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ABSTRACT
Collaborative filtering is a fundamental building block in many rec-
ommender systems. While most of the existing collaborative filter-
ing methods focus on explicit, multi-class settings (e.g., 1-5 stars
in movie recommendation), many real-world applications actually
belong to the one-class setting where user feedback is implicitly
expressed (e.g., views in news recommendation and video recom-
mendation). The main challenges in such one-class setting include
the ambiguity of the unobserved examples and the sparseness of
existing positive examples.

In this paper, we propose a dual-regularized model for one-class
collaborative filtering. In particular, we address the ambiguity chal-
lenge by integrating two state-of-the-art one-class collaborative fil-
tering methods to enjoy the best of both worlds. We tackle the
sparseness challenge by exploiting the side information from both
users and items. Moreover, we propose efficient algorithms to solve
the proposed model. Extensive experimental evaluations on two
real data sets demonstrate that our method achieves significant im-
provement over the state-of-the-art methods. Overall, the proposed
method leads to 7.9% - 21.1% improvement over its best known
competitors in terms of prediction accuracy, while enjoying the lin-
ear scalability.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—Data min-
ing

Keywords
Recommender systems, one-class collaborative filtering, dual reg-
ularization

1. INTRODUCTION
Recommender systems have become increasingly indispensable

in many applications including movie recommendation [16], hash-
tag recommendation [2], music recommendation [5], news recom-
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mendation [6], etc. Collaborative filtering, which aims at predicting
the preferences of users towards items based on the historical user
feedback, plays a central role in these recommender systems. To
reflect the users’ preferences for items, the feedback can be explic-
itly expressed as different ratings (e.g., 1-5 stars in Netflix). The
vast majority of existing work focuses on such explicit, multi-class
recommendation problem. However, in many real situations, the
feedback could be implicitly expressed with examples like views of
news, clicks of webpages, purchases of products, downloads of mu-
sic, etc. Recommendation with implicit feedback naturally forms
the one-class collaborative filtering (OCCF) problem [24].

Despite its importance and ubiquity, there is much sparser liter-
ature on OCCF, compared with the extensive machinery for multi-
class collaborative filtering (MCCF). This is mainly due to the fol-
lowing two challenges. The first challenge rises from the ambigu-
ity of the unobserved data: the unobserved data is not necessarily
negative examples, but a mixing of negative examples and missing
positive examples. Different from MCCF, which often focuses on
the observed data only, special treatments are needed for the miss-
ing/unobserved examples in OCCF. Existing solutions for OCCF
differ in terms of how they treat the unobserved data, including
weighting-based, imputation-based, and sampling-based methods
(see Section 6 for a review). While each of them has its own ratio-
nality and advantage, it is unclear how to integrate them together to
maximally improve the recommendation performance.

Another challenge of OCCF lies in data sparseness (i.e., only an
extremely small percentage of data is labeled as positive examples).
This challenge compromises the full power of collaborative filter-
ing and leads to the so-called cold-start problem, i.e., it is difficult to
make satisfactory recommendations for the cold-start users and/or
cold-start items. To tackle this challenge in the MCCF setting, sev-
eral researchers propose to incorporate the side information such
as the demographical information about users, item content, and
the social relationships between users (see Section 6 for a review).
However, it is unclear how to migrate these techniques to the one-
class setting, especially when there is side information from both
users and items.

In this paper, we propose a dual-regularized model for one-class
collaborative filtering. In particular, we address the ambiguity chal-
lenge by integrating two state-of-the-art one-class collaborative fil-
tering methods (weighting-based and imputation-based methods)
to enjoy the best of both worlds. The intuition behind this inte-
grated method is two-fold. First, notice that users might prefer a
variety of items including those unseen ones. Thus, we impute the
unobserved data to indicate the probability that a user would prefer
an unseen item. Second, we assign a weight for the imputed data
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to indicate its reliability. Furthermore, we tackle the sparseness
challenge by encoding the side information from both users and
items as two graph regularization terms. Such a treatment (dual-
regularization) could help alleviate the cold-start problem and im-
prove the overall performance of recommender systems as well.

In summary, the main contributions of this paper include:

• A unified model for one-class collaborative filtering, which
integrates the imputation-based method, the weighting-based
method, and the dual regularization from both users and items.
Moreover, we propose efficient algorithms to solve the pro-
posed model, and analyze their optimality, convergency, and
computational complexity.

• Experimental evaluations on two real data sets to demon-
strate the effectiveness and efficiency of the proposed method.
For example, our proposed algorithm (wiZAN-Dual) outper-
forms the best known competitors by 7.9% - 21.1% in terms
of prediction accuracy. In the meanwhile, wiZAN-Dual scales
linearly wrt the size of the input data set.

The rest of the paper is organized as follows. Section 2 defines
the problem. Section 3 and Section 4 present the proposed for-
mulations and algorithms, respectively. Section 5 presents the ex-
perimental results. Section 6 reviews related work, and Section 7
concludes the paper.

2. PROBLEM DEFINITIONS AND PRELIM-
INARIES

2.1 Problem Definitions
Table 1 lists the main symbols we use throughout the paper. Fol-

lowing conventions, we use bold capital letters for matrices. For
example, we use an m × n matrix R to denote the user-item feed-
back, where R(u, i) = 1 if user u had provided positive feedback
on item i, and R(u, i) = 0 if the feedback is unknown/unobserved.
Without loss of generality, we use u and v to index users, and we
use i and j to index items. We use calligraphic font O and U to

Table 1: Symbols.
Symbol Definition and Description
R the implicit, one-class feedback matrix
W the weighting matrix for R
P the imputation matrix for R
F,G the low-rank approximations for R
M,N the user-user graph and the item-item graph
R′ the transpose of matrix R
R(u, :) the uth row of R
R(u, i) the element at the uth row and ith column of R
IO, IU the indicator matrices for observed and missing data
IA the full indicator matrix IA = IO + IU
O the set of observed data between users and items
U the set of unobserved data between users and items
m, n the number of users and items
u, v the users
i, j the items
w the global weight for W
p the global imputation value for P
r the low rank for F and G
l the maximum iteration number
ξ the threshold to terminate the iteration

indicate the set of observed and unobserved user-item data, respec-
tively. Further, we denote IO and IU as the indicator matrices for
O and U, respectively. Similar to Matlab, we denote the ith row of
matrix R as R(i, :), and the transpose of a matrix with a prime (i.e.,
R′ ≡ RT ).

With these notations, we first define the basic OCCF problem.

PROBLEM 1. Basic OCCF Problem [24]

Given: (1) an m × n implicit, one-class feedback matrix R, (2) a
user u where 1 � u � m, and (3) an item i where 1 � i � n;

Find: the estimated preference of user u on item i.

In Problem 1, to estimate the preference of a given user on a
given item, the only input needed is the feedback matrix R. In
addition to this feedback matrix, there might exist side informa-
tion (e.g., the social relationships between users, the item similar-
ity, etc.) that can be exploited in many applications. In this work,
we focus on the pair-wise link information from both users and
items. For example, a link between two users may indicate their
similarity, intimacy, or friendship, while a link between two items
may indicate their similarity or category. We use two symmetric
matrices/graphs M and N to denote all the links between users and
items, respectively. With these additional notations, we can define
the following OCCF problem.

PROBLEM 2. OCCF Problem with Side Information

Given: (1) an m × n implicit, one-class feedback matrix R, (2) an
m×m user-user graph M, (3) an n×n item-item graph N, (4)
a user u where 1 � u � m, and (5) an item i where 1 � i � n;

Find: the estimated preference of user u on item i.

2.2 Preliminaries
Before presenting our proposed solutions in the next two sec-

tions, let us first briefly review two representative OCCF methods.
The first one is the weighting-based method, which formulates

the following minimization problem [24]

min
F,G�0

∑
(u,i)

W(u, i)(R(u, i) − F(u, :)G(i, :)′)2 + λr(||F||2F + ||G||2F) (1)

where W(u, i) indicates the weight of the corresponding example,
F and G are the non-negative low-rank approximations of R, and λr

is used to control the regularization of ||F||2F and ||G||2F . Typically, a
smaller weight is assigned for those unobserved examples. That is,
W(u, i) = 1 if R(u, i) is observed, and W(u, i) ∈ [0, 1] if R(u, i) = 0.
There are three basic strategies to assign W(u, i) [24]: uniform, user
oriented, and item oriented. For simplicity, we adopt the uniform
strategy, i.e., we set W(u, i) =

√
w for each unobserved R(u, i)

where
√

w is the global weight. We will refer to this approach as
wZAN in this paper.

Another approach is imputation based. The intuition behind this
method is that the unobserved data in OCCF setting may contain
many missing positive examples; therefore, we can impute a value
for the unobserved example to indicate the possible feedback that
the user would give to the item. Formally, the imputation-based
method can be formulated as

min
F,G�0

∑
(u,i)

((R(u, i) + P(u, i)) − F(u, :)G(i, :)′)2 + λr(||F||2F + ||G||2F ) (2)

where P stands for the imputation matrix for the unobserved data.
Typically, P(u, i) = 0 if R(u, i) = 1, and P(u, i) ∈ [0, 1] if R(u, i) =
0. To fill in P, we can resort to similar strategies as those for wZAN.
For example, we can fill in P(u, i) uniformly with a global value



p ∈ [0, 1] for the unobserved data. We can also adopt the user-
oriented strategy or the item-oriented strategy. In this paper, we
focus on the uniform strategy, and will refer to this approach as
iZAN in the following. Note that the similar idea was also implicitly
explored in [31].

3. THE PROPOSED FORMULATION
In this section, we present our formulations for the basic OCCF

problem (i.e., Problem 1) and the OCCF with dual side information
problem (i.e., Problem 2).

3.1 The Proposed Formulation for Problem 1
For Problem 1, the main challenge is from the ambiguity of the

unobserved data, i.e., the unobserved data is not necessarily nega-
tive examples but a mixing of negative examples and missing posi-
tive examples. To deal with the ambiguity problem, the weighting-
based method (e.g., wZAN in Eq. (1)) adds a weight for unob-
served examples, while the imputation-based method (e.g., iZAN
in Eq. (2)) imputes the unobserved data. The key observation here
is that these two methods are complementary to each other: we
are more certain about the observed data, and we have a relatively
lower confidence of the imputed data. This leads to a natural choice
of integrating these two methods by putting a smaller weight on the
contribution of the imputed data, i.e.,

min
F,G�0

∑
(u,i) W(u, i)((R(u, i) + P(u, i)) − F(u, :)G(i, :)′)2

+λr(||F||2F + ||G||2F) (3)

where W(u, i) and P(u, i) are defined in Eq. (1) and Eq. (2), respec-
tively. In this formulation, we introduce the imputed value P(u, i)
of an unobserved example to indicate the likelihood that the user
would favor the corresponding item. In the meanwhile, we intro-
duce a small weight W(u, i) to indicate its lower reliability. We will
refer to this approach as wiZAN.

Scalability issues. As we can see from Eq. (3), wiZAN optimizes
over a dense matrix (R+P) of size m×n, and introduces another m×
n matrix W. Directly optimizing Eq. (3) might be computationally
prohibitive in terms of both time and space in many large-scale
applications. We will propose scalable algorithms to tackle this
issue in the next section.

3.2 The Proposed Formulation for Problem 2
For Problem 2, we include both the user-user graph and the item-

item graph as additional inputs. Effectively leveraging such side
information might not only help alleviate the cold-start problem,
but also improve the overall performance for recommender sys-
tems. Here, we describe how we incorporate the side information.
We take the user-user side information as an example, but similar
treatment can be applied on the item-item side information.

For user side, the basic idea is to employ the Homophily ef-
fect [22], i.e., similar users tend to share similar preferences for
items. In other words, if two users are connected (i.e., a non-zero
and/or larger M(u, v)), they might have similar latent preferences
for items (i.e., F(u, :) and F(v, :) are close to each other). There-
fore, for two users u and v, we add the following constraint on their
preferences

min
m∑

u=1

m∑
v=1

M(u, v)||F(u, :) − F(v, :)||22 (4)

where m is the total number of users, and M is the m ×m user-user
graph for these users. As we can see from Eq. (4), the link M(u, v)
would encourage the corresponding latent preferences (i.e., F(u, :)

and F(v, :)) to be close to each other. Notice that it has no penalty
for two dis-connected users (i.e., M(u, v) = 0).

We can further formulate the constraint in Eq. (4) as a graph
regularization term with the following equations

1
2

m∑
u=1

m∑
v=1

M(u, v)||F(u, :) − F(v, :)||22

=
1
2

m∑
u=1

m∑
v=1

r∑
k=1

M(u, v)(F(u, k) − F(v, k))2

=

m∑
u=1

m∑
v=1

r∑
k=1

M(u, v)F2(u, k) −
m∑

u=1

m∑
v=1

r∑
k=1

M(u, v)F(u, k)F(v, k)

=

r∑
k=1

F(:, k)′(DM −M)F(:, k)

= tr(F′(DM −M)F) (5)

where tr(·) stands for the matrix trace, r is the rank of F, and DM is
the degree matrix for M with DM(u, u) =

∑m
v=1 M(u, v).

Similarly, we have the item-side regularization term tr(G′(DN −
N)G), where N is the symmetric item-item graph which represents
item-item similarity, and DN is the degree matrix for N.

Finally, we incorporate the two regularization terms into Eq. (3),
resulting in our dual-regularized OCCF model for Problem 2

min
F,G�0

∑
(u,i)

weights/reliability︷��︸︸��︷
W(u, i)((R(u, i) +

imputed values/likelihood︷︸︸︷
P(u, i)) − F(u, :)G(i, :)′)2 + λr(||F||2F

+||G||2F ) + λF tr(F′(DM −M)F)︸���������������︷︷���������������︸
user homophily

+ λGtr(G′(DN − N)G)︸���������������︷︷���������������︸
item homophily

(6)

where λF and λG are used to control the importance of the two regu-
larization terms. Notice that the two regularization terms, (DM−M)
and (DN − N) are the graph Laplacian of the user-user graph and
item-item graph, respectively. Actually, such a dual regularization
can be plugged into many existing methods (e.g., wZAN and iZAN),
as we will show in the experimental section.

With the F and G matrices derived from the above formulations
(e.g., Eq. (6) and Eq. (3)), we can estimate the preference of user u
on item i as R̂(u, i) = F(u, :)G(i, :)′.

4. THE PROPOSED ALGORITHM
In this section, we present the algorithm (wiZAN-Dual) to solve

the OCCF problem with side information in Eq. (6), followed by
some effectiveness and efficiency analysis. The algorithm (wiZAN)
for Eq. (3) can be derived from wiZAN-Dual by ignoring the dual
regularization terms.

4.1 The wiZAN-Dual Algorithm
Unfortunately, the optimization problem in Eq. (6) is not jointly

convex due to the coupling between F and G. Therefore, instead
of seeking for a global optimal solution, we aim to find a local
minimum by alternatively updating F and G while fixing the other.
Next, we show how to update F when G is fixed. The update of G
can be done in a similar way.

When G is fixed, the optimization problem in Eq. (6) becomes
the minimization problem of the following equation (by dropping
some constant terms) wrt the matrix F

J = ||W � ((R + P) − FG′)||2F + λr ||F||2F + λF tr(F′(DM −M)F)
s.t. F � 0 (7)

where � is the Hadamard product with [A�B](u, i) = A(u, i)B(u, i)
for any two matrices with the same size.



Since both the user-user graph M and its degree matrix DM are
symmetric, the derivative of J wrt F can be computed as

1
2
∂J
∂F

= −(W �W � (R + P))G + (W �W � (FG′))G

+λrF + λFDMF − λFMF (8)

In Eq. (8), M is a sparse non-negative matrix, and DM is a di-
agonal non-negative matrix. A fixed-point solution of Eq. (8) with
the non-negativity constraint leads to the following multiplicative
updating rule for F

F(u, k)← F(u, k)

√
[(W �W � (R + P))G + λFMF](u, k)

[(W �W � (FG′))G + λrF + λFDMF](u, k)
(9)

The (R + P) matrix in Eq. (9) is extremely large in many recom-
mender systems, causing severe scalability issues in terms of both
time and storage. To tackle this issue, we propose an efficient al-
gorithm to scale up the updating process in terms of both time and
storage. Before presenting our algorithm, we need to further define
matrix R̃1. We denote R̃1 as the sparse matrix whose elements are
predicted by F and G on the observed examples in R. That is,

R̃1(u, i) =
{

F(u, :)G(i, :)′ if (u, i) ∈ O
0 otherwise (10)

Based on the R̃1 matrix, we present the new updating rule for F
as follows

F(u, k)← F(u, k)

√
A1(u, k)
B1(u, k)

(11)

where A1 and B1 are defined as

A1 = (1 − wp)RG + wp1m×1(11×nG) + λFMF
B1 = (1 − w)R̃1G + wF(G′G) + λrF + λFDMF (12)

Here,
√

w is the global weight assigned to the unobserved exam-
ples, p is the global imputation value, and 11×n is a 1 × n vector
with all 1s.

Following similar steps, we can have the updating rule for G

G(i, k)← G(i, k)

√
A2(i, k)
B2(i, k)

(13)

with A2 and B2 in the following form

A2 = (1 − wp)R′F + wp1n×1(11×mF) + λGNG
B2 = (1 − w)R̃′1F + wG(F′F) + λrG + λGDNG (14)

where N is a sparse, non-negative matrix containing the item links,
and DN is the diagonal degree matrix for N.

Finally, we summarize the overall algorithm for solving Eq. (6)
in Alg. 1. As we can see from the algorithm, after we initialize
the F and G matrices (Step 1), the algorithm begins the iteration
procedure. In each iteration, the algorithm first computes the R̃1

matrix (Step 3), and then alternatively updates F and G (Steps 4-9
and Steps 10-15, respectively). We use the following criteria to ter-
minate the iteration procedure: either the Frobenius norm between
successive estimates of both F and G is below our threshold ξ or
the maximum iteration step l is reached. Finally, we can predict the
preference of user u on item i by F(u, :)G(i, :)′.

4.2 Algorithm Analysis
Here, we briefly analyze the optimality, convergency, and com-

putational complexity of our algorithm.

Algorithm 1 The wiZAN-Dual Algorithm.
Input: R, M, N, rank r, global weight w, and global imputation

value p
Output: F and G
1: initialize F and G randomly;
2: while not convergent do
3: compute R̃1 as defined in Eq. (10);
4: compute A1 and B1 as defined in Eq. (12);
5: for u = 1 : m do
6: for k = 1 : r do
7: update F(u, k) as defined in Eq. (11);
8: end for
9: end for

10: compute A2 and B2 as defined in Eq. (14);
11: for i = 1 : n do
12: for k = 1 : r do
13: update G(i, k) as defined in Eq. (13);
14: end for
15: end for
16: end while
17: return F and G;

We first show the correctness of Eq. (11) for updating F, by prov-
ing that the fixed-point solution of Eq. (11) satisfies the KKT con-
dition. The correctness of Eq. (13) for updating G can be proved
analogously.

THEOREM 1. Correctness of Eq. (11). The fixed-point solu-
tion of Eq. (11) satisfies the KKT condition.

PROOF. In order to prove the theorem, we will first show that
Eq. (9) satisfies the KKT condition, and then show the equivalence
between Eq. (9) and Eq. (11). We start with Lagrangian function of
Eq. (7)

LJ = ||W � ((R + P) − FG′)||2F + λr ||F||2F + λF tr(F′DMF)
−λF tr(F′MF) − tr(Λ′F)

where Λ is the Lagrange multiplier. Let the derivative of the above
equation LJ equal to 0, we have

2(−(W �W � (R + P))G + (W �W � (FG′))G
+λrF + λFDMF − λFMF) = Λ

From the KKT complementary slackness condition, we have

[−(W �W � (R + P))G + (W �W � (FG′))G
+λrF + λFDMF − λFMF](u, k)F(u, k) = 0

Clearly, a fixed point of the updating rule in Eq. (9) satisfies the
above equation.

Next, we show the equivalence between Eq. (9) and Eq. (11). We
first introduce several notations. We denote R̃2 as the matrix whose
values are predicted by F and G on the unobserved examples in R,
i.e., R̃1 + R̃2 = FG′. We use IO and IU as the indicator matrices for
observed and missing data, respectively. The full indicator matrix
is IA = IO + IU . Then, we have the following two equations:

(W �W � (R + P))G
= (IO � R + (wIU) � P)G
= (R − (wIO) � (pIO) + (wIA) � (P + (pIO)))G
= (1 − wp)RG + wp1m×1(11×nG)



and

(W �W � (FG′))G
= (IO � R̃1 + (wIU) � R̃2)G
= (R̃1 − (wIO) � R̃1 + (wIA) � (FG′))G
= (1 − w)R̃1G + wF(G′G)

Finally, we can get the updating rule in Eq. (11) by substituting the
above two equations into Eq. (9), which completes the proof. �

In Theorem 1, we have shown that the updating rule in Eq. (11)
yields a correct solution for minimizing Eq. (7) at convergence.
Next, we prove that the updating rule in Eq. (11) is guaranteed to
converge.

THEOREM 2. Convergence of Eq. (11). Under the updating
rule of Eq. (11), Eq. (7) decreases monotonically.

PROOF. See the appendix. �
Combining Theorem 1 and Theorem 2 together, we can have the

following corollary, which states that Alg. 1 finds a local optimum
for Eq. (6). Given that the original optimization problem in Eq. (6)
is not jointly convex wrt F and G, such a local minimum is accept-
able in practice.

COROLLARY 1. Effectiveness of Alg. 1. Alg. 1 finds a local
minimum for the optimization problem in Eq. (6).

PROOF. Omitted for brevity. �
The time complexity and space complexity of the proposed al-

gorithm are summarized in the following lemmas, which basically
state that Alg. 1 scales linearly wrt the total number observed ex-
amples (i.e., |R|+ |M|+ |N|) and the total number of users and items
(i.e., m+n) in both time and space. Notice that all the three matrices
(R, M, and N) are often very sparse (e.g., |R| << mn, |M| << m2,
etc). In contrast, if we directly use the updating rule in Eq. (9), it
would cost us quadratic complexity (e.g., O(mn)) in both time and
space.

LEMMA 1. Time complexity of Alg. 1. The time complexity of
Alg. 1 is O((|R| + |M| + |N|)rl + (m + n)r2l).

PROOF. Omitted for brevity. �

LEMMA 2. Space complexity of Alg. 1. The space complexity
of Alg. 1 is O(|R| + |M| + |N| + (m + n)r).

PROOF. Omitted for brevity. �

5. EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluations. The

experiments are designed to answer the following questions.

• Effectiveness: How accurate are the proposed algorithms for
one-class collaborative filtering? How do they perform for
the cold-start users/items?

• Efficiency: How scalable are the proposed algorithms?

5.1 Experimental Setup

5.1.1 Data Sets Description
We use two real data sets: Ciao and Epinions [33, 35]. For both

data sets, we randomly select 50% ratings as the training set and
use the rest as the test set. For one-class experiments, we remove
all the ratings that are no greater than 3, and relabel ratings 4 and

Table 2: The statistics of Ciao and Epinions data sets.
Data Ciao Epinions

# of users 6,102 33,725
# of items 12,082 43,542

# of positive examples 117,731 500,478
# of user links 151,722 656,910
# of item links 283,284 498,794

sparsity of positive examples 0.160% 0.034%
sparsity of user links 0.407% 0.058%
sparsity of item links 0.194% 0.026%

5 as 1 (positive examples). For the user-side regularization, we
use the trust relationships between users. In particular, we assign
a trust link Muv = 1 if either u trusts v or v trusts u. The resulting
M matrix is sparse (see Table 2). For the item-side regularization,
we aggregate the reviews as a document for each item, and then
compute the cosine similarity between the TF-IDF vectors of these
documents. To keep the item-item graph sparse, we assign Ni j = 1
if the cosine similarity between item i and item j is larger than 0.4.
The statistics of the two data sets are summarized in Table 2.

5.1.2 Compared Methods
First, we compare with three existing methods for explicit, multi-

class collaborative filtering. Notice that both GWNMF and SR also
formulate the user and item side information as graph regulariza-
tion terms. Despite their own success in the multi-class case, their
algorithms would lead to trivial solutions in the one-class case (with
the two latent matrices F and G being all 1/

√
r). As we will show

soon, they inevitably result in poor recommendation performance
in the one-class case.

• ZAM. ZAM is a baseline method for explicit, multi-class col-
laborative filtering. It treats all zeros as missing values, i.e.,
W(u, i) = 1 for the observed (positive) examples and W(u, i) =
0 for the unobserved examples in Eq. (1).

• GWNMF [9]. GWNMF is proposed to combine the mer-
its of memory-based method with neighborhood informa-
tion. Similar to our method, GWNMF constructs the user and
item side information as two similarity graphs, and adds such
graphs as regularization terms into the objective function.

• SR [19]. On the methodology level, SR is similar to GWNMF
except that SR exploits both similar users/items and dissimi-
lar users/items, and SR does not add the non-negativity con-
straint while GWNMF does.

We also compare the following algorithms for one-class setting:

• ZAN. ZAN is a baseline method, and it treats all zeros as neg-
ative examples, i.e., W(u, i) = 1 for both observed and unob-
served examples in Eq. (1).

• wZAN [24, 23]. wZAN weights the contribution of the un-
observed data by setting W(u, i) =

√
w for the unobserved

examples where
√

w ∈ [0, 1] is the global weight (Eq. (1)).

• iZAN. iZAN stands for the imputation-based method as shown
in Eq. (2). This can be seen as a special case of the proposed
wiZAN-Dual method if we ignore the weighting matrix and
the dual regularization terms.

• ldNMF [31]. ldNMF borrows the idea of low-density meth-
ods from semi-supervised SVM [4]. In particular, it treats
the unobserved entries as optimization variables.



• RG [25]. RG is a sampling-based method proposed for one-
class recommendation. The basic idea behind RG is to gen-
erate a random graph that preserves the degree distributions
of the observed examples. The generated graph includes all
the positive examples and a set of negative examples.

• MSCMF [38]. MSCMF is proposed for predicting drug-target
interactions. It adds constraints from user/item neighbor-
hood, and it can deal with multiple similarity matrices on
both sides.

• wiZAN. wiZAN is the proposed method for the basic OCCF
problem when side information is not available (Eq. (3)). It
is a special case of the wiZAN-Dual method if we ignore dual
regularization.

• wiZAN-Dual. wiZAN-Dual is the proposed method that in-
tegrates the imputation-based method, the weighting-based
method, and the dual regularization from both users and items
(Eq. (6)).

For the results reported in this section, we use the same initial-
izations of F and G, and we fix the global weight

√
w = 0.1, the

global imputation value p = 0.01, and rank r = 10 unless otherwise
stated. For other parameters, we set maximum iteration l = 100, the
termination threshold ξ = 10−6, and the regularization parameters
λr = 0.1, λF = 1, λG = 0.1.

5.1.3 Evaluation Metrics
To evaluate the effectiveness of the compared methods, we adopt

three widely used evaluation metrics for OCCF.
The first metric is Half-Life Utility (HLU) [3, 24]. HLU estimates

how likely a user will view/choose an item from a ranked list, with
the assumption that the user will view each consecutive item in
the list with an exponential decay of possibility. A larger HLU
indicates better recommendation performance.

The second metric is Mean Average Precision (MAP) [18]. MAP
measures the overall performance based on precision at different
recall levels. It calculates the mean of the average precision (AP)
over all users in the test set. A larger MAP indicates better recom-
mendation performance.

The third metric is a recall-oriented metric Mean Percentage
Ranking (MPR) [12]. MPR measures the user satisfaction of items
in a ranked list. It is expected that a randomly produced list would
have a MPR of 50%. A smaller MPR indicates better recommenda-
tion performance.

For efficiency experiments, we simply report the wall-clock time
of the proposed algorithms. All the experiments were run on a
machine with eight 3.4GHz Intel Cores and 24GB memory.

5.2 Effectiveness Results
(A) Effectiveness Comparisons. We first compare the overall ef-

fectiveness performance of the proposed methods with that of the
existing methods. The results on Ciao data and Epinions data are
shown in Table 3 and Table 4, respectively. Larger HLU/MAP and
smaller MPR are better. ldNMF is computationally prohibitive on
Epinions data due to its quadratic complexity.

There are several observations from the tables. First of all, the
proposed wiZAN-Dual outperforms all the compared methods in
all evaluation metrics on both data sets. For example, on the Ciao
data, wiZAN-Dual outperforms the best existing competitors by
15.0%, 21.1%, and 10.1% wrt HLU, MAP, and MPR, respectively;
on the Epinions data, wiZAN-Dual outperforms the best existing
competitors by 9.9%, 17.3%, and 7.9% wrt HLU, MAP, and MPR,
respectively. Second, as expected, the first three methods (ZAM,

Table 3: Effectiveness results on Ciao data. Larger HLU/MAP
and smaller MPR are better. wiZAN-Dual significantly outper-
forms all the compared methods.

Methods HLU MAP MPR
ZAM 0.4876 0.0041 0.3744
GWNMF 0.3453 0.0053 0.3410
SR 0.0656 0.0011 0.5910
ZAN 5.1092 0.0228 0.3106
wZAN 5.9981 0.0275 0.2846
iZAN 5.5198 0.0248 0.3106
ldNMF 5.5190 0.0248 0.3227
RG 5.6723 0.0254 0.3478
MSCMF 5.5799 0.0272 0.2639
wiZAN 6.3621 0.0297 0.2806
wiZAN-Dual 6.8990 0.0333 0.2373

Table 4: Effectiveness results on Epinions data. Larger
HLU/MAP and smaller MPR are better. wiZAN-Dual signif-
icantly outperforms all the compared methods. The ldNMF
method is computationally prohibitive on Epinions data.

Methods HLU MAP MPR
ZAM 0.1349 0.0014 0.3036
GWNMF 0.0254 0.0012 0.2643
SR 0.0088 0.0002 0.6562
ZAN 2.6358 0.0123 0.2308
wZAN 2.7367 0.0139 0.2179
iZAN 3.3401 0.0173 0.3233
ldNMF - - -
RG 2.0062 0.0129 0.3032
MSCMF 2.7501 0.0140 0.2067
wiZAN 3.5409 0.0198 0.2190
wiZAN-Dual 3.6700 0.0203 0.1903

GWNMF, and SR) that are designed for the MCCF setting perform
poorly in the OCCF setting. Third, compared to the other meth-
ods that are proposed for the OCCF setting, our wiZAN can already
achieve better or close performance. For example, on both data
sets, wiZAN is better than all the existing competitors in all three
evaluation metrics except the MPR metric of the MSCMF method.
Recall that the MSCMF method also uses the side information. This
indicates that wiZAN outperforms all the compared methods for the
basic OCCF problem defined in Problem 1. Forth, the overall per-
formance of all the methods on Ciao data is better than that on the
Epinions data. This is probably due to the fact that the Epinions
data is much sparser than the Ciao data (e.g., 0.034% sparsity of
Epinions data vs. 0.160% sparsity of Ciao data).

(B) Effectiveness of Dual Regularization. The proposed dual
regularization is applicable to many existing methods. We have
already shown the usefulness of dual regularization by incorporat-
ing them into our own wiZAN as shown in Table 3 and Table 4.
Next, we further verify the effectiveness of the dual regularization
terms by adding them into wZAN and iZAN. The results on the two
data sets are shown in Table 5 and Table 6, respectively. As we
can see, both wZAN-Dual and iZAN-Dual perform better than the
corresponding cases when the regularization terms are not added.
For example, wZAN-Dual improves wZAN by 13.4%, 18.9%, and
14.1% wrt HLU, MAP, and MPR on the Ciao data, respectively.
This result indicates that dual regularization indeed helps in OCCF
recommendation.



2 4 6 8 10
0.2

0.3

0.4

# of feedback from cold−start users

M
P

R

 

 
Pairwise wZAN RG MSCMF wiZAN wiZAN−Dual 

(a) Cold-start users on Ciao data
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(b) Cold-start items on Ciao data
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(c) Cold-start users on Epinions data
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(d) Cold-start items on Epinions data

Figure 1: The effectiveness comparisons in cold-start scenarios. Smaller MPR is better. wiZAN-Dual outperforms all the compared
methods for both cold-start users and cold-start items on both data sets.

Table 5: Effectiveness of side information on Ciao data. Larger
HLU/MAP and smaller MPR are better. Our dual regulariza-
tion improves the prediction accuracy in all cases.

Methods HLU MAP MPR
wZAN 5.9981 0.0275 0.2846
wZAN-Dual 6.8044 0.0327 0.2444
iZAN 5.5198 0.0248 0.3106
iZAN-Dual 6.4389 0.0293 0.2927

(C) Effectiveness in Cold-start Scenarios. Next, we put our focus
on the cold-start scenarios. As mentioned in introduction, one of
the advantages of our method is to alleviate the cold-start problem
in recommender systems. Here, we compare the effectiveness of
wiZAN-Dual in the cold-start scenarios with several best competi-
tors including wiZAN, MSCMF, RG, and wZAN. We also compare
with an additional Pairwise method [26]. The Pairwise method is
specially designed for cold-start users/items, and it requires the user
features and item features as input. To apply the Pairwise method to
our problem setting, we perform a spectral decomposition method
to translate M and N to the feature representation for users/items.
The results are shown in Fig 1, where x-axis indicates the number
of positive feedback given by the cold-start users or received by the
cold-start items in the training set, and y-axis indicates the MPR
metric.

Table 6: Effectiveness of side information on Epinions data.
Larger HLU/MAP and smaller MPR are better. Our dual regu-
larization improves the prediction accuracy in all cases.

Methods HLU MAP MPR
wZAN 2.7367 0.0139 0.2179
wZAN-Dual 3.1902 0.0166 0.1984
iZAN 3.3401 0.0173 0.3233
iZAN-Dual 3.4833 0.0179 0.2889

As we can see from the figures, wiZAN-Dual outperforms all the
compared methods for both cold-start users and cold-start items on
both data sets. Specially, wiZAN-Dual is better than wiZAN, which
directly indicates the importance of dual regularization in the cold-
start scenarios. The MSCMF method performs the second best in
the compared methods. The reason is that although in a different
way, MSCMF also considers the side information from both users
and items.

5.3 Efficiency Results
Finally, we evaluate the efficiency of wiZAN-Dual by reporting

the wall-clock time of the training stage (i.e., Alg. 1). We use the
subsets of the data sets to test the scalability of the proposed algo-
rithm. The results are shown in Fig. 2. As we can see from the
figures, our algorithm scales linearly wrt the total number of obser-
vations (i.e., |R|+ |M|+ |N|) and the total number of users and items
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Figure 2: Scalability of the proposed algorithm. It scales lin-
early wrt the data size.

(i.e., m + n), which is consistent with our analysis in Lemma 1.
Additionally, the algorithm is very efficient, finishing the training
stage within 30 seconds for both data sets.

6. RELATED WORK
In this section, we briefly review the related work including the

existing methods for multi-class collaborative filtering and one-
class collaborative filtering, and the existing solutions for the cold-
start problem.

Multi-Class Collaborative Filtering. Most of the existing col-
laborative filtering methods are proposed for explicit, multi-class
recommender systems. Typically, collaborative filtering methods
are categorized into memory-based methods and model-based meth-
ods [13, 14]. A combination of memory-based method and model-
based method has also been explored [15, 19].

Considering the wide existence of social links between users,
many researchers begin to incorporate these social links into col-
laborative filtering [20, 21, 36, 30, 34]. The key idea of these meth-
ods is that the linked users tend to have similar latent preferences
for items. By applying similar idea to the item side, Gu et al. [9]
employ the link information from both user side and item side.

One-Class Collaborative Filtering. Although one-class collab-
orative filtering is less visited compared to the multi-class setting, it
is widely applicable in many real situations. According to how they
treat the unobserved data, existing solutions can be categorized into
three classes: weighting-based methods and sampling-based meth-
ods [24, 23], as well as imputation-based methods. For example,
Hu et al. [12] propose a weighting-based method for recommend-
ing TV shows, and they obtain the weight from the number of min-
utes that a given show was watched. Paquet and Koenigstein [25]
propose a sampling-based method where the degree distributions
of users/items are preserved. Sindhwani et al. [31] propose to treat
the unobserved data as optimization variables, which is essentially
the imputation-based method.

Side information is also exploited by several researchers. For ex-
ample, Li et al. [18] propose to leverage the users’ past queries to
construct the user-item similarity, and use such similarity to im-
prove the recommendation performance; Zheng et al. [38] pro-
pose to employ multiple similarity matrices between users/items
for drug-target interaction prediction. Other related proposals for

one-class setting include the rank-based optimization objective [28],
the matrix co-factorization method [8], the combination of senti-
ment analysis and neighborhood method [27], etc.

Cold-Start Problem. Cold-start problem is one of the key chal-
lenges in recommender systems. In cold-start scenarios, it is rela-
tively difficult to provide accurate recommendations for cold-start
users [39], cold-start items [1], or both [26]. Existing solutions for
cold-start problem can be categorized into three classes: interview
based, adjustment based, and side-information based.

In the interview-based methods, an additional set of items is usu-
ally provided in the sign-up phase to collect the preferences of the
cold-start users [11, 39, 32]. For example, Zhou et al. [39] use deci-
sion tree to select the set of interview items; Harpale and Yang [11]
identify the interview set by active learning. One problem of the
interview-based methods is that they bring additional burdens to
the cold-start users. The second class of adjustment-based meth-
ods mainly focus on how to make full use of the small amount
of ratings from cold-start users or for cold-start items. For exam-
ple, Hacker and Ahn [10] introduce an online game during which
the preferences of cold-start users can be adjusted. Methods in the
third class exploit the side information to alleviate the cold-start
problem. In this class, existing methods can be further categorized
into attribute-based methods and link-based methods according to
the type of side information they used. For attribute-based meth-
ods, Schein et al. [29] use item attributes such as item content; Park
et al. [26] and Zhang et al. [37] leverage both user attributes and
item attributes such as the demographical information. In contrast
to attribute-based methods, link-based methods mainly employ the
the social relationships between users [20, 30]. Our method falls
into this sub-category, and we encode the link-based side informa-
tion from both users and items.

7. CONCLUSIONS
In this paper, we have proposed a unified model wiZAN-Dual for

one-class collaborative filtering. In wiZAN-Dual, we address (1)
the ambiguity challenge by imputing each unobserved user-item
pair to indicate the probability that the user would prefer the item,
together with a weight to control the contribution/reliability of the
imputed data; and (2) the sparseness challenge by exploiting the
relationships between users/items (i.e., the user/item side informa-
tion). We propose efficient algorithms for wiZAN-Dual, and ana-
lyze our algorithms in terms of optimality, correctness, and com-
plexity. Our experimental evaluations on real benchmark data sets
show that the proposed method leads to significant improvement
over the state-of-the-art methods in prediction accuracy, while en-
joying the linear scalability in both time and space.
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APPENDIX
Proof of Theorem 2
By ignoring constant terms, we can re-write Eq. (7) as

J(F) = −2tr[(W �W � (R + P))GF′] + tr[(W �W � (FG′))GF′]
+λrtr(FF′) + λF tr(F′DMF) − λF tr(F′MF) (15)

Following the auxiliary function approach [17], an auxiliary func-
tion H(F, F̃) of J(F) must satisfy

H(F,F) = J(F), H(F, F̃) � J(F) (16)

We define

F(t+1) = arg min
F

H(F,F(t)) (17)

Then, by construction, we have

J(F(t)) = H(F(t),F(t)) � H(F(t+1),F(t)) � J(F(t+1)) (18)

This would prove that J(F(t)) is monotonically decreasing.
In the remainder of proof, we need to find 1) an appropriate aux-

iliary function, and 2) the global minimum solution of the auxiliary
function.

We start with the auxiliary function, and show that the following
equation is one of the auxiliary functions for Eq. (15)

H(F, F̃) = −2
m∑

u=1

r∑
k=1

[(W �W � (R + P))G](u, k)F̃(u, k)

(1 + log(
F(u, k)
F̃(u, k)

))

−
m∑

u=1

m∑
v=1

r∑
k=1

λFM(u, v)F̃(v, k)F̃(u, k)

(1 + log(
F(v, k)F(u, k)
F̃(v, k)F̃(u, k)

))

+

m∑
u=1

r∑
k=1

λrF2(u, k)

+

m∑
u=1

r∑
k=1

[(W �W � (F̃G′))G](u, k)F2(u, k)
F̃(u, k)

+

m∑
u=1

r∑
k=1

[λFDMF̃](u, k)F2(u, k)
F̃(u, k)

(19)

For convenience, we name the five terms in Eq. (19) as E1, E2, E3,
E4 and E5, respectively. Then, for E3 we have

E3 = λrtr(FF′) (20)

Using the inequality z � 1 + log z, we have

E1 � −2
m∑

u=1

r∑
k=1

[(W �W � (R + P))G](u, k)F(u, k)

= −2tr[(W �W � (R + P))GF′] (21)

and

E2 � −
m∑

u=1

m∑
v=1

r∑
k=1

λFM(u, v)F(v, k)F(u, k) = −λF tr(F′MF) (22)

For E5, we use the following inequality [7]

n∑
i=1

k∑
p=1

(AS∗B)S2(i, p)
S(i, p)

� tr(S∗ASB)

where An×n, Bk×k, Sn×k, and S∗n×k are non-negative matrices, and A
and B are symmetric. Therefore, we have

E5 � λF tr(F′DMF) (23)

Finally, for E4, let F(u, k) = F̃(u, k)Q(u, k) we have

E4 =

m∑
u=1

n∑
i=1

r∑
k=1

r∑
l=1

F̃(u, l)G′(l, i)W2(u, i)G(i, k)F2(u, k)
F̃(u, k)

=

m∑
u=1

n∑
i=1

r∑
k=1

r∑
l=1

F̃(u, l)G′(l, i)W2(u, i)G(i, k)F̃(u, k)Q2(u, k)

=

m∑
u=1

n∑
i=1

r∑
k=1

r∑
l=1

F̃(u, l)G′(l, i)W2(u, i)G(i, k)F̃(u, k)

(
Q2(u, k) +Q2(u, l)

2
)

�
m∑

u=1

n∑
i=1

r∑
k=1

r∑
l=1

F̃(u, l)G′(l, i)W2(u, i)G(i, k)F̃(u, k)

(Q(u, k)Q(u, l))

=

m∑
u=1

n∑
i=1

r∑
k=1

r∑
l=1

F(u, l)G′(l, i)W2(u, i)G(i, k)F(u, k)

= tr[(W �W � (FG′))GF′] (24)

By substituting Eq. (20)-(24) into Eq. (19), we have H(F, F̃) �
J(F).

Next, we need to find the global minimum solution of H(F, F̃).
The gradient is

1
2
∂H(F, F̃)
∂F(u, k)

= − [(W �W � (R + P))G](u, k)F̃(u, k)
F(u, k)

− [λFMF̃](u, k)F̃(u, k)
F(u, k)

+
[λrF̃](u, k)F(u, k)

F̃(u, k)

+
[(W �W � (F̃G′))G](u, k)F(u, k)

F̃(u, k)

+
[λFDMF̃](u, k)F(u, k)

F̃(u, k)

= − [(W �W � (R + P))G + λFMF̃](u, k)F̃(u, k)
F(u, k)

+
[(W �W � (F̃G′))G + λrF̃ + λFDMF̃](u, k)F(u, k)

F̃(u, k)
(25)

We can further show that the Hessian matrix of H(F, F̃) is a diag-
onal matrix with positive diagonal elements. Therefore, the global
minimum can be obtained by setting Eq. (25) as zero, which results
in

F2(u, k) = F̃2(u, k)
[(W �W � (R + P))G + λFMF̃](u, k)

[(W �W � (F̃G′))G + λrF̃ + λFDMF̃](u, k)
(26)

Back to Eq. (17), F(t+1) = F and F(t) = F̃. Therefore, the updating
rule in Eq. (9) decreases monotonically. Further, with equivalence
between Eq. (9) and Eq. (11) as shown in the proof of Theorem 1,
we have that Eq. (7) decreases monotonically under the updating
rule of Eq. (11), which completes the proof. �




