
Component-Based Simulation and Agent-Based Brokering:
Towards Ad Hoc Simulations in Crisis and Emergency Management

 Boleslaw Szymanski and Gilbert Chen Linda F. Wilson
 Department of Computer Science Thayer School of Engineering
 Rensselaer Polytechnic Institute Dartmouth College
 Troy, NY 12180 Hanover, NH 03755-8000

Keywords: distributed simulation, simulation software
tools, components, software agents, mobile agent systems

ABSTRACT
Crisis and emergency management systems often

require the use of large simulations to predict future
developments of the simulated phenomena. For example,
floods and forest fires are dynamic phenomena with
devastating consequences. Simulations for these disasters
require large amounts of information, including current and
future weather data and the topography of the local terrain.
In both cases, the ability to create an efficient simulation to
support responses to a crisis is useful only if the
development time is short enough and the simulation is fast
enough to be used in real-time crisis management. This
paper introduces our work in developing software tools for
integrating simulations and sensor data in support of crisis
and emergency management. In particular, it presents three
basic challenges for developing these tools and discusses our
approaches for meeting these challenges.

INTRODUCTION
A large-scale simulation is often developed as a single

monolithic system that integrates all of the desired
functionality and uses predefined data resources. It is
difficult to build such a complicated system from scratch,
particularly when parallel processing is involved. Early in
the design stage, the decision must be made about the type
of model to be used. There are two fundamental types of
simulation models. The first type uses partial differential
equations to describe the simulated phenomena and the
corresponding simulation solves numerically the appropriate
set of partial differential equations. The other type of model
is based on discrete event simulation. Either the first
principles are applied to individual entities comprising the
simulation or events are scheduled into the future of such
entities based on an inter-event time distribution. The
development of either type of system is very time-
consuming and requires significant expertise in a diverse
number of disciplines, from mathematics and statistics

needed to formulate the correct model, to computer science
to develop an efficient and reliable implementation of the
model, to application-specific disciplines relevant to the
simulated phenomena. The complexity is even higher when
the model being developed is multi-disciplinary or involves
interactions at different temporal and spatial scales, as is
often the case for the modern simulations. As a result, such
simulations cannot be developed rapidly to respond to
quickly changing, unpredictable, and urgent needs arising in
crisis and emergency management.

For example, consider floods resulting from the
combined effects of spring thaws and heavy rains.
Overflowing rivers damage or wash out bridges and roads,
destroy property, and endanger human life. The damaged
transportation system breaks the well-established paths of
traffic, making it difficult to help victims and repair damage.
The weather, topography of the terrain near and around the
river beds, and the current transportation system topology,
including roads and railroads, all influence which area will
be endangered and all impact the possible remedies. The
coordinated preventive and relief efforts require the ability
to predict the development of the floods in response to
different actions of the rescuers and to the ever-changing
natural conditions.

A forest fire is another example of a highly dynamic and
devastating phenomenon that changes and evolves
depending on the weather, winds, topography of the local
terrain, and responses of the firefighters. In those cases, and
in many others, the ability to create an efficient simulation to
support responses to a crisis is useful only if the
development time is short enough and the simulation fast
enough to be used in real-time crisis management.
Furthermore, the simulation should be able to incorporate all
available data from various sources, from satellite maps to
ground crews to sensors and embedded systems. In short,
such a simulation must be capable of linking to a variety of
available simulation components and real-time data sources.

This paper describes our work developing software
tools that enable the rapid creation of a spatially explicit
simulation of evolving phenomena and the efficient
execution of such a simulation so the result can be used in

Bolek
Text Box
Proc. Computer Networks and Distributed Systems Modeling and Simulation, CNDS'03, Orlando, FL,
 January 2003, p. 37-44

real-time to predict future developments and to evaluate
alternative remedies and countermeasures. To achieve these
goals, we are advocating component-based simulation that
are created independently of each other and can be linked
together into a simulation with the help of software agent
systems, including mobile agents. In recent years, web-based
simulation has exhibited explosive growth in the simulation
research community. Our effort builds on and expands the
recently developed techniques to create new capabilities
beyond those found in conventional simulation technology
and to provide integration with real-time data sources, such
as wireless sensors.

CHALLENGES
Web-based simulations rely on the Internet in two

fundamental ways. First, the Internet is a large repository of
proven simulation components and simulations that can be
reused by the new simulations. Second, the Internet can
provide large amounts of computing resources for the
execution of newly-created simulations. In this second role,
the Internet environment is by definition parallel and
distributed, yet compared to the typical parallel and
distributed simulation (PADS) environment, the
communication delays can be an order of magnitude larger
and also more unpredictable (i.e., the distribution of the
delays will have much higher variance than in the parallel
architecture environment). In the first role, the development
of the simulation components on the web is fully
decentralized, and as such does not have any centralized
coordinator or oracle with the knowledge of currently
available resources. Hence, there is a need for providing
information services and infrastructure that enables
advertising the existence, searching for, and linking together
simulations and data sources over the Internet.
Consequently, to reach our goal of developing software
tools for integrating existing simulations and data sources
into an efficient real-time simulation, we need to meet three
basic challenges, as described below.

• Scalable Resource Brokering Techniques: There is a

need for building a framework for efficient registering,
translating, searching, and linking of different
components, simulations, and data resources over the
Internet. The scalable brokering service must provide
necessary interfaces that will make the differences
between formats, naming, and descriptors of services
transparent to the participants. The broker must also be
able to dynamically adjust its knowledge based on
availability of the resources, current status of the
network, etc. Finally, the broker should be distributed
itself to ensure high reliability and scalability of its
services.

• Standard Interfaces and Linkage Techniques: Each
of the participating resources, from a single data
resource to the most complex simulation, needs to
encapsulate its interface in a standard way to enable

collaboration and linkage. An important challenge is to
identify those parts of interfaces that are simulation
specific (i.e., which express semantics of the simulation
itself and therefore can be standardized) as opposed to
the parts that are application specific and therefore must
be defined as general objects consistent with
requirements of the languages used by the participating
simulations. Likewise, as discussed later in this paper,
there are several different techniques that could be used
to link the web-distributed resources into a coherent
integrated simulation. These techniques must be
evaluated from the point of view of their overhead,
accuracy, and applicability to different classes of linked
components.

• Efficient Composition Techniques: The methodology
is needed for developing suitable inter-simulation
synchronization techniques and for implementing
simulation engines that are needed to run the entire
integrated simulation together. This methodology must
include techniques that will address scalability, load
balance, and efficiency of the execution. The issues that
need to be researched include (i) classes of simulation
engines needed to run the entire integrated simulation,
(ii) use of compilation or interpretation of the linkages
between simulations, (iii) dynamic load distribution
among available computational resources, and others.

The following sections describe the approaches we are using
to address these challenges.

SCALABLE RESOURCE BROKERING
TECHNIQUES

Crisis and emergency management simulations require
access to dynamically changing data from other sources such
as sensors, datasets, or even other simulations. This data
may come from multiple sources or even dynamic sources
with sporadic availability. For example, a simulation
predicting the severity of a flood needs rainfall and weather
predictions (from weather simulations), current water levels
(from sensors), and information regarding the existing
drainage infrastructure (from databases).

Ideally, a simulation would interact with a “cloud” ' of
dynamically changing data and computational resources
available on a network. Simulations and other resources may
join or leave the cloud at any point in time. For example,
consider a scenario in which some of the communication
within the cloud occurs via a wireless network. A forest fire
simulation could communicate with various sensors out in
the field as well as with a weather simulation running at a
remote site. Naturally, sensors located in hostile
environments may communicate sporadically with the rest of
the network.

We are developing a software framework to support
such a simulation and data cloud. A key feature is that
simulations and other cloud participants are designed with
no prior knowledge of the details of other simulations and

data sources. Our framework does not rely on relationships
or data formats that are precompiled into simulation codes,
and simulations do not need be rewritten just because
capabilities have been added to or removed from the cloud.
Instead, the framework facilitates the translation of
information to permit seamless integration of multiple,
independently-developed software systems.

Central to our framework is the concept of a resource
brokering system to register, match, and link the resources
available in the cloud. The broker acts as a database for
cloud participants and their advertised services. It also
allows the transparent replacement of one service with
another that provides similar functionality, without requiring
the participants to be written to conform to a particular
standard. When a resource joins the cloud, it advertises its
services to the broker. Later, when a data consumer searches
for a particular service, it queries the broker, who is
responsible for linking the consumer with its corresponding
data producer. Whether or not the desired service is found,
the broker maintains a standing request for that service. The
standing request is useful if a match is not found initially or
an incomplete service is found. If an unavailable service or
a better service becomes available at a later time, the broker
notifies the requesting consumer of this. If a desired service
becomes unavailable, the data consumer is automatically
switched to the next-best service. Thus, the broker
maintains up-to-date information concerning the cloud
participants and their availabilities.

A key part of the brokering system is the ability to
describe services accurately and unambiguously so that
consumers and producers of data can be matched correctly.
This difficult problem is fundamental to the desire to have
various simulations and data resources interacting
seamlessly through the cloud. In order to minimize the
impact on existing systems and remain highly flexible, it is
preferable to describe the data being transferred, rather than
define a common format for the data. Furthermore, it is
necessary to be able to describe relationships between
formats.

The brokering system must provide the following
capabilities:

• Resource discovery and matching: The system must

support mechanisms that allow for the dynamic
discovery of entities in the network and the dynamic
matching of data consumers with suitable data
producers. Since resources may join or leave the cloud
at any time, and multiple producers may be candidates
for a particular consumer, the system must rank
producers using user-specified measures and be able to
switch to alternative producers as necessary.

• Resource database: The system needs a database to
store resource descriptions obtained when a resource
joins the cloud.

• Resource description and identification: The system
must allow the individual resources to describe and

advertise their attributes and capabilities. The system
must also provide a mechanism to uniquely identify
each resource at all times.

• Data conversion: The system must be able to handle
data format and unit conversions, since participating
resources are not required to produce data in a specified
format.

• Communication: The system must provide a
communication mechanism that enables resources to
communicate with each other and understand each
other. In particular, data consumers must be able to
connect to and execute functions of producer resources.

• Resource management: For robustness and efficiency,
the system must manage various resources in the
system. The system must monitor the cloud participants
and perform periodic housekeeping. It must also
determine (e.g., using leasing) when desired producers
are no longer available and notify corresponding
consumers.

• Security and authentication: The system must ensure
that the resources within the cloud are authenticated
with suitable mechanisms in order to ensure the
integrity of the system. The system must also provide
suitable privacy mechanisms to protect sensitive data.
Furthermore, malicious agents must not be allowed to
disrupt the system.

As discussed in [7, 9, 11, 13-14], we have developed a

basic brokering system using Sun Microsystems' Jini
technology [12]. The Agent-Based Environment for Linking
Simulations (ABELS) framework uses software agents to
create the cloud environment described previously. ABELS
components include the participating data resources, the
brokering system, and generic local agents (GLAs) which
interface the data resources to the cloud. As described in
[14], the brokering system is distributed in order to be
scalable and robust. We are currently developing a security
framework, described in [10], that provides mechanisms for
authentication, authorization, privacy, and integrity. Future
work includes the development of improved matchmaking
algorithms and mobile helper agents to perform
sophisticated data queries and resource validation.

STANDARD INTERFACES AND LINKAGE
TECHNIQUES

We begin by defining each resource in terms of its two
essential parts, as follows.

• The component semantics that are defined by the

component internal structure and program. Hence, the
semantics are not easily accessible to the integrated
simulation. Therefore, the semantics of each resource
will be defined in a natural language and will be
accessed, analyzed, and approved by the creators of the

integrated web-based simulation. We do not plan to
subject it to any automated processing.

• The syntax of the data that the resource can produce or
consume and their relation to real and simulated time.
This information will be defined in the component
interface. Since the time, real or simulated, is an
essential parameter of the simulation proper, as opposed
to the data that are associated with the particular
application of the simulation, the interface parameters
that refer to time will have predefined types associated
with them. The presence or absence of these predefined
time types will be an essential part of characterization
of the resource and its interface.

Component Classification
Based on the relation of the produced and/or consumed

data to the real and simulated time, we first need to make a
distinction between two worlds, the real world and the
simulation world. In the simulation world, we identify the
following three basic types of components [1].

Type I: Time-independent components that produce values

on their output ports in response to the data provided in
the input ports. Such components cannot send out an
event without having received one. Any event produced
by the processing of an arrival event contains the same
time-stamp as that of the latter. An example is a data
conversion component that can change distance
measurements from inches to meters.

Type II: Simulated-time driven components whose
interfaces include timers. Timers are used to forward a
request of advancing the simulated time to the
simulation engine. Components are notified when such
a request can be granted. As a result, this type of
component is explicitly aware of the simulated time but
does not operate directly on it. An example of such a
component could be a server that delays any received
events for a certain amount of time.

Type III: Simulated-time controlled components that are
simulations maintaining their own simulation clocks.
Consequently, such components can contain a
simulation engine or the entire simulation that is used as
a component for the integrated simulation. In its
simplest form, these components can receive a message
only if such a message does not cause causality errors.
The easiest way to ensure the causality constraint is to
accept only those messages whose time-stamp is equal
to or greater than the value of the simulation clock.
Simulations using this approach are called conservative
because they always maintain causality constraints
between parallel components [4]. By extending the
processing capabilities of components to enable them to
process backwards in the simulated time, the
components become capable of processing messages
with any time-stamp or even anti-messages that request
removal of effects of previously received messages. A

simulation that uses such components is often referred
to as an optimistic simulation because it allows parallel
components to advance their simulation clocks without
considering clocks of other components [5]. If such
eager processing leads to a causality error, the
erroneous computation is simply reversed. Hence, the
time in optimistic simulations can flow in both direction
and therefore is often referred to as virtual time. One
extreme way of implementing optimistic simulation is to
store each state of the component and retrieve it when
needed, but such a solution would require an enormous
amount of memory and would involve a lot of copying
operations. The complementary implementation uses
reverse processing to undo the forward processing with
the minimum data storage. Efficient implementations
use a mixture of both techniques.

In the real world there is only one type of components,

real-time driven components that have output ports that
produce real time data and input ports that consume real
time data. An example of such a component is a repository
of real time data gathered by sensors. For a real-time
component to cooperate with any simulation components,
adaptors must be used to translate the real time into
simulated time or vice versa.

An interesting feature of the classification scheme
presented above is that it enables hierarchical composition
of components, in which a group of components can be
treated as a single higher-level component of a certain type.
We plan to develop an interface description language that
will be used to define interfaces of the components in such a
way that their automatic classification will be possible.
These interfaces will become instrumental in advertising,
localizing, linking, and optimizing the collaboration between
resources on the Internet in the process of building real-time
simulations.

The key to a component is the declaration of both input
and output ports. Input ports, or functions, define what
functionalities the component can provide. Output ports, on
the other hand, define what functionalities the component
needs to fulfill its function. Such a distinction between
functionality providers and functionality consumers
separates the development phase of components from the
linking phase, allowing for more flexibility and more
composability in our approach.

Port Classification
In most cases, the size of simulations created by

combining components will necessitate the use of multiple
processors to produce results in time for use in emergency
and crisis management. Hence, the techniques developed for
PDES (Parallel Discrete Event Simulation) are helpful. They
include conservative and optimistic protocols defined
earlier. Recently, we discovered the third class of PDES
protocols based on a lookback [3], the ability of a
component to change its past without affecting other

components and therefore dual to the well known lookahead
[4]. A component with a certain amount of lookback is able
to process out-of-time-stamp order events (or stragglers)
falling into its lookback windows. Hence, lookback allows a
component to advance its simulated time more aggressively.
We have shown that a lookback is able to exploit the intra-
component parallelism. It is also more commonly observed
than lookahead, which is the ability to predict the future,
upon which conservative protocols largely depend. For
optimistic simulations, lookback can be used to reduce the
frequency of rollbacks. It is also of importance for
simulation theory that, as we proved in [2], lookback
enables the conservative simulation to circumvent the speed
limit imposed by the critical times of events, which was
previously thought impossible by many researchers [6].

We observe that the three classes of PDES protocols
arise from different ways of manipulating the simulated
time. In conservative protocols, the simulated time is treated
in the same way as the physical time. An analogy between
the simulated time of distributed systems and the physical
time was given by Lamport [8]. Later, Jefferson proposed
the notion of virtual time, in which the simulated time could
be reversed, leading to the optimistic protocols [2]. Now,
lookback allows us to ignore to some extent the time-stamp
order of events imposed by the simulated time. These three
classes of protocols actually correspond to the following
three types of communication ports in simulation
components:

• regular ports which send and receive only regular

messages (also called positive messages in the
optimistic simulation community) that carry events in
the future of the receiving component,

• virtual ports which send and receive regular messages
and anti-messages, and

• lookback ports which send and receive regular
messages and stragglers.

Different types of ports may coexist in the same

component. For example, consider an FCFS (first-come-
first-serve) server with a lookback input port. It can deal
with stragglers without difficulty, because such stragglers
can be correctly processed by inserting them into the internal
list sorted in time-stamp order. The output port of the FCFS
server, however, is always of the regular type. The
semantics of the FCFS server guarantee that it never outputs
events in out-of-time-stamp order. A regular port can
therefore be connected to this output port, simplifying the
simulation modeling of other components that receive events
from this FCFS server.

It is self-explanatory that a regular input port can be
linked to a regular output port, while a virtual input port can
be linked either to a regular output port or a virtual output
port. With lookback ports, however, the connection rules
become more complicated. For instance, an input port
connected to two regular output ports should be of lookback

type if these two ports belong to different Type III
components. If they reside on the same Type III component,
a regular input port can be used. The rules presented above,
and similar ones that we plan to derive by analyzing all
feasible port interconnections, can be checked during the
configuration processing, providing partial correctness
checking of the combined simulation.

Efficient Composition Techniques
On the theoretical level, it is possible to show that

different types of components, as defined in the previous
section, differ in their ability to link with other components.
Observing such limitations decreases the number of possible
solutions that needs to be evaluated. Once the configuration
of the collection of component simulation is established, the
type of linkages needs to be selected to ensure efficient
execution. For components that are not in a tightly-
synchronized loop, the distributed processing is sufficiently
efficient. Examples of such loosely-connected components
include simulations in which one phenomenon is not
significantly affected by the other. For example, the flow
and volume of water in the river is not affected by the
structural changes in the bridge, hence the river flood
simulation can just feed the flow simulation into the bridge
simulation without a feedback. On the other hand, in the
forest fire case, there is a direct impact of the fire's progress
on local winds and vice versa. Such a feedback between
interacting phenomena creates a tight synchronization
between them. For components that are tightly synchronized,
the efficient composition of the simulations may require the
mobile component approach described below.

Mobile Component Approach
The combination of the component-based approach and

mobile agents is a promising direction in distributed
simulation. These two approaches are complementary;
while the component-based approach makes it possible to
assemble programs that are developed independently and
that are distributed geographically, mobile agents improve
the efficiency of co-execution by exploiting the locality and
by changing the component location dynamically.

Computer networks exhibit a characteristic similar to
that of computer architecture: the closer, the faster. Existing
distributed environments are usually slow due to the low
bandwidth of the network. It is true that in the future this
will change, but at the same time the processor power will
also improve at a rate perhaps comparable to that of the
network speed. Therefore, the network may still remain a
bottleneck for years to come, and code mobility is an
efficient solution to this problem. Even if it is impossible to
move all collaborating programs to one host, it is always
advantageous to allow the programs to dynamically change
their location to take advantage of the multiplicity of the
network nodes with different computing power and
communication bandwidth.

We propose a mobile component approach to address
the efficiency issue in the integrated simulation. It aims to
enhance the reusability of existing simulations and to
improve the efficiency of component-based simulations of
complex systems. A basic element of the mobile component
simulation is a simulation server with a communication
interface exposed to mobile agents. In fact, the only
difference between a simulation server and a mobile
component is that the former is immobile while the latter is
mobile.

The use of mobile agents is justified by the observation
that in order to reduce the variance of results, a simulation
must be run for a long time. As a result, the size of the
simulation code is often small compared to the amount of
data produced by such a run. Therefore, when linking
multiple simulations, it is beneficial to move all simulation
components together to a powerful multiprocessor instead of
running them on separate hosts. This approach can
significantly reduce the overhead of communication among
simulation components. For instance, if the TCP/IP-based
message passing can be replaced by the shared-memory data
sharing, time savings can be very significant. Moreover, this
overhead can be totally eliminated if some compiler
techniques are used to reconfigure the simulation, as we
discuss later.

Mobile agents can also be used to link together
simulations that are immobile and therefore better modeled
as simulation servers. The main benefit of using agents in
such a case is that the mobile agent can choose the host on
which to execute. The communication flow between the
agent and the simulation servers may be asymmetric or
dynamic. Some simulation servers may have more intensive
communication with the linking agent than the others.
Moreover, the available resources on a host may vary
greatly from time to time. Therefore, an efficient solution is
to exploit the code mobility by allowing agents to move
freely across the network, always executing on the host that
is optimal according to certain criteria.

Jini is a distributed computing environment where
components can be integrated in a “plug and play” style
[12]. At first glance, Jini seems a good candidate for our
purpose. However, it is not, for two reasons. First, Jini is
not a truly component-based approach. The discovery of a
service is done by the client program itself. The service-
finding procedure is embedded in the client code which
prevents changes during integration. Our proposed
component approach tries to look for an appropriate service
and to link with it at a higher level than the client level (the
configuration level), during the integration. Secondly, Jini is
not a real mobile system, because much of the service code
still resides on the server side, and the client is more likely
to use a proxy object to access the service. Even if it is fully
mobile, it does not address the efficiency issue of the
linkage, for the linkage is still in the form of function calls,
unlike the direct access method in the reconfigurable
components that we will discuss later.

Efficiency of Linkage
Our earlier investigation of the efficiency issue in the

component linkage and of the usefulness of the mobile
component approach is based on the spatially explicit
simulation model of Lyme disease. A set of PDEs (Partial
Differential Equations) simulate the spread of ticks and a
discrete event simulation models the movements of mice. To
link the PDE solver with the discrete event simulation
according to the idea of mobile component approach, we
evaluated several different solutions.

In the first implementation, we used the Aglets system
to build a mobile agent. The communication between the
agent and the interfaces was implemented in TCP/IP. The
results were very disappointing. The simulation ran about 40
times slower than the same simulation with direct links
between the component simulations. To eliminate the
language efficiency effect, we rewrote the agent, initially
written in Java, in C++ and as a result the simulation speed
nearly doubled, still leaving it 25 times slower than the
direct link version. This pointed out to TCP/IP
communication as a source of the slowdown. Hence, we
replaced the communication between the agent and the
continuous simulation by co-locating both on an SGI Origin
2000 with shared-memory inter-process communication.
The resulting simulation showed a great improvement; the
execution time dropped nearly five times compared to the
C++ agent version. The still remaining five time slowdown
compared to the direct linkage was caused by the
communication between the agent and the discrete event
simulation that was still implemented in TCP/IP. The
discrete event simulation ran on an IBM SP2 which is not a
shared-memory computer. So, to test how fast this
simulation can run, the program that contains the interface
for the discrete event simulation was moved to the SGI
Origin 2000. The agent used shared-memory message
passing to access both interfaces. The execution time
improved further, as shown in Table 1.

This experiment suggests that in the component-based
approach, the communication among different components
might become the bottleneck that degrades the performance
considerably. Efficient communication is the key to an
efficient implementation using the mobile component
approach.

Reconfigurable Components
The experiments of linking two different simulations

showed that the mobile component approach has the ability
to reuse existing simulations with little extra programming
effort. However, the best result achieved by the agent
approach is still twice slower than that of multiparadigm
approach in which two parts are directly connected. This
performance gap is caused mainly by the communication
overhead between the agent and the continuous simulation.
While the multiparadigm approach accesses the tick density
through memory references, the mobile component approach

uses shared-memory based message passing. This reveals a
fundamental problem of all component-based approaches.
While it is convenient to decompose the complex system
into smaller subsystems, the boundaries between the
subsystems that are created by decomposition incur
significant communication overhead. This problem is often
ignored, yet it is a serious limitation of this approach.

We propose to address this problem by using
reconfigurable components, whose communication
mechanism is subject to change either prior to the execution
or during the execution. If, for example, two reconfigurable
components reside on different hosts, they need to utilize
some network protocol such as TCP/IP. When they move to
the same host, they can communicate by direct memory
references. Note that replacing the TCP/IP with shared-
memory message passing does not require reconfiguration of
the system because the replacement can be done by simply
switching to a different communication medium. Direct
memory references become possible only when multiple
components can be merged into one program so that they
will share the same memory space.

There are two methods to implement reconfigurable
components. The first is to design a component description
language that is able to model simulations and mobile
agents. If a simulation and an agent on the same host need to
communicate efficiently, they can be recompiled to form a
single program within which they can directly access the
variables owned by the other. Such recompilation, however,
is rarely feasible for web-based simulations. The more
practical solution is to require that each participating
simulation server exposes an interface through which the
agent can interact with it. Instead of loading the interface
directly, the mobile component system places a driver
between the interface and the simulation server. This driver
is responsible for loading the interface and the incoming
agent, both of which are written in the same component
description language. Before execution, the incoming agent
and the interface are merged by the driver into a single
executable, in the form of a dynamic library, with the
connected ports being eliminated. The driver then loads the
generated dynamic library which will execute under the
same address space with the simulation server. Thus, the
final result is that the agent can access the component
simulation information using direct memory references.

CONCLUSIONS
In this paper, we outlined challenges for web-based

simulations and described our approaches to some of them.
In particular, we described the novel approach to building
components that can be reused in many different
simulations. We also developed an agent-based brokering
system that enables the location and matching of
components on the web. Finally, we developed the linkage
techniques that enable efficient composition of the
components into an integrated simulation.

The components that we propose use standard interfaces
that describe the types of data expected on each but also
allow for additional, simulation-specific types such as timers
and clocks that deal with simulation time. The most
important feature of components is their independence from
the sources and targets of data that are provided by the
interfaces. The binding of ports represented by the interfaces
happens in a stage separate from component definition and
compilation. This stage, called configuration, defines the
interconnection between ports and also optimizes the
linkages between components.

Our current work on novel synchronization protocol for
parallel execution of simulation components focuses on
lookback, its types and uses in both conservative and
optimistic parallel discrete even simulations [15]. We
identified four types of lookback: direct strong, direct weak,
universal strong and universal weak. These types differ in
the level to which they can avoid rollbacks and anti-
messages. Their definitions are based on the impact time of
events. We also showed that all four types of lookback exist
in, for example, Portable Communication System (PCS)
simulation and presented the performance gains that can be
achieved by each one used individually or in combination
with others. Using lookback improves the performance of
Web-based simulation.

There are two important results from our current work.
One is negative but expected. The Internet cannot provide
large computation resources for truly interactive simulations.
An overhead of an order of magnitude or more makes such
interactions infeasible. The important part in this negative
result is interactiveness which is limited by the latency of
the Internet communication. This latency is the result of
laws of physics (the speed of light) and no future
technological advances can diminish this problem. (If
anything, such advances can only exacerbate the problem.
The latency of communication from the East Coast to the
West Coast in the United States, for example, is bounded
from below by the speed of light, but the amount of
computation that an average computer can do at the time
equal to this bound is increasing exponentially with
improving technology, so the same time delay cost more in
terms of computer cycles as computer technology evolves.)
Fortunately, the bandwidth grows even faster than the
computational power of processors, so simulations that do
not require interactions (no cause-effect feedback) can be
efficiently executed over the Internet.

The second conclusion from our current work is
positive as it clearly indicates that the Internet could (and in
our opinion should) be used as a convenient repository for
simulation components. Our brokering technique can
reliably and quickly provide information about the sources
of components and match data producer components with
consumer components. Furthermore, it allows the
transparent replacement of one producer component with
another that provides similar functionality. Yet, there are
still unresolved issues to reap the full potential of such a

solution. The most important among them relate to the
component semantics and information assurance. How to
describe the function of a component in an abstract way,
how to make sure that the component does what it advertises
(no less to have trustworthy results, but also no more, to
avoid Trojan horse type of attacks) are the most important
questions. We plan to investigate such issues in the future.

Acknowledgement
 This work was partially supported by NSF Grant KDI-
9873138 and DARPA NMS Contract F300602-00-2-0537.
The content of this paper does not necessarily reflect the
position or policy of the U.S. Government - no official
endorsement should be inferred or implied.

REFERENCES

[1] G. Chen and B. K. Szymanski, “Component-Oriented

Simulation Architecture: Toward Interoperability and
Interchangeability,” Proc. Winter Simulation
Conference (WSC2001), SCS Press, pp. 495-501

[2] G. Chen and B.K. Szymanski, “Lookback: A New Way
of Exploiting Parallelism in Discrete Event Simulation” ,
Proceedings of the 2002 Workshop on Parallel and
Distributed Simulation, May 2002, IEEE Press, Los
Alamitos, CA, pp. 89-96.

[3] G. Chen and B.K. Szymanski, “Lookahead, Rollback
and Lookback, Searching for Parallelism in Discrete
Event Simulation” , Proc. SCS 2002 Summer Computer
Simulation Conference, July 2002.

[4] R. Fujimoto, “Parallel discrete event simulation,”
Communications of the ACM, October 1990.

[5] D. Jefferson, “Virtual time” , ACM Transactions on
Programming Languages and Systems, vol. 7, no. 3, pp.
404-425, July 1985.

[6] D. Jefferson and P. Reiher, ``Supercritical speedup'',
Proceedings of the 24th Annual Simulation Symposium,
pp. 159-168, April 1991.

[7] A. Kumar, L. F. Wilson, T. B. Stephens, and
Sucharitaves, “The ABELS Brokering System”,
Proceedings of the 35th Annual Simulation Symposium,
63-71, April 2002.

[8] L. Lamport, “Time, clocks, and the ordering of events
in a distributed system”, Communication of the ACM,
vol. 21, no. 7, pp. 558-565, July 1978.

[9] G. A. Mills-Tettey, G. Johnston, L. F. Wilson, J. M.
Kimpel, and B. Xie, “The ABELS System: Designing
an Adaptable Interface for Linking Simulations,”
Proceedings of the 2002 Winter Simulation Conference,
to appear, December 2002.

[10] G. A. Mills-Tetty and L. F. Wilson, “Security Issues in
the ABELS System for Linking Distributed
Simulations” , Proceedings of the 36th Annual
Simulation Symposium, to appear, April 2003.

[11] J. T. Sucharitaves, L. F. Wilson, and A. Kumar, “The
Generic Local Agent: Gateway to the ABELS System,”
Proceedings of the 2002 High Performance Computing
Symposium, 147-154, April 2002.

[12] Sun Microsystems, web site, http://www.sun.com/jini.
[13] L. F. Wilson, D. Burroughs, A. Kumar, and J.

Sucharitaves, “A framework for linking distributed
simulations using software agents” , Proceedings of the
IEEE, vol. 89, no. 2, pp. 186-200, February 2001.

[14] L. F. Wilson, B. Xie, J. M. Kimpel, G. A. Mills-Tettey,
and G. Johnston, “The Design of the Distributed
ABELS Brokering System”, Proceedings of the Sixth
IEEE International Workshop on Distributed Simulation and
Real-Time Applications (DS-RT), 151-158, October 2002.

[15] G. Chen and B.K. Szymanski, “Lookback Types and
Uses,” Proceedings of the 2002 Workshop on Parallel
and Distributed Simulation, submitted in December
2002, available also as Technical Report, Department
of Computer Science, Rensselaer Polytechnic Institute,
web site, http://www.cs.rpi.edu/~szymansk/papers.html.

Table 1. Comparison of different implementations of the synchronization agent. Note that no agent exists in the
multiparadigm approach; instead, an extra communicating thread in the continuous simulation is responsible for cooperating
with the discrete event simulation. This thread uses memory references to access continuous simulation state variables, and
uses TCP/IP to interact with discrete event simulation.

Source
Language

Communication between
Agent and Continuous

Simulation

Communication between
Agent and Discrete-Event

Simulation

Execution
Time

(seconds)

Multi-paradigm
Approach

C++ 52

Java TCP/IP TCP/IP 1946

C++ TCP/IP TCP/IP 1320

C++ Shared-memory TCP/IP 289

Mobile
Component
Approach

C++ Shared-memory Shared-memory 117

