size is unknown. Dynamic message buffer
allocation is needed to send the messages without a sec-
ond traversal.

The user code may allocate the message buffer mem-
ory itself and call MPI to send the buffer (e.g. , via
MPI Isend()). The user code is responsible for man-
aging the memory buffers: allocating them before the
message is sent, polling to detect completion, and finally
deallocating them. This is cumbersome at this level, es-
pecially if the number of buffers is not known a priori.

The only other option under MPI is the buffered send
mode (MPI Bsend()). This manages outgoing mes-
sage buffer space transparently, simplifying user code as
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Figure 7. Average time-step load imbalances for a
sequence of five runs using nonpredictive and pre-
dictive balancing.

it need not be concerned with the message buffer after
the send call. However, MPI Bsend() has two seri-
ous drawbacks. The memory used by these calls must be
allocated in advance using MPI Buffer attach()
and MPI does not change its size dynamically. A buffer
which is too small causes failure when large data is sent,
while a buffer which is too large may cause user code to
fail due to lack of memory available for other purposes.
Secondly, if the message cannot be sent immediately, the
user message is copied into this buffer space, introduc-
ing an expensive and unnecessary memory-to-memory
copy.

To improve the situation, we define a set of library
routines which dynamically allocate, send, and free
message buffers. To compose a message, the user code
calls a library routine, com allocate buffer(),
which dynamically allocates and returns an outgoing
message buffer, much like malloc(). The routine al-
locates memory in large chunks and dispenses it as re-
quested. The underlying allocation size is set by the user
and may be adjusted as appropriate.

Once the user code has written the message data to
the buffer, a call to com send buffer() initiates
the send. At this point, management of the buffer is
the exclusive responsibility of the library. This is only
possible when the message is originally allocated by
the library. This scheme provides the advantages of
MPI’s buffered send mode while avoiding the potential
memory-to-memory copying.

User code may reclaim memory previously used for

outgoing send buffers with a call to a garbage collection
routine, com free send buffers(). It checks the
allocated send buffers, frees those no longer in use, and
reports whether any outstanding buffers remain. If so,
the user code should call it periodically if it wishes to
free the remaining buffer memory. Often, there will be
a point in the user code where the sends can be expected
to have completed. The overhead of the garbage col-
lection is minimal in that situation. In any case, it is no
greater than that of managing the buffers directly in the
user code.

Receiving messages. A similar buffer management
problem exists on the receiver side. User code does not
typically know the quantity or sizes of the messages it
will receive.

The MPI receive routines (e.g. , MPI Irecv()) re-
quire the user to provide a buffer for incoming mes-
sages. In cases where the message size is unknown, the
user must either assume a maximum size or query MPI
(e.g. , via MPI Iprobe()) before allocating the re-
ceive buffer. The former is undesirable because of the
adaptive nature of the user code. The latter provides the
needed information, but its semantics are inefficient. To
determine the size of the incoming message, it must be
the case that either MPI has already received it internally
or it must perform communication to query the sender.
In the former case, inefficiency results from the lack of
an MPI operator to receive this message without copy-
ing it to a user-supplied buffer. In the latter case, an un-
necessary round-trip communication would result.

Given these constraints, we provide library support
for dynamic allocation and deallocation of received
messages. Rather than providing a buffer for the in-
coming message, the user simply calls a library rou-
tine (com receive buffer()) specifying the type
of message it desires. If a message matching the cri-
teria is available, the library dynamically allocates a
buffer for the message, receives the message, and re-
turns a pointer to the user. These semantics minimize
the memory-to-memory copying during the receive.

When the user has finished processing the mes-
sage buffer, it calls com free receive buffer(),
analogous to the standard free() routine.

6.2. Automatic message packing

Another difficulty in performing efficient communi-
cation in a parallel adaptive environment relates to mes-
sage size. The most straightforward implementation of
an algorithm often results in sending many small mes-
sages. For example, in the current version of our Paral-
lel Adaptive Euler Solver [10], each time step of an ele-



ment on an interprocessor boundary generates commu-
nication. Only 52 bytes of information must be passed
to the adjoining element on the neighboring processor,
and it would be simplest to send this information in in-
dividual messages. However, startup costs for message
passing may be large, reducing efficiency when sending
multiple small messages. The user code may explicitly
pack the messages into a single message (as in the im-
plementation of PMDB), but this adds complexity to the
user code.

MPI includes library routines (MPI Pack() and
MPI Unpack()) which eliminate the problem of send-
ing the small, inefficient messages, but user code must
still allocate and manage the buffers to be packed. Con-
struction of the packed object incurs an unnecessary
memory-to-memory copy, and packed messages must
be specially handled by the receiving user code to un-
pack the contents.

We introduce a mechanism for automatically pack-
ing outgoing messages. Only two modifications to the
buffer management scheme are necessary to accomplish
this. First, when the user code allocates an outgoing
message buffer it must specify the destination proces-
sor. This allows the grouping of the messages in mem-
ory from their inception and eliminates the need to copy
the messages for packing. As in the non-packing mode,
the user notifies the library that it may send the message,
but here the library will defer the actual send until it has
accumulated a sufficiently large package. Also, the user
must call a library routine (com flush sends()) to
force sending of any incomplete packages when no ad-
ditional messages remain.

The library’s memory allocation size also determines
the package size. When a new outgoing message buffer
is requested which will not fit in the current memory
block, the package is considered full. A new memory
block is allocated, and a pointer into the new block is
returned to the user. Once the full block contains only
messages that the user has asked to be sent, the entire
block is sent off as a single message.

The call to flush the buffers has no effect when pack-
ing is not selected. Thus, performance tuning by en-
abling or disabling packing and by varying the package
size is done by simply changing these parameters, with
no other user code changes.

On the receiving side, no changes to the user code
are necessary to handle the packed messages. When a
package is received by the library, it is automatically un-
packed; the individual messages are returned by calls to
com receive buffer() in the same manner as for
unpacked messages.

7. Conclusions

Variable element workload predictive balancing
tends to reduce the volume of data migrated during bal-
ancing as compared to nonpredictive methods, showing
a 72% average improvement for the examples presented
here. In addition, combined enrichment and balancing
times were improved by approximately 62% on average
for VP. The average size-weighted imbalance produced
by the predictive method was 10%, indicating that the
workload estimator used for balancing the LRM compu-
tation worked well. Additionally, the overall mean for
the average flux imbalance after VP was within 4.0% of
that produced by the nonpredictive method, and the pre-
dictive technique was within 2.6% of OCT with respect
to average time-step imbalance. Thus, the VP technique
shows improvements in volume migrated and combined
enrichment and balancing times over the nonpredictive
method while maintaining a high degree of efficiency in
the computation phase.

This technique reduces the time spent in enrichment
and allows a single load balancing invocation to re-
place several calls performed by nonpredictive balanc-
ing. However, as seen here, computation performed
on the resulting partitions is generally no more efficient
than calculations done on partitions generated by an a
posteriori method. Hence, a problem which adapts the
mesh infrequently will show less improvement in over-
all performance than one that requires frequent enrich-
ments.

Adaptive � -refinement is being added to the system
and will require extension of the predictive balancing to
account for the number of degrees of freedom associated
with each element.

We are also investigating ways to reduce or elimi-
nate factors that produce variations across runs having
the same parameters. Currently, these variations make
the direct use of wall-clock timings in evaluating solu-
tion efficiency very difficult.

The message passing enhancements discussed here
have shown promise in small test cases. We are work-
ing to refine them and plan to gather data on their per-
formance using larger tests. Their design will also fa-
cilitate easy incorporation into the Parallel Euler Solver
which will allow us to present performance results from
a computational fluid dynamics problem.
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Henshaw, J. E. Hopcroft, J. E. Oliger, and T. Tezdu-
yar, editors, Modeling, Mesh Generation, and Adaptive
Numerical Methods for Partial Differential Equations,
volume 75, pages 215–242, Berlin-Heidelberg, 1995.
Springer-Verlag.

[8] R. E. Dillon Jr. A parametric study of perforated muzzle
brakes. ARDC Technical Report ARLCB-TR-84015,
Benet Weapons Laboratory, Watervliet, 1984.

[9] J. E. Flaherty, R. M. Loy, C. Özturan, M. S. Shephard,
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