
 1

Computing with Time: From Neural Networks to
Sensor Networks

Short Title: Computing with Time

Boleslaw K. Szymanski and Gilbert G. Chen
Department of Computer Science, Rensselaer Polytechnic Institute

110 Eighth Street, Troy, NY 12180, USA

Corresponding Author: Boleslaw K. Szymanski,
Lally 204, RPI, 110 Eighth Street, Troy, NY 12180, USA
Email: szymab@rpi.edu, tel. +1-518-276-2714, fax: +1-518-276-4033

Abstract
This article advocates a new computing paradigm, called computing with time, that is
capable of efficiently performing a certain class of computation, namely, searching in
parallel for the closest value to the given parameter. It shares some features with the
idea of computing with action potentials proposed by Hopfield, which originated in the
field of artificial neuron networks. The basic idea of computing with time is captured in
a novel distributed algorithm based on broadcast communication called the Lecture
Hall Algorithm, which can compute the minimum among n positive numbers, each
residing on a separate processor, using only O(1) broadcasts. When applied to sensor
networks, the Lecture Hall Algorithm leads to an interesting routing protocol having
several desirable properties.

Introduction
Although neural network and sensor network are normally viewed as two radically
different subjects, they do share one thing in common. The most fundamental way of
exchanging information in both kinds of networks is one-to-many communication, i.e.,
the broadcast. In a biological neural network, a firing neuron sends an action potential
to all neurons that are connected to it by synapses, each of which may impose different
delay and amplification to the transmitted signal. Similarly, a communication node in a
sensor network broadcasts its signal to all nodes within its transmission range. The
proposed computing with time paradigm applies to networks in which a broadcast is a
communication primitive, such as neural networks in biology or wireless networks in
telecommunication.

Another example of such a paradigm is computing with action potentials proposed by
Hopfield et al. [1], who observed that analog information can be encoded into firing
times of action potentials and that the timings of these action potentials can be used to
carry out a vector matching algorithm. The ability to perform broadcast-based
communication was not explicitly mentioned as a requirement. Yet, to harness the
information carried by the timings of action potentials, synchronization is absolutely
necessary, even though it does not have to be very accurate. There must be certain
moments at which distributed neurons observe the same events, as if each of them
would own a local clock and these clocks were synchronized from time to time by such
events. Broadcast naturally provides plenty of such synchronization points.

szymansk
Text Box
The Computer Journal, 51(4):511-522, 2008

 2

The basic form of computing with action potentials converts one vector into time
intervals between the firings of one set of neurons and the pre-specified global
synchronization instance, and another vector into time delays of the synapses
connecting those neurons to the set of output neurons. If these two vectors match, the
output neurons will all fire at the same time, resulting in their strongest superimposed
output.

A different way to make use of timing information, proposed here, is to use the firing
times of different neurons to identify one with the smallest firing time. The purpose is
to look for an optimum value by associating the firing times with a certain variable in
such a way that the smaller this variable is the more desirable the property of the
corresponding neuron is. Hence, the neuron firing earliest will naturally be the one
whose property variable has the minimum value among the neurons being compared.
Hence, the essence here is to introduce competition, instead of superposition in
Hopfield’s approach, to select a winner that possesses the desired optimality.

This new way of using timing, referred to as computing with time, is applicable to any
systems that support broadcast as an inherent communication mechanism. We applied
computing with time to algorithm design in sensor networks, and the result is an
interesting routing algorithm, named Self-Selective Routing. The development of this
new routing algorithm illustrates that an idea formalized in neural network may find its
application in sensor network because of the similarity in their underlying
communication mechanisms, and provides a new understanding of the role of time, as
well as broadcast, as a basic means of computation in networks with broadcast as a
communication primitive.

Computing with Action Potentials
In a series of papers [1-4], Hopfield and his collaborators suggested a new computing
paradigm that uses the exact timings of action potentials to perform useful computation
in an efficient way. Unlike traditional computational procedures that are
mathematically or algorithmically too complicated to be directly implemented on
neurons, the representation and manipulation of information required by the new
approach of computing with action potentials appear to fit the neuron paradigm rather
well.

The key idea of computing with action potentials is captured by an elegant solution to
the so-called analog match problem which is to match an input vector against a number
of known patterns also given in the form of vectors. Let T

nxxxX],...,,[)0()0(
2

)0(
1

)0(= be

the input vector, and },...,,{)()2()1(kXXX be the given patterns where for i=1,2,…n,
Ti

n
iii xxxX],...,,[)()(

2
)(

1
)(= . The analog match problem is to find, if one exists, a vector

X(i) among },...,,{)()2()1(kXXX such that X(i) is similar to X(0), meaning that there exists

a constant λ≈1 such that)0()(
m

i
m xx λ≈ for all .1 nm ≤≤

The conventional solution to the analog match problem is to first normalize all vectors
and then to select a vector X(i) in the given patterns such that its inner product with the
input vector X(0) is greater than a threshold constant c:

 3

.,1
1

)()0()()0(

)()0(

)()0(

∑
=

=⋅>⋅≥
k

l

i
ll

i

i

i

xxXXwherec
XX

XX

Normalization is necessary since otherwise pattern vectors with large values would be
heavily favored. However, Hopfield et al. argued that normalization is non-trivial for
realistic neural networks. Among other problems, this method does not differentiate
between individual components according to their importance, making it difficult to
adjust the reliance of the result on a particular component.

This weaknesses can be avoided if vectors are represented by the timings of action
potential emitted by neurons [1]. The individual components of the input vector are at
first encoded in the initial firing time of corresponding action potentials in advance of
what Hopfield called a fiducial time T. The smaller the value is the closer the action
potential initial firing time is to the fiducial time T, as shown in Figure 1. Then, each
action potential is delayed by a period that is determined by the corresponding
component of the vector to be matched, X(i). If the two vectors are similar, then all the
action potentials will fire at roughly the same time. Thus, a match is found if the
maximum of the weighted sum of action potential exceeds a certain threshold.
Normalization is no longer needed because the match is defined by synchronization of
the firing times defined by the logarithm of the ratios of the corresponding components
of the two vectors, thereby eliminating any constant factor considerations. Moreover,
the importance of each component can be now reflected in the weights used to sum up
action potentials together.

Figure 1. Using timings of action potentials to solve the analog match problem.

Obviously, for the idea described thus far to work, the existence of the fiducial time is
indispensable, as it provides a reference point with which the timing information of
action potentials can be combined to produce the desired results. In other words, a
synchronization point is needed at which all neurons observe the same moment and it
can be provided as a natural byproduct of a broadcast.

The idea of computing with action potential has two important implications. First, it
provides a solid support for the suggestion that neurons may communicate and compute
by temporal coding instead of rate coding. There are several spiking neuron models
[5-6] that emphasize asynchronous inter-neuron communication. However, Hopfield’s
idea is a unique attempt, motivated by a significant body of biological evidence that rate
coding is too slow for quick responses in the order of 10ms observed in nature [7-10], to

)0(
1x

)0(
2x

)0(
3x

)log()0(
1x)log()(

1
ix

+
w1

w2

w3

Input vector Delays encoding
the vector to be
matched

Weights
determine
importance

Fiducial time T

)log()0(
3x)log()(

3
ix

)log()0(
2x)log()(

2
ix

 4

devise a convincible mechanism by which practical computation can be performed
efficiently with respect to the communication cost.

The other implication of Hopfield’s idea is far beyond the field of biological neural
networks. It shows that time, when appropriately encoded, can be utilized to enable a
new generation of distributed algorithms that take advantage of broadcast to minimize
the communication cost and do not follow the step-by-step execution paradigm. Such
algorithms may be hard to analyze by classical time complexity theory due to their
asynchronous nature, but they still fall within the domain of Turing machines in the
sense that they can be simulated by a Turing machine.

Lecture Hall Algorithm
Let us start with a simple yet illustrative example to demonstrate the power of
computing with time. Assume there are n students sitting in a lecture hall and listening
to a lecturer. For some reason, the lecturer wants to find the youngest student in the
room (assuming that there is only one such student). The well-known method would
divide students into pairs. The younger student of a pair wins, and all winners start the
second round. The same procedure repeats until only one student is left who must be the
youngest. If we assume that a pair of two students can exchange information about their
ages without interfering with other students, then the time complexity of this recursive
procedure is O(log(n)). The communication complexity is O(n), since n-1 comparisons
are necessary. It seems that this is the best that one can achieve.

Surprisingly, we devised a much more efficient procedure, referred to as the Lecture
Hall Algorithm, which is inspired by Hopfield’s discovery that continuous variables
can be converted into time delays to facilitate computation. This procedure works as
follows. First, the lecturer, who can be heard by every student in the room, announces a
challenge. Upon hearing it, every student immediately calculates a delay of his or her
response that is equal to his or her age. As soon as the delay elapses, the student
announces it. However, if a student ever hears another student speaking before his
delay elapses, his scheduled action is immediately cancelled.

Figure 2. The Lecture Hall Algorithm.

If the transmission delay of announcements and the reaction time of students are equal
or negligibly different, the first student that speaks up is guaranteed to be the youngest
in the class. We call the action taken by this student self-selection, because each student

a1

a2

a3

 a1

Ages of
students

Delays determined by the ages

Synchronization

 a2

 a3

Acknowledgement

Broadcast executed

Self-selection
Broadcast scheduled but
cancelled prematurely

Lecturer

 5

can determine, without consulting others that the speaker must be the youngest by the
simple fact that no other student spoke earlier.

It may happen that the self-selection announcement is not heard by all students. For
example, the answering student may be sitting in one corner of the room and thus may
not be heard by the students in the other corner. To solve this minor problem, the
lecturer can make yet another announcement, called the acknowledgement
announcement, once the proper student has been identified. This announcement is to
tell all students that the Lecture Hall Algorithm has been completed with a successful
outcome, and those who have not heard the self-selection announcement should cancel
their scheduled action anyway. The information about the age of the self-selected
student can be included in the acknowledgement announcement. Interestingly,
acknowledgement broadcast is not necessary for correctness of the algorithm. It simply
suppresses activation of multiple self-selected nodes. In some applications, including
the one discussed below, sensor network routing, under many scenarios it is more
efficient to bypass acknowledgement broadcasts entirely.

Therefore, only two broadcasts, one for a challenge announcement and the other for
self-selection announcement, are strictly necessary in the Lecture Hall Algorithm.
Optionally, the third, acknowledgement, broadcast may also be used to guarantee
unique self-selection. Moreover, in some network applications, such as routing, the
self-selection is repeatedly applied across the network. In such applications, the
self-selection broadcast of one Lecture Hall Algorithm invocation can be used as the
challenge announcement for the subsequent algorithm invocation, cutting the number
of broadcasts needed by each call to exactly 1.

What is the Lecture Hall Algorithm time complexity? With the assumption that any
transmission or reaction delay can be ignored, the time it takes is determined by the
range of the students’ ages and the conversion function used to convert the ages into
delays. It is completely independent of the number of students involved.

The Lecture Hall Algorithm can easily be modified to perform search. The searched
value is broadcast together with precision of the answer permitted. Then, each node
receiving the broadcast and holding the value of this type computes its delay based on
the difference between the search value and the stored one (assuming that the difference
is smaller than the desired precision). In such an application, the time to obtain the
answer is proportional just to the desired precision of the answer and is independent of
the number of nodes participating or the range of values stored in them.

The Lecture Hall Algorithm can easily be generalized beyond finding the minimum. By
taking an inverse of the value (age in this case), it can find the maximum value. By
ignoring kth first answers, it finds k+1st smallest value in the set, etc. Another example
is the parallel sort whose implementation based on the Lecture Hall Algorithm requires
that each processors reveals its value when its timer for self-selection expires (a care
has to be taken to add to the timer each time interval during which others broadcast their
values). In this case, the time to the solution will be the maximum delay assigned to any
value held by the nodes, as oppose to the minimum delay needed in the previous cases.
However, in some cases, this maximum delay would be smaller than the time needed to
execute nlog(n) operations of the conventional sort algorithms.

 6

Another application of the Lecture Hall Algorithm arose in simulating the growth of
preferentially connected networks [11] in which newly added nodes connect to existing
ones with the probability of connection defined by the out-degree of the target node.
Simple modification of the Lecture Hall Algorithm uses single broadcast from the
newly added node to start competition for the new connections and the neighbors
respond with the random delay that is inversely proportional to their out-degree. The
new node then connects to the first k responders, where k is the preset parameter of the
network design.

The Lecture Hall Algorithm can easily be recast in terms of PRAM, in which
processors use computer cycles to measure a delay. Hence, time is discretized with a
time tick equal to a computer cycle. However, algorithms sketched above for finding
the minimum, the maximum, or the closest value to a given parameter, as well as
sorting translate directly, especially if PRAM with some form of parallel write is used
so an accidental overlap of different answers is not a problem. Compared to the
traditional binary tree parallelization of these algorithms, they save both memory and
time.

Another interesting property of the Lecture Hall Algorithm is that since waiting for the
timer to go off is a passive activity, during such wait, a node may participate in many
different instantiations of the algorithm, so they are inherently parallelizable. For
example, the synchronization announcement of the lecturer may include finding a
student with the smallest age, another who was born closest to Katmandu, and yet
another with the highest GPA in high school, all over the same time period. The
answers by self-selected students would identify which search is completed (with some
provisions for interference created by accidental overlap of different answers).

Analysis of the Lecture Hall Algorithm
Usually, there is some small time, denoted here as s, that expires when a node switches
from listening to other’s reaction to starting its own response. Although this time is
usually very short, the existence of such blind period causes the algorithm not to
produce a unique outcome every time. Two students whose ages are fairly close to each
other may start responding unaware of each other activity, resulting in a collision of
their responses. Below, we establish the probability of selecting one and only one
student by the Lecture Hall Algorithm.

In the following analysis, let n denote the number of students involved in the
self-selection and r the average value of the time delay measured in units of s, which is
the minimum time difference between the expiration of timers in two nodes needed to
avoid a collision of their responses. All time delays in the following will be expressed
in units of s. Any monotonically non-decreasing function can be used to map the value
v held by a node into its timer delay t.

If the youngest student speaks up at time t, then another student will not hear it and may
react to the lecturer announcement as late as t+1. Hence, whether a collision will occur
or not depends on the difference between the smallest delay and the second smallest
delay. If this difference is larger than a time unit s=1, then there will be no collision.

We assume that each time delay is a non-negative, independent and identically
distributed random variable defined by the cumulative probability distribution function,

 7

F with the average value r. We also assume that each potential responder can hear any
other responder (if this assumption does not hold, larger time unit needs to be selected,
equal to the sum of the response and acknowledgement times, but the analysis below
will remain essentially unchanged).

The probability of collision, Pc, under these assumptions is:

() dxxFxFnydFyFnxdFnP n
x

x

n
c)(')]1(1[1)()(1)1()(

0

1
1

2

0
∫∫∫
∞

−
+

−
∞

+−−=−−= .

With uniformly distributed delays over a range [0,2r], it simplifies to

(1)
r

n

rr

x
dx

r

x

r

n
P

nrnnr

c 22

1
11

2

1
11

2

1
1

2
1

12

0

112

0

≈⎟
⎠
⎞

⎜
⎝
⎛ −−=⎥⎦

⎤
⎢⎣
⎡ +−+=⎥⎦

⎤
⎢⎣
⎡ +−−=

−−−

∫ .

 The approximation holds if r>>n which needs to be selected such anyway to keep the
probability of collision low.

To reduce the probability of collision, we can increase r, since s, the time unit, is a
constant determined by physical parameters of the nodes’ radios. Such an increase
however, impacts the expected delay of self-selection, Td, which is:

∫∫
∞∞

− −=−=
00

1)](1[)(')](1[dxxFxdxxFxFnT nn
d .

With uniformly distributed time delays, over the range [0,2r], it reduces to:

(2) .
1

2

2
1

1

2
)]

2
1[

2

0

12

0 +
=⎟

⎠
⎞

⎜
⎝
⎛ −

+
−=−=

+

∫ n

r

r

x

n

r
dx

r

x
T

rnr
n

d

The maximum delay is naturally 2r. Hence, there is a trade-off between the probability
of selecting exactly one winner and the expected or maximum delay of such
self-selection.

When the collision does occur, then multiple winners have self-selected themselves. If
this is not acceptable, the self-selection needs to be repeated, until no collision occurs.
We start with the important for applications case in which the values hold by the
responder nodes are limited to the range [0,vmax], and for average delay we also assume
that their values are uniformly distributed over that range so vave=vmax/2. The function
used for mapping values into delays is in this case is simply t(v)=v*r*2/vmax.

The repeated self-selections are designed slightly differently from the initial one. First,
only responders to the previous self-selection participate in the next one. Second, from
the timing of the first response received, the challenge broadcaster can compute the
smallest value that the responders hold, vi. Then, the responders recompute their delays
as ti=(v-vi)*(2r)i+1/vmax. It is easy to show by induction over the repeated self-selection
round number that if the first recorded response started in the i-th selection at time ti,
then the responders values are between vi= ti*vmax/(2r)i and vi + vmax/(2r)i. The original
broadcaster sends then repeat message that contain just this starting value vi. We will
denote the length of this repeat message broadcast as tb. Unlike the initial broadcast that
must include the details of the challenge, the repeated broadcast may include just
unique identifier of a self-selection and its starting value vi so it could be very short. If
there is a collision of responses, another, i+1 round of self-selection will start. With this

 8

design, we will derive the upper bound for the average and the maximum time to
identify the unique responder.

Two cases needs to be considered. The first case involves the continuous values of the
random variable used for self-selection. In this case, it is easy to notice that the
probability that the smallest and the next smallest value of the random variable at each
node differ by a certain value d is given by:

ave

n

ave
c v

nd

v

d
dP

22
11)(≈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−= for d<<2vave/n.

It is easy to show by using Taylor series that if 55.2 ≥≥ nr then the probability of

collision in i-th round of rebroadcast, denoted)(i
cP , satisfies an inequality

i
ci

c
r

P
P

)9.0(
)(< .

For a collision to occur, we also must have at least two responders participating, so
Td<2r/3. The total average delay of selecting the unique winner, Tud, can be then
expressed as:

,54.17.1)1(
3

2

0

)(
b

i

i
cbdud trPit

r
TT +<+⎟

⎠
⎞

⎜
⎝
⎛ ++< ∑

∞

=

where 55.2 ≥≥ nr . Since nr 5.2≈ is in O(n), so is the average delay of selecting the
unique winner in this case.

The maximum delay for more general case of values limited to the range [0,vmax] is
defined as follows. In the last round of self-selection, denoted as l, we must have
d>vmax/(2r)l+1 because all values of the remaining responders from interval
[vl,vl+vmax/(2r)l] are spread over the interval [0,2r]. Hence, the maximum delay, Tmaxd,
is:

⎣ ⎦ .)(log)(log)(max rdvtrT raverbd +−+=
Hence, the maximum delay is linear in the number of responders and logarithmic in the
range of value held by the nodes as well as in the difference between the smallest and
next smallest value.

The second case that we need to consider involves nodes holding random values that
are discrete and uniformly distributed over the range [1, 2vave]. Proceeding like in the

previous case, at most ⎥
⎥

⎤
⎢
⎢

⎡
=

)ln(

)ln(

r

v
i ave rounds of self-selection will be needed to get all

responders having the same value of the variable directing self-selection. The
corresponding delay will be smaller then 2.03r+1.54tb. Then, the second stage of the
repeated self-selection starts in which each remaining responder generates a random
uniformly distributed delay over the range [0,2r]. Hence, each subsequent round has
the probability of collision defined by Equation (1).

To derive contribution of this second stage to the average delay, we observe that each
round ending in collision has at least two responders and since the previous responders
are the only eligible participants, the number of responders is at most n and is
non-increasing over the rounds. Hence, the probability of collision is non-decreasing
from round to round and the average delay of each round is bounded by the round with
two responders, therefore it is 2r/3. So, the average delay of randomized rounds, Trd, is

 9

,56.473.3
1

67.0
])1()

3

2
()[1(

1
b

c

cb

i

i
cbdcrd tr

P

Ptr
Pit

r
TPT +<

−
+

<+++−< ∑
∞

=

where the final approximation is valid under the assumption that nr 5.2≥ . Hence the
total delay in this case is also modest 5.43r+6.1tb and since r is in O(n), so is the
average delay.

Although working well in practice, the randomized second stage of self-selection
cannot provide us with the bound for the maximum delay. To obtain such a bound, we
need to use a different design that takes advantage of unique identifiers that all
participating nodes possess. Let m denote the length of such identifiers in bits. Then, in
m short rounds, the challenge broadcaster sends the request for response based on the
i=1,2,…m bit of the responders’ identifiers. If this bit is one in the responder identifier,
the node immediately responds, if it is zero, it does not. Each round lasts at most 2tb
since the response does not carry any data. If the node does not respond but hears
others responding, it drops out from future rounds; otherwise it stays. If the node
responded, it is eligible for the next round. When the challenge broadcaster detects
collision or silence in the round, it continues to the next round, otherwise, the unique
winner has been just selected.

With the described above protocol, if the m-th round is reached then at most two nodes
can be left active, as the surviving nodes must have the same m-1 bits of their identifiers.
Clearly, in such a case these two nodes must differ in the last bit of their identifiers to
have distinct from each other. Hence, the complexity of this stage is 2mtb, or O(1) in the
number of nodes participating (but logarithmic in the total number of nodes in the
network, as they all have to possess unique identifiers). It is also O(1) in the range of the
values that they hold. The preceding stage is linear in the number of participating nodes
and logarithmic in the average value of their holdings.

The final case that needs to be considered involves the applications in which there is no
upper limit on the values held by the nodes participating in self-selection. In such a case,
we can introduce the range seeking stage that will reduce this case to the ones discussed
above in a finite number of steps. This stage is very simple, in each step i, we compute
the delay of each node participating in self-selection as ti+1=min(2r,ln(ti)) and set t0

equal to the value held by the node. This stage stops when there are responders (they
may not be unique) with the delay smaller than 2r. If there is more than one responder,
all of them will continue to the subsequent stage in which we know the upper limit for
the minimum value, vmin held by the nodes. Clearly, if this stage continues to step l, then
vmin>exp(exp(…exp(2r)…) where exponential function is applied l times. Each step
increases the range for the minimum value so much that for all practical purposes, a few
steps will be sufficient.

In summary, we have demonstrated that the expected delay of self-selection of the
unique node is finite and in practical applications small, linearly proportional to the
number of nodes participating in the Lecture Hall Algorithm.

There is an important improvement to the Lecture Hall Algorithm in case when the
properties for which the nodes self-select are monotonically non-increasing with time
(for example as a result of a permanent failure of a node) and self-selection is made
repeatedly. In such a case, once the node wins self-selection and does not experience a
decrease in property subject to self-selection, it can respond immediately to the

 10

subsequent self-selections, complete removing the delay of each self-selection.
However, after the node’s property subject to self-selection decreases, such a node
should return to the normal rules of computing its delay. This version of the Lecture
Hall Algorithm is at the same time efficient (no time delay to self-selection in a normal
case) and robust (a selection of the best fit node in case of a change or a failure of the
winner).

Self-Selective Routing
In a sensor network, typically there is no direct link between two nodes needing to
exchange packets with one another, so packets from the source have to travel through
multiple intermediate nodes, making hops, to reach the destination. Hence, a routing
protocol has to be deployed to guide the packets from the source to the destination.

The routing problem can be reduced to the problem of finding the destination of the
next hop at each routing step, which is very similar to the problem of finding the
youngest student in a lecture hall. Naturally, the Lecture Hall Algorithm can be applied.
The subsequent question is, what kind of node is the best candidate for relaying the
packets?

One simple criterion is based on an observation that the neighbor with the smallest
number of hops to the destination is the best candidates for relaying packet at each step
as using it will minimize the number of routing steps. Under the assumption of
symmetric links, if every packet keeps track of the number of intermediate nodes it has
traveled, a node can estimate the distance to the destination by listening to the packets
coming from the destination node.

Self-Selective Routing (SSR) [12] is a sensor network routing protocol that attempts to
find the next node with the smallest number of hops to the destination using the Lecture
Hall Algorithm. In the lecture hall example, given in the previous section, the ages of
students are converted into time delays, whereas in Self-Selective Routing, the delays
are defined by the number of hops to the destination.

Sensor networks are often deployed densely, so to avoid having too many nodes
competing for self-selection, we introduced a version of Self-Selective Routing in
which only nodes that are one hop closer to the destination than the sender are allowed
to self-select. This version, called Self-Healing Routing (SHR), employs a scheme for
route repair. In SHR, all nodes eligible to respond are the same distance to the
destination, so randomness is used in computing the response delay to avoid multiple
replies. The delay is selected using random variable uniformly distributed over the
interval [0,2r]. Hence, the average delay of the self-selection is defined by Equation (2)
and therefore the average delay at each hop is inversely proportional to the probability
of collision of two self-selection responses. Using this relation allows us to keep the
collision probability low with reasonable initial delay of selecting a path (the
self-selections for subsequent packets sent to the same destination can use zero delay
response by the currently self-selected node discussed above that incurs no
self-selection delay in a reliable network, yet preserves the protocol ability to reroute in
case of failures). Indeed, the typical value of the minimum separation time is s=0.1 ms,
so with modest value of r around 50 ms (500 time units), the probability of collision is
below on percent even if there are several nodes capable of forwarding the packet. This
is confirmed with simulation results discussed later in this section.

 11

When a node wants to send a packet to the destination, it simply broadcasts the packet,
without caring which node should be the next to pass the packet. This broadcast is a
challenge broadcast that synchronizes the potential responders. The next node,
self-selects itself, as described in the Lecture Hall Algorithm, and then rebroadcasts the
packet. This rebroadcast is both the self-selection broadcast and the new challenge
broadcast for transmitting over the next hop. Every node that initiates a synchronization
broadcast must also keep listening on the channel. In one version of the protocol,
suitable for networks with high density of the nodes, once the sending node detects that
rebroadcast has occurred, it sends out an acknowledgement broadcast, in order to
suppress unnecessary retransmissions. In addition, the sender in Self-Healing Routing
listens to the response to its broadcast. If such a response does not arrive within 2r
interval (signaling the failure of the previously existing link), the node rebroadcasts the
original packet. After the predefined number of unsuccessful rebroadcasts, the sender
increases its distance to the destination by 2, starting a process of route repair. The
change of distance to destination makes the sender ineligible for self-selection for
carrying the current and subsequent packets to the same destination, if the nodes with
shorter distance are present in its neighborhood.

Thanks to triple role of each broadcast: self-selection to the previous announcement,
synchronization for the next selection and forwarding the packet, the protocol uses just
one broadcast for each hop. Our experiments [13] with sensor networks showed that
duplicate self-selections were rare for reliable communication and the average number
of broadcast per hop in this setting was close to 1.1, with 10% of additional packets
resulting from multiple self-selections and rebroadcast of packets lost to collisions
caused by packets traversing some nearby paths.

Properties of Self-Selective Routing
Self-Selective Routing is a straightforward result of applying the Lecture Hall
Algorithm to the routing problem. Interestingly, it possesses several important features
that were not considered at all when the protocol was being developed by us.

First, Self-Selective Routing is resilient to node and link failures, because it does not
attempt to maintain explicit paths and therefore there is no need to constantly monitor
the connectivity of established paths. A failed node or a normal node with a failed link
will not participate in the self-selection procedure anymore. Hence, unlike many
traditional wireless routing protocols [14-16] that incur a significant amount of control
overhead and delay to deal with failures, Self-Selective Routing can quickly establish
new alternative paths (Figure 3). The resilience to failures also offers the freedom of
turning any node off at any time to conserve energy, even if the node resides on an
active path.

Figure 3. Packets immediately seek an alternative path in case of a node failure.

A

B

C

D A

B

C

D

(a) (b)

 12

In addition, Self-Selective Routing can also automatically converge to shortest paths
discovered through listening to passing by packets in two-way traffic. Figure 4
illustrates this capability. At the beginning (Figure 4(a)), packets from node A to node
D are traveling through nodes B and C. Although there is a shorter path via node E, it is
not recognized at this time because of either randomness or the recent arrival of node E
in this neighborhood. If the communication continues to flow one way from A to D,
then node E would never know its real distance to node D. Once node D transmits a
packet to node A, node E will immediately realize that it is within one hop of node D. It
will then win the competition against node C because its distance to node A is just one.
The next time node A sends a packet to node D, node E will self-select itself for
retransmission, which effectively shortens the path between nodes A and D by 1. The
same principle applies to cases where the path length is greater than 2.

Figure 4. SSR is capable of constantly looking for and switching to shorter paths.

The self-adjustability to shortest paths comes from two factors, the dynamic nature of
the protocol and no cost path switching. Because of the randomness introduced in the
distance-to-delay conversion function, two consecutive packets traveling from the
same source to the same destination may follow completely different paths. This
permits nodes on these paths to continuously update their known distances to the source
node, based on latest information. Furthermore, the freedom of switching paths
without paying any price allows nodes to always select whichever path is shorter. These
two factors are not available in many traditional routing protocols [14-16], where paths
are relatively fixed so that nodes never get enough chances to evaluate alternative
paths. Moreover, switching to shorter paths comes in those protocols at the cost of route
maintenance overhead which may offset the benefit.

Finally, Self-Selective Routing can automatically avoid congestion. In high density
regions, packets may have to wait for a long time in the transmission queue before
being transmitted. When a node with a long transmission computes a short time delay,
it will likely not be able to self-select itself as quickly as nodes in less congested areas.

A

B C

D

(a) (b)

E A

B C

D E A

B C

D

(c)

E

 13

(a) (b)

Figure 5. (a) Normal traffic between nodes A and B. (b) Traffic between nodes A and B
avoiding congestion due to the newly introduced traffic between nodes C and D.

Figure 5 illustrates the actual paths taken by different packets in two simulation runs.
Figure 5(a) depicts the case with one communicating pair sending packets from node A
to node B. Figure 5(b) shows the same network with an additional communicating pair
generating traffic from node C to node D. As shown in this figure, with proper selection
of conversion function, Self-Selective Routing is capable of forwarding packets around
the congested area caused by the intensive traffic between C and D. In spite of the
increased path length between A and B, traveling around the congested area may still be
faster than traveling through it.

Finally, we will find the bound on the cost of route repair in Self-Healing Routing. As
already described, in Self-Healing Routing the sender of a packet listens to the response
to its broadcast. If such a response does not arrive within the time λ, signaling the
failure of the previously existing link, the node rebroadcasts the original packet. After
the predefined number of unsuccessful rebroadcasts (two in the current
implementation), the sender increases its distance to the destination by 2. We will call
such a step a recalibration of the hope distance. Let’s consider a sensor network of n
nodes in which there is a failure of nodes or their links after which the shortest path
from the source to the destination surviving the failure is of length l<n. That means that
once all nodes not on any of the surviving paths recalibrate their distance to at most n,
and the nodes on the surviving paths recalibrate to their correct value, also at most n,
then all traffic will flow through the shortest surviving path. The smallest initial
distance that nodes needing recalibration might have is 1, so at most (n-1)*n/2, hence
O(n2) recalibration steps are needed.

To show that this limit is tight, let’s consider a network consisting of two separate lines,
each of n/2-2 nodes connected to the source and the destination. Let’s assume that one
line is cut off from the destination at the last hop. It is easy to show by induction on the
size of the network, n, that n(n-2)/8 recalibrations and n(n-2) hops are required to
recalibrate this network after such failure. Once the first packet recalibrates the network,
all the subsequent ones would be able to follow the shortest surviving path. To find a
bound on the number of hops that such recalibrating packet does, we notice that a
recalibration must happen at least every n hops. Indeed, each hop without the

 14

recalibration decreases the distance of the packet to the destination by 1, so after n hops
the packet would arrive there. From this observation, it immediately follows that the
number of hops made by the packet recalibrating the network after a failure is less than
the cube of the number of nodes in the network.

There are other protocols that route on the premise of avoiding neighbor state
maintenance and letting receivers contend to forward packets. A typical protocol in this
class is GRAB [17] that avoids the use of geographical location information but does
not support explicit route repair. GRAB also uses a more aggressive and complex
fault-tolerance technique by actively enforcing the flow of redundant packets to follow
multiple paths to a destination. Other opportunistic protocols rely on geographic
location information to support routing decisions. For instance, BLR [18] uses location
coordinates to allow only receivers in an “eligibility region,” defined as a region in
which all nodes are closer to the destination than the sender and can overhear each
others’ transmission, to contend to forward packets. A prioritized back-off delay
scheme, similar to one used in SHR, ensures that the closest node forwards the packet
and suppresses redundant transmissions. However, upon learning the closest receiver,
the sender will then forward following packets only to that receiver for a set number of
transmissions. This latter technique may only be effective with ideal links. GeRaF [19]
employs a similar eligibility region with a prioritized back-off delay technique.
However, GeRaF also uses a dual-radio approach with busy-tone signaling to make
sure channels are clear before sending data to reduce the probability of collisions.
GeRaF uses a request-to-send/clear-to-send (RTS/CTS) packet forwarding technique
which imposes more packet forwarding overheard than SHR’s approach. IGF [20] is
similar to the above protocols, but uses an eligibility region defined as a 60° fan-shaped
sector extending from a sender directly towards the destination. If the sender does not
hear any responses, it will shift the eligibility region and try to find other receivers.
Other similar location-based protocols include PSGR [21] and SIF [22].

Finally, the Cognitive Packet Network (CPN) routing [23] makes another connection
between neural and sensor networks. CPN uses Random Neural Networks with
Reinforcement Learning (RNNRL) to make routing decisions in a distributed fashion at
each node to ensure the best effort QoS based on different user defined QoS criteria,
including power saving, important for sensor networks. Unlike SHR, the transmission
is carried by Dumb Packets that followed routes selected during the cognitive stage.
CPN is well suited for wireless networks with large volume of data transmitted and
users with different QoS requirements. In contrast, SHR targets ad hoc, unreliable
sensor networks often with a simple pattern of communication from sensing node to a
single base station.

Performance of the New Protocol
Traditional routing protocols often use routing tables that dictate to each node the exact
neighbor to which a packet should be sent in order to reach a specific destination.
Prominent examples of such an approach include AODV [24] and Directed Diffusion
[25]. This fundamentally unicast routing approach intrinsically requires each node to
actively maintain knowledge of who its neighbors are and what their states are (e.g.,
active, sleeping, destroyed). It should be also noted that in typical sensor network
setting, each node potentially communicates with a base station, so the sensor network
with n nodes has n sources and a single destination. SHR requires in such a case just a
single distance to the base station to be stored at each node. This is certainly no more

 15

routing information than traditional path based routing protocols keep as they have to
store entire path to the destination either at each source node or along the path to the
destination. It should be noted that in reliable network, SHR-PP described above will
use the single route to the destination without any delay, but at the same time, it will be
ready to change this route in case of any failures. This version of SHR, as shown below,
dramatically improves the delay and the delivery ratio of the SHR protocol.

To test the performance of both versions of Self-Healing Routing, we ran a set of
simulations of a large scale network to compare SHR performance with the
performance of AODV [24] used as an example of a traditional routing protocol. SHR
used r equal to 50 ms. We ran simulations over a square of size of 8 units populated
with randomly placed 500 sensor nodes, each of which had a nominal transmission
range of 1 unit. We used the free space propagation model [26] to simulate wireless
medium over which packets with a mean size of 1000 bytes were sent at a mean interval
of 40 s. Each simulation was executed ten times with different random number seeds.
Since all sensor network protocols use flooding to obtain initial routing information
(paths to destinations in case of traditional protocols, distances to destination in case of
SHR and other grade-based algorithms), we excluded this stage from comparison as it
is essentially the same for all ad-hoc sensor network routing protocols.

Figure 6. SHR, SHR-PP and AODV performance based on the rate of transient failures.

We performed simulations with variable rate of transient node failures in which each
node was assigned a mean active time and a mean sleep time. The sum of these two
times was fixed at 200 seconds. The time spent in each mode was distributed
exponentially about the mean value. There are several possible causes for transient
node failures such as error-prone links, power management induced duty cycles, or
excessive packet collisions. Of these, the duty cycle induced failures are the least

 16

disruptive since they may be coordinated with the networking protocol. The presented
simulation results are based on a random transient failure model, so they exaggerate the
effect of duty cycles on the protocols.
As seen in Figure 6, AODV has the worst transmission delay that increases
significantly with the transient failure rate. SHR-PP has by far the smallest delay of the
three protocols compared, by factor 10 shorter then AODV’s for the most failure prone
case. SHR has lower delays than AODV for all cases in which transient failures are
present. Both SHR and SHR-PP slightly increase the incurred transmission delay when
the transient failure rate is growing and the ratio of transmission delay between the two
shrinks from about 4 in case of reliable network to 3 for the transient failure rate
reaching 30%. In terms of delivery ratio, AODV is the best, dropping from 100% in a
reliable case to 95% for 30% transient failure rate. SHR-PP delivery ratio drops from
100% to 76% over the same region while SHR’s is slightly lower, dropping from 92%
to 75%. However, AODV requires much greater number of MAC packet transmissions
than either SHR or SHR-PP does. This is because to find a new path, the AODV’s route
repair algorithm initiates a new route request phase, causing a broadcast flood of
packets from the point at which the route is severed. AODV uses over 30 times more
packets than SHR-PP does. Hence, by implementing a simple replication scheme, in
which each packet in SHR-PP is sent 3 times, we could bring the SHR-PP delivery rate
above that of AODV while still keeping the number of MAC packets 10 times lower
than in AODV. Our preliminary testing of such a scheme demonstrated that indeed
packet drops are independent of each other and replication brought expected
improvements in the delivery rate.

Figure 7. (a) The route repair topology. (b) SHR route repair performance. (c)
MintRoute repair packet delivery.

We have also implemented the SHR protocol on MicaZ motes [27] using TinyOS
version 1.1.7 to compare performance of this implementation with the basic MintRoute
protocol available for this hardware [28]. In the implementation, we used B-MAC with
acknowledgments disabled to provide link layer functionality. DATA packets of 29
bytes were sent for 12.5 min at a rate of 5sec/packet in the indoor environment. The
radio power was set to -21dBm and a distance of 1m provided a reliable delivery rate.
However, with moderate probability some long distance transient links also formed.
SHR used λ of 22ms.

(a) Short path destroyed
Short path
destroyed

 17

The tests were run on a route repair topology shown in Figure 7(a). It contains three
disjoint paths of unequal length: a short, medium and long one to test the repair
capabilities of the protocols. During testing we blocked mote 12 and 13 in the network
by placing a metal container over the motes after the first 5 minutes of the test.

 SHR MINTROUTE

Packets sent 3,368 12,882
Packets received 8,563 41,050
Packet ratio (receive/send) 2.54 3.19

Delivery rate 78% 79.33%
End to end delay 128ms 25 ms

Average hop count 6.10 5.99
Route setup time 5 sec 190 sec

Table 1. Results of experimental runs on MicaZ motes.

As shown in Table 1, both protocols had similar delivery rate and average hop count.
The MintRoute has much smaller end-to-end delay, as SHR uses self-selection at each
hop which slows down its packet transmission. However, SHR was faster by more than
the order of magnitude in establishing the routes to the destination (5 sec. versus 190
sec. for MintRoute). SHR was also much more energy efficient, as it sent about 4 time
less packets and received about 5 times less packets than MintRoute. These two radio
operations of sending and receiving packets are usually the most expensive in terms of
energy in wireless sensor networks. Finally, SHR can repair a broken route and find the
next shortest and reliable path quickly, in a few milliseconds. Hence the removal of
motes is not detrimental to SHR's performance. MintRoute also recovered from the
broken shortest path but required 150 seconds to do so, see Figure 7(b). The destruction
of motes can be devastating to MintRoute, making it inadequate for a situation where
motes can be compromised.

Concluding Remarks
Intuitively, the more often failures occur in a sensor network, the more control packets
are needed in response to topology changes in traditional routing protocols [14-16] that
keep explicit routes. This, in turn, increases the number of packet transmissions and
packet delivery delays. However, this is not the case for Self-Healing Routing which
has been shown to be able to maintain constant end-to-end delays and constant energy
consumption as the node failure rate increases [29-30].

Self-Selective Routing works well because the routing problem is essentially the
problem of finding the most suitable relay node, and the Lecture Hall Algorithm
happens to be an extremely efficient algorithm for identifying an optimum value held
by a set of nodes/processors. Following the same principle, any sensor network
algorithm that depends on finding the required value or optimum held by the nodes
within communication range of the node running the algorithm can greatly benefit from
the Lecture Hall Algorithm. As a simple example, in many clustering algorithms, a
node must be selected among a group of neighbor nodes to take the role of a local leader.
A suitable node could be the one with the most residual energy or the one with the best
connectivity. Applying the Lecture Hall Algorithm to such a problem is rather
straightforward.

 18

The implications of the concept of computing with time could be more far-reaching.
The important consequence is that it effectively connects two distinct research areas.
The idea of converting quantities into time delays that dramatically improved the
computational efficiency for artificial neural networks has proven to be of great benefit
to sensor networks. Moreover, the self-selection mechanism in the Lecture Hall
Algorithm is not unlike the winner-takes-all competition in Competitive Learning
[31-33], a well-established field of artificial neural networks. Hence, we plan to explore
the computing with time paradigm for artificial neural networks as well as any other
networks that use broadcast as the basic communication primitive.

Acknowledgement
The presented research was sponsored by US Army Research laboratory and the UK
Ministry of Defence and was accomplished under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the US Army Research Laboratory, the U.S. Government, the
UK Ministry of Defence, or the U.K. Government. The US and UK Governments are
authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon. Authors wish also to acknowledge help
of Mark Lisee and Christopher Morrell in running the simulations with the protocols
discussed in this paper.

References

1. Hopfield, J. J., Brody, C. D. and Roweis, S. (1998) Computing with action

potentials. Proceedings of Advances in Neural Information Processing Systems
10, Denver, CO, 1-6 December, pp. 166-172. MIT Press, Cambridge, MA.

2. Hopfield, J. J. (1995) Pattern recognition computation using action potential
timing for stimulus representation. Nature, 376, 33-36.

3. Hopfield, J. J. (1996) Transforming neural computations and representing time.
Proc. National Academy of Sciences of the United States of America, 93,
15440-15444.

4. Unnikrishnan, K. P., Hopfield, J. J. and Tank, D. W. (1992)
Speaker-independent digit recognition using a neural network with
time-delayed connections. Neural Computation, 4, 108-119.

5. Gerstner, W. and Kistler, W. M. (2002) Spiking Neuron Models, Cambridge
University Press, Oxford.

6. Maass, W. and Bishop, C. M. (1998) Pulsed Neural Networks. MIT Press,
Cambridge, MA.

7. Bialek, W., Rieke, F., van Steveninck, R. R. d. R. and Warland, D. (1991)
Reading a neural code. Science, 252, 1854-1856.

8. Thorpe, S., Fize, D. and Marlot, C. (1996) Speed of processing in the human
visual system. Nature, 381, 520-522.

9. VanRullen, R. and Thorpe, S. J. (2001) Is it a bird? Is it a plane? Ultra-rapid
visual categorisation of natural and artifactual objects. Perception, 30, 655-668.

 19

10. VanRullen, R. and Thorpe, S. J. (2001) The time course of visual processing:
From early perception to decision-making. J. Cognitive Neuroscience, 13,
454-461.

11. Mowshowitz, A., and Bent, G. (2007). Formal Properties of Distributed
Database Networks. Proceedings of the First Annual Conference of
Information Technology Alliance, Adelphi, MD, September 25-27.

12. Chen, G., Branch, J. W. and Szymanski, B. K. (2006) A Self-selection
Technique for Flooding and Routing in Wireless Ad-hoc Networks. J. Network
and Systems Management, 14, 359-380.

13. Wasilewski, K., Branch, J., Lisee, M. and Szymanski, B. K. (2007).
Self-healing routing: a study in efficiency and resiliency of data delivery in
wireless sensor networks. Proceedings of Unattended Ground, Sea, and Air
Sensor Technologies and Applications IX, Orlando, FL, 9-13 April, pp.
656218-1 - 656218-12, vol. 6562, SPIE Press, Bellingham WA.

14. Johnson, D. B., Maltz, D. A. and Broch, J. (2001) DSR: The Dynamic Source
Routing Protocol for Multi-Hop Wireless Ad Hoc Networks. In Perkins, C. E.
(ed.), Ad Hoc Networking, Addison-Wesley, Reading, MA.

15. Perkins, C. E. and Bhagwat, P. (1994) Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers. Computer
Communication Review, 24, 234.

16. Perkins, C. E. and Royer, E. M. (1999) Ad-hoc on-demand distance vector
routing. Proceedings of WMCSA99, New Orleans, LA, 25-26 February, pp.
90-100, IEEE CS Press, Los Alamitos, CA.

17. Ye, F. Zhong, G., Lu, S. and Zhang, L. (2005) Gradient broadcast: a robust data
delivery protocol for large scale sensor networks, ACM Wireless Networks, 11,
285-298.

18. Heissenbttel, M., Braun, T., Bernoulli, T. and Waelchli, M. (2004) BLR:
beaconless routing algorithm for mobile ad hoc networks, Elsevier’s Computer
Communications Journal, 27, 1076-1086.

19. Zori M. and Rao, R. R. (2003) Geographic Random Forwarding (GeRaF) for ad
hoc and sensor networks: multihop performance, IEEE Transactions on Mobile
Computing, 2, 337-348.

20. Blum, B. M., He, T., Son, S. and Stankovic, J. A. (2003) IGF: a robust
state-free communication protocol for sensor networks, Technical Report
CS-2003-11, University of Virginia, VA.

21. Xu, Y. Lee, W.-C., Xu, J. and Mitchell, G. (2005) PSGR: priority-based
stateless geo-routing in wireless sensor networks, Proceedings of IEEE Conf.
Mobile Ad-hoc and Sensor Systems, Washington, DC, 7-10 November, pp. 8,
IEEE Press, Los Alamitos, CA.

22. Chen, D., Deng, J. and Varshney, P. K. (2005) A state-free data delivery
protocol for multihop wireless sensor networks, Proceedings of IEEE Wireless
Communications and Networking Conference, New Orleans, LA, 13-17 March,
pp. 1818-1823, IEEE Press, Los Alamitos, CA.

23. Gelenbe, E. and Lent, R. (2004) Power aware ad hoc cognitive packet networks,
Ad Hoc Networks, 2, 205-216.

24. Perkins, C. E. and Belding-Royer, E. M. (1999) Ad hoc On-Demand Distance
Vector Routing. Proceedings of the 2nd IEEE Workshop on Mobile Computing
Systems and Applications, New Orleans, LA, 25-26 February, pp. 90-100,
IEEE Press, Los Alamitos, CA.

 20

25. Intanagonwiwat, C., Govindan, R., and Estrin, D. (2000) Directed diffusion: a
scalable and robust communication paradigm for sensor networks, Proceedings
of ACM MobiCom, Boston, MA, 6-11 August, pp. 56-67, ACM Press, New
York, NY.

26. Rappaport, T. S. (2002) Wireless Communications: Principles and Practice,
Prentice Hall, Upper Saddle River, NJ.

27. Crossbow Technology, Inc., http://www.xbow.com.
28. Woo, T. Tong, and Culler, D. (2003) Taming the underlying challenges of

reliable multihop routing in sensor networks,. Proceedings of the ACM SenSys,
Los Angeles, CA, 5-7 November, pp. 56-67, ACM Press, New York, NY.

29. Chen, G., Branch, J. W. and Szymanski, B. K. (2005) Local Leader Election,
Signal Strength Aware Flooding, and Routeless Routing. Proceedings of
WMAN05, Parallel and Distributed Processing Symposium, Denver, CO, 4-8
April, p. 244, IEEE CS Press, Los Alamitos, CA.

30. Chen, G., Branch, J. W. and Szymanski, B. K. (2006) A Self-selection
Technique for Flooding and Routing in Wireless Ad-hoc Networks. J. Network
and Systems Management, 14, 359-380.

31. Grossberg, S., (1976) Adaptive Pattern-Classification and Universal
Recoding.1. Parallel Development and Coding of Neural Feature Detectors.
Biological Cybernetics, 23, 121-134.

32. Malsberg, v.d. (1973) Self-Organizing of Orientation Sensitive Cells in the
Striate Cortex. Kybernetick, 14, 85-100.

33. Rumelhart, D. E. and Zipser, D. (1985) Feature Discovery by Competitive
Learning. Cognitive Science, 9, 75-112..

