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ABSTRACT 
Crisis and emergency management systems often 

require the use of large simulations to predict future 
developments of the simulated phenomena.  For example, 
floods and forest fires are dynamic phenomena with 
devastating consequences.  Simulations for these disasters 
require large amounts of information, including current and 
future weather data and the topography of the local terrain.  
In both cases, the ability to create an efficient simulation to 
support responses to a crisis is useful only if the 
development time is short enough and the simulation is fast 
enough to be used in real-time crisis management. This 
paper introduces our work in developing software tools for 
integrating simulations and sensor data in support of crisis 
and emergency management.  In particular, it presents three 
basic challenges for developing these tools and discusses our 
approaches for meeting these challenges. 

 

INTRODUCTION 
A large-scale simulation is often developed as a single 

monolithic system that integrates all of the desired 
functionality and uses predefined data resources. It is 
difficult to build such a complicated system from scratch, 
particularly when parallel processing is involved.  Early in 
the design stage, the decision must be made about the type 
of model to be used. There are two fundamental types of 
simulation models. The first type uses partial differential 
equations to describe the simulated phenomena and the 
corresponding simulation solves numerically the appropriate 
set of partial differential equations. The other type of model 
is based on discrete event simulation. Either the first 
principles are applied to individual entities comprising the 
simulation or events are scheduled into the future of such 
entities based on an inter-event time distribution. The 
development of either type of system is very time-
consuming and requires significant expertise in a diverse 
number of disciplines, from mathematics and statistics 

needed to formulate the correct model, to computer science 
to develop an efficient and reliable implementation of the 
model, to application-specific disciplines relevant to the 
simulated phenomena. The complexity is even higher when 
the model being developed is multi-disciplinary or involves 
interactions at different temporal and spatial scales, as is 
often the case for the modern simulations. As a result, such 
simulations cannot be developed rapidly to respond to 
quickly changing, unpredictable, and urgent needs arising in 
crisis and emergency management.  

For example, consider floods resulting from the 
combined effects of spring thaws and heavy rains. 
Overflowing rivers damage or wash out bridges and roads, 
destroy property, and endanger human life. The damaged 
transportation system breaks the well-established paths of 
traffic, making it difficult to help victims and repair damage. 
The weather, topography of the terrain near and around the 
river beds, and the current transportation system topology, 
including roads and railroads, all influence which area will 
be endangered and all impact the possible remedies. The 
coordinated preventive and relief efforts require the ability 
to predict the development of the floods in response to 
different actions of the rescuers and to the ever-changing 
natural conditions. 

A forest fire is another example of a highly dynamic and 
devastating phenomenon that changes and evolves 
depending on the weather, winds, topography of the local 
terrain, and responses of the firefighters. In those cases, and 
in many others, the ability to create an efficient simulation to 
support responses to a crisis is useful only if the 
development time is short enough and the simulation fast 
enough to be used in real-time crisis management. 
Furthermore, the simulation should be able to incorporate all 
available data from various sources, from satellite maps to 
ground crews to sensors and embedded systems. In short, 
such a simulation must be capable of linking to a variety of 
available simulation components and real-time data sources. 

This paper describes our work developing software 
tools that enable the rapid creation of a spatially explicit 
simulation of evolving phenomena and the efficient 
execution of such a simulation so the result can be used in 
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real-time to predict future developments and to evaluate 
alternative remedies and countermeasures. To achieve these 
goals, we are advocating component-based simulation that 
are created independently of each other and can be linked 
together into a simulation with the help of software agent 
systems, including mobile agents. In recent years, web-based 
simulation has exhibited explosive growth in the simulation 
research community. Our effort builds on and expands the 
recently developed techniques to create new capabilities 
beyond those found in conventional simulation technology 
and to provide integration with real-time data sources, such 
as wireless sensors. 

 

CHALLENGES 
Web-based simulations rely on the Internet in two 

fundamental ways. First, the Internet is a large repository of 
proven simulation components and simulations that can be 
reused by the new simulations. Second, the Internet can 
provide large amounts of computing resources for the 
execution of newly-created simulations. In this second role, 
the Internet environment is by definition parallel and 
distributed, yet compared to the typical parallel and 
distributed simulation (PADS) environment, the 
communication delays can be an order of magnitude larger 
and also more unpredictable (i.e., the distribution of the 
delays will have much higher variance than in the parallel 
architecture environment). In the first role, the development 
of the simulation components on the web is fully 
decentralized, and as such does not have any centralized 
coordinator or oracle with the knowledge of currently 
available resources. Hence, there is a need for providing 
information services and infrastructure that enables 
advertising the existence, searching for, and linking together 
simulations and data sources over the Internet. 
Consequently, to reach our goal of developing software 
tools for integrating existing simulations and data sources 
into an efficient real-time simulation, we need to meet three 
basic challenges, as described below. 
 
• Scalable Resource Brokering Techniques: There is a 

need for building a framework for efficient registering, 
translating, searching, and linking of different 
components, simulations, and data resources over the 
Internet. The scalable brokering service must provide 
necessary interfaces that will make the differences 
between formats, naming, and descriptors of services 
transparent to the participants. The broker must also be 
able to dynamically adjust its knowledge based on 
availability of the resources, current status of the 
network, etc. Finally, the broker should be distributed 
itself to ensure high reliability and scalability of its 
services. 

• Standard Interfaces and Linkage Techniques: Each 
of the participating resources, from a single data 
resource to the most complex simulation, needs to 
encapsulate its interface in a standard way to enable 

collaboration and linkage. An important challenge is to 
identify those parts of interfaces that are simulation 
specific (i.e., which express semantics of the simulation 
itself and therefore can be standardized) as opposed to 
the parts that are application specific and therefore must 
be defined as  general objects consistent with 
requirements of the languages used by the participating 
simulations. Likewise, as discussed later in this paper, 
there are several different techniques that could be used 
to link the web-distributed resources into a coherent 
integrated simulation. These techniques must be 
evaluated from the point of view of their overhead, 
accuracy, and applicability to different classes of linked 
components. 

• Efficient Composition Techniques:  The methodology 
is needed for developing suitable inter-simulation 
synchronization techniques and for implementing 
simulation engines that are needed to run the entire 
integrated simulation together. This methodology must 
include techniques that will address scalability, load 
balance, and efficiency of the execution. The issues that 
need to be researched include (i) classes of simulation 
engines needed to run the entire integrated simulation, 
(ii) use of compilation or interpretation of the linkages 
between simulations, (iii) dynamic load distribution 
among available computational resources, and others. 
 

The following sections describe the approaches we are using 
to address these challenges. 

 

SCALABLE RESOURCE BROKERING 
TECHNIQUES 

Crisis and emergency management simulations require 
access to dynamically changing data from other sources such 
as sensors, datasets, or even other simulations. This data 
may come from multiple sources or even dynamic sources 
with sporadic availability.  For example, a simulation 
predicting the severity of a flood needs rainfall and weather 
predictions (from weather simulations), current water levels 
(from sensors), and information regarding the existing 
drainage infrastructure (from databases). 

Ideally, a simulation would interact with a “cloud” ' of 
dynamically changing data and computational resources 
available on a network. Simulations and other resources may 
join or leave the cloud at any point in time. For example, 
consider a scenario in which some of the communication 
within the cloud occurs via a wireless network.  A forest fire 
simulation could communicate with various sensors out in 
the field as well as with a weather simulation running at a 
remote site.  Naturally, sensors located in hostile 
environments may communicate sporadically with the rest of 
the network. 

We are developing a software framework to support 
such a simulation and data cloud.  A key feature is that 
simulations and other cloud participants are designed with 
no prior knowledge of the details of other simulations and 



data sources. Our framework does not rely on relationships 
or data formats that are precompiled into simulation codes, 
and simulations do not need be rewritten just because 
capabilities have been added to or removed from the cloud.  
Instead, the framework facilitates the translation of 
information to permit seamless integration of multiple, 
independently-developed software systems.   

Central to our framework is the concept of a resource 
brokering system to register, match, and link the resources 
available in the cloud.  The broker acts as a database for 
cloud participants and their advertised services. It also 
allows the transparent replacement of one service with 
another that provides similar functionality, without requiring 
the participants to be written to conform to a particular 
standard. When a resource joins the cloud, it advertises its 
services to the broker. Later, when a data consumer searches 
for a particular service, it queries the broker, who is 
responsible for linking the consumer with its corresponding 
data producer. Whether or not the desired service is found, 
the broker maintains a standing request for that service.  The 
standing request is useful if a match is not found initially or 
an incomplete service is found.  If an unavailable service or 
a better service becomes available at a later time, the broker 
notifies the requesting consumer of this.  If a desired service 
becomes unavailable, the data consumer is automatically 
switched to the next-best service.  Thus, the broker 
maintains up-to-date information concerning the cloud 
participants and their availabilities. 

A key part of the brokering system is the ability to 
describe services accurately and unambiguously so that 
consumers and producers of data can be matched correctly.  
This difficult problem is fundamental to the desire to have 
various simulations and data resources interacting 
seamlessly through the cloud.  In order to minimize the 
impact on existing systems and remain highly flexible, it is 
preferable to describe the data being transferred, rather than 
define a common format for the data.  Furthermore, it is 
necessary to be able to describe relationships between 
formats. 

The brokering system must provide the following 
capabilities: 

 
• Resource discovery and matching:  The system must 

support mechanisms that allow for the dynamic 
discovery of entities in the network and the dynamic 
matching of data consumers with suitable data 
producers.  Since resources may join or leave the cloud 
at any time, and multiple producers may be candidates 
for a particular consumer, the system must rank 
producers using user-specified measures and be able to 
switch to alternative producers as necessary. 

• Resource database:  The system needs a database to 
store resource descriptions obtained when a resource 
joins the cloud. 

• Resource description and identification:  The system 
must allow the individual resources to describe and 

advertise their attributes and capabilities.  The system 
must also provide a mechanism to uniquely identify 
each resource at all times. 

• Data conversion:  The system must be able to handle 
data format and unit conversions, since participating 
resources are not required to produce data in a specified 
format. 

• Communication: The system must provide a 
communication mechanism that enables resources to 
communicate with each other and understand each 
other.  In particular, data consumers must be able to 
connect to and execute functions of producer resources. 

• Resource management:  For robustness and efficiency, 
the system must manage various resources in the 
system.  The system must monitor the cloud participants 
and perform periodic housekeeping.  It must also 
determine (e.g., using leasing) when desired producers 
are no longer available and notify corresponding 
consumers.   

• Security and authentication:  The system must ensure 
that the resources within the cloud are authenticated 
with suitable mechanisms in order to ensure the 
integrity of the system.  The system must also provide 
suitable privacy mechanisms to protect sensitive data. 
Furthermore, malicious agents must not be allowed to 
disrupt the system. 
 
As discussed in [7, 9, 11, 13-14], we have developed a 

basic brokering system using Sun Microsystems' Jini 
technology [12]. The Agent-Based Environment for Linking 
Simulations (ABELS) framework uses software agents to 
create the cloud environment described previously. ABELS 
components include the participating data resources, the 
brokering system, and generic local agents (GLAs) which 
interface the data resources to the cloud.  As described in 
[14], the brokering system is distributed in order to be 
scalable and robust.  We are currently developing a security 
framework, described in [10], that provides mechanisms for 
authentication, authorization, privacy, and integrity.  Future 
work includes the development of improved matchmaking 
algorithms and mobile helper agents to perform 
sophisticated data queries and resource validation. 

 

STANDARD INTERFACES AND LINKAGE 
TECHNIQUES 

We begin by defining each resource in terms of its two 
essential parts, as follows. 

 
• The component semantics that are defined by the 

component internal structure and program. Hence, the 
semantics are not easily accessible to the integrated 
simulation. Therefore, the semantics of each resource 
will be defined in a natural language and will be 
accessed, analyzed, and approved by the creators of the 



integrated web-based simulation. We do not plan to 
subject it to any automated processing. 

• The syntax of the data that the resource can produce or 
consume and their relation to real and simulated time. 
This information will be defined in the component 
interface. Since the time, real or simulated, is an 
essential parameter of the simulation proper, as opposed 
to the data that are associated with the particular 
application of the simulation, the interface parameters 
that refer to time will have predefined types associated 
with them. The presence or absence of these predefined 
time types will be an essential part of characterization 
of the resource and its interface. 
 

Component Classification 
Based on the relation of the produced and/or consumed 

data to the real and simulated time, we first need to make a 
distinction between two worlds, the real world and the 
simulation world.  In the simulation world, we identify the 
following three basic types of components [1]. 

 
Type I: Time-independent components that produce values 

on their output ports in response to the data provided in 
the input ports. Such components cannot send out an 
event without having received one.  Any event produced 
by the processing of an arrival event contains the same 
time-stamp as that of the latter.  An example is a data 
conversion component that can change distance 
measurements from inches to meters. 

Type II: Simulated-time driven components whose 
interfaces include timers.  Timers are used to forward a 
request of advancing the simulated time to the 
simulation engine. Components are notified when such 
a request can be granted. As a result, this type of 
component is explicitly aware of the simulated time but 
does not operate directly on it. An example of such a 
component could be a server that delays any received 
events for a certain amount of time. 

Type III: Simulated-time controlled components that are 
simulations maintaining their own simulation clocks. 
Consequently, such components can contain a 
simulation engine or the entire simulation that is used as 
a component for the integrated simulation. In its 
simplest form, these components can receive a message 
only if such a message does not cause causality errors.  
The easiest way to ensure the causality constraint is to 
accept only those messages whose time-stamp is equal 
to or greater than the value of the simulation clock. 
Simulations using this approach are called conservative 
because they always maintain causality constraints 
between parallel components [4]. By extending the 
processing capabilities of components to enable them to 
process backwards in the simulated time, the 
components become capable of processing messages 
with any time-stamp or even anti-messages that request 
removal of effects of previously received messages. A 

simulation that uses such components is often referred 
to as an optimistic simulation because it allows parallel 
components to advance their simulation clocks without 
considering clocks of other components [5].  If such 
eager processing leads to a causality error, the 
erroneous computation is simply reversed. Hence, the 
time in optimistic simulations can flow in both direction 
and therefore is often referred to as virtual time. One 
extreme way of implementing optimistic simulation is to 
store each state of the component and retrieve it when 
needed, but such a solution would require an enormous 
amount of memory and would involve a lot of copying 
operations. The complementary implementation uses 
reverse processing to undo the forward processing with 
the minimum data storage. Efficient implementations 
use a mixture of both techniques. 
 
In the real world there is only one type of components, 

real-time driven components that have output ports that 
produce real time data and input ports that consume real 
time data. An example of such a component is a repository 
of real time data gathered by sensors. For a real-time 
component to cooperate with any simulation components, 
adaptors must be used to translate the real time into 
simulated time or vice versa. 

An interesting feature of the classification scheme 
presented above is that it enables hierarchical composition 
of components, in which a group of components can be 
treated as a single higher-level component of a certain type. 
We plan to develop an interface description language that 
will be used to define interfaces of the components in such a 
way that their automatic classification will be possible. 
These interfaces will become instrumental in advertising, 
localizing, linking, and optimizing the collaboration between 
resources on the Internet in the process of building real-time 
simulations. 

The key to a component is the declaration of both input 
and output ports. Input ports, or functions, define what 
functionalities the component can provide.  Output ports, on 
the other hand, define what functionalities the component 
needs to fulfill its function. Such a distinction between 
functionality providers and functionality consumers 
separates the development phase of components from the 
linking phase, allowing for more flexibility and more 
composability in our approach. 

 

Port Classification 
In most cases, the size of simulations created by 

combining components will necessitate the use of multiple 
processors to produce results in time for use in emergency 
and crisis management. Hence, the techniques developed for 
PDES (Parallel Discrete Event Simulation) are helpful. They 
include conservative and optimistic protocols defined 
earlier. Recently, we discovered the third class of PDES 
protocols based on a lookback [3], the ability of a 
component to change its past without affecting other 



components and therefore dual to the well known lookahead 
[4]. A component with a certain amount of lookback is able 
to process out-of-time-stamp order events (or stragglers) 
falling into its lookback windows.  Hence, lookback allows a 
component to advance its simulated time more aggressively.  
We have shown that a lookback is able to exploit the intra-
component parallelism. It is also more commonly observed 
than lookahead, which is the ability to predict the future, 
upon which conservative protocols largely depend.  For 
optimistic simulations, lookback can be used to reduce the 
frequency of rollbacks. It is also of importance for 
simulation theory that, as we proved in [2], lookback 
enables the conservative simulation to circumvent the speed 
limit imposed by the critical times of events, which was 
previously thought impossible by many researchers [6]. 

We observe that the three classes of PDES protocols 
arise from different ways of manipulating the simulated 
time. In conservative protocols, the simulated time is treated 
in the same way as the physical time.  An analogy between 
the simulated time of distributed systems and the physical 
time was given by Lamport [8].  Later, Jefferson proposed 
the notion of virtual time, in which the simulated time could 
be reversed, leading to the optimistic protocols [2]. Now, 
lookback allows us to ignore to some extent the time-stamp 
order of events imposed by the simulated time. These three 
classes of protocols actually correspond to the following 
three types of communication ports in simulation 
components: 

 
• regular ports which send and receive only regular 

messages (also called positive messages in the 
optimistic simulation community) that carry events in 
the future of the receiving component,  

• virtual ports which send and receive regular messages 
and anti-messages, and  

• lookback ports which send and receive regular 
messages and stragglers. 
 
Different types of ports may coexist in the same 

component.  For example, consider an FCFS (first-come-
first-serve) server with a lookback input port. It can deal 
with stragglers without difficulty, because such stragglers 
can be correctly processed by inserting them into the internal 
list sorted in time-stamp order.  The output port of the FCFS 
server, however, is always of the regular type.  The 
semantics of the FCFS server guarantee that it never outputs 
events in out-of-time-stamp order.  A regular port can 
therefore be connected to this output port, simplifying the 
simulation modeling of other components that receive events 
from this FCFS server. 

It is self-explanatory that a regular input port can be 
linked to a regular output port, while a virtual input port can 
be linked either to a regular output port or a virtual output 
port.  With lookback ports, however, the connection rules 
become more complicated.  For instance, an input port 
connected to two regular output ports should be of lookback 

type if these two ports belong to different Type III 
components.  If they reside on the same Type III component, 
a regular input port can be used. The rules presented above, 
and similar ones that we plan to derive by analyzing all 
feasible port interconnections, can be checked during the 
configuration processing, providing partial correctness 
checking of the combined simulation.  
 

Efficient Composition Techniques 
On the theoretical level, it is possible to show that 

different types of components, as defined in the previous 
section, differ in their ability to link with other components. 
Observing such limitations decreases the number of possible 
solutions that needs to be evaluated. Once the configuration 
of the collection of component simulation is established, the 
type of linkages needs to be selected to ensure efficient 
execution. For components that are not in a tightly-
synchronized loop, the distributed processing is sufficiently 
efficient. Examples of such loosely-connected components 
include simulations in which one phenomenon is not 
significantly affected by the other. For example, the flow 
and volume of water in the river is not affected by the 
structural changes in the bridge, hence the river flood 
simulation can just feed the flow simulation into the bridge 
simulation without a feedback. On the other hand, in the 
forest fire case, there is a direct impact of the fire's progress 
on local winds and vice versa. Such a feedback between 
interacting phenomena creates a tight synchronization 
between them. For components that are tightly synchronized, 
the efficient composition of the simulations may require the 
mobile component approach described below. 

 

Mobile Component Approach 
The combination of the component-based approach and 

mobile agents is a promising direction in distributed 
simulation.  These two approaches are complementary; 
while the component-based approach makes it possible to 
assemble programs that are developed independently and 
that are distributed geographically, mobile agents improve 
the efficiency of co-execution by exploiting the locality and 
by changing the component location dynamically. 

Computer networks exhibit a characteristic similar to 
that of computer architecture: the closer, the faster. Existing 
distributed environments are usually slow due to the low 
bandwidth of the network. It is true that in the future this 
will change, but at the same time the processor power will 
also improve at a rate perhaps comparable to that of the 
network speed. Therefore, the network may still remain a 
bottleneck for years to come, and code mobility is an 
efficient solution to this problem.  Even if it is impossible to 
move all collaborating programs to one host, it is always 
advantageous to allow the programs to dynamically change 
their location to take advantage of the multiplicity of the 
network nodes with different computing power and 
communication bandwidth. 



We propose a mobile component approach to address 
the efficiency issue in the integrated simulation. It aims to 
enhance the reusability of existing simulations and to 
improve the efficiency of component-based simulations of 
complex systems.  A basic element of the mobile component 
simulation is a simulation server with a communication 
interface exposed to mobile agents.  In fact, the only 
difference between a simulation server and a mobile 
component is that the former is immobile while the latter is 
mobile.  

The use of mobile agents is justified by the observation 
that in order to reduce the variance of results, a simulation 
must be run for a long time. As a result, the size of the 
simulation code is often small compared to the amount of 
data produced by such a run. Therefore, when linking 
multiple simulations, it is beneficial to move all simulation 
components together to a powerful multiprocessor instead of 
running them on separate hosts. This approach can 
significantly reduce the overhead of communication among 
simulation components. For instance, if the TCP/IP-based 
message passing can be replaced by the shared-memory data 
sharing, time savings can be very significant. Moreover, this 
overhead can be totally eliminated if some compiler 
techniques are used to reconfigure the simulation, as we 
discuss later. 

Mobile agents can also be used to link together 
simulations that are immobile and therefore better modeled 
as simulation servers. The main benefit of using agents in 
such a case is that the mobile agent can choose the host on 
which to execute. The communication flow between the 
agent and the simulation servers may be asymmetric or 
dynamic. Some simulation servers may have more intensive 
communication with the linking agent than the others. 
Moreover, the available resources on a host may vary 
greatly from time to time. Therefore, an efficient solution is 
to exploit the code mobility by allowing agents to move 
freely across the network, always executing on the host that 
is optimal according to certain criteria.  

Jini is a distributed computing environment where 
components can be integrated in a “plug and play”  style 
[12]. At first glance, Jini seems a good candidate for our 
purpose.  However, it is not, for two reasons.  First, Jini is 
not a truly component-based approach. The discovery of a 
service is done by the client program itself. The service-
finding procedure is embedded in the client code which 
prevents changes during integration. Our proposed 
component approach tries to look for an appropriate service 
and to link with it at a higher level than the client level (the 
configuration level), during the integration.  Secondly, Jini is 
not a real mobile system, because much of the service code 
still resides on the server side, and the client is more likely 
to use a proxy object to access the service. Even if it is fully 
mobile, it does not address the efficiency issue of the 
linkage, for the linkage is still in the form of function calls, 
unlike the direct access method in the reconfigurable 
components that we will discuss later.  

 

Efficiency of Linkage 
Our earlier investigation of the efficiency issue in the 

component linkage and of the usefulness of the mobile 
component approach is based on the spatially explicit 
simulation model of Lyme disease. A set of PDEs (Partial 
Differential Equations) simulate the spread of ticks and a 
discrete event simulation models the movements of mice. To 
link the PDE solver with the discrete event simulation 
according to the idea of mobile component approach, we 
evaluated several different solutions. 

In the first implementation, we used the Aglets system 
to build a mobile agent. The communication between the 
agent and the interfaces was implemented in TCP/IP.  The 
results were very disappointing. The simulation ran about 40 
times slower than the same simulation with direct links 
between the component simulations. To eliminate the 
language efficiency effect, we rewrote the agent, initially 
written in Java, in C++ and as a result the simulation speed 
nearly doubled, still leaving it 25 times slower than the 
direct link version. This pointed out to TCP/IP 
communication as a source of the slowdown. Hence, we 
replaced the communication between the agent and the 
continuous simulation by co-locating both on an SGI Origin 
2000 with shared-memory inter-process communication. 
The resulting simulation showed a great improvement; the 
execution time dropped nearly five times compared to the 
C++ agent version. The still remaining five time slowdown 
compared to the direct linkage was caused by the 
communication between the agent and the discrete event 
simulation that was still implemented in TCP/IP. The 
discrete event simulation ran on an IBM SP2 which is not a 
shared-memory computer. So, to test how fast this 
simulation can run, the program that contains the interface 
for the discrete event simulation was moved to the SGI 
Origin 2000. The agent used shared-memory message 
passing to access both interfaces. The execution time 
improved further, as shown in Table 1. 

This experiment suggests that in the component-based 
approach, the communication among different components 
might become the bottleneck that degrades the performance 
considerably. Efficient communication is the key to an 
efficient implementation using the mobile component 
approach.  

 

Reconfigurable Components 
The experiments of linking two different simulations 

showed that the mobile component approach has the ability 
to reuse existing simulations with little extra programming 
effort. However, the best result achieved by the agent 
approach is still twice slower than that of multiparadigm 
approach in which two parts are directly connected. This 
performance gap is caused mainly by the communication 
overhead between the agent and the continuous simulation. 
While the multiparadigm approach accesses the tick density 
through memory references, the mobile component approach 



uses shared-memory based message passing.  This reveals a 
fundamental problem of all component-based approaches. 
While it is convenient to decompose the complex system 
into smaller subsystems, the boundaries between the 
subsystems that are created by decomposition incur 
significant communication overhead. This problem is often 
ignored, yet it is a serious limitation of this approach.  

We propose to address this problem by using 
reconfigurable components, whose communication 
mechanism is subject to change either prior to the execution 
or during the execution.  If, for example, two reconfigurable 
components reside on different hosts, they need to utilize 
some network protocol such as TCP/IP. When they move to 
the same host, they can communicate by direct memory 
references. Note that replacing the TCP/IP with shared-
memory message passing does not require reconfiguration of 
the system because the replacement can be done by simply 
switching to a different communication medium. Direct 
memory references become possible only when multiple 
components can be merged into one program so that they 
will share the same memory space.  

There are two methods to implement reconfigurable 
components. The first is to design a component description 
language that is able to model simulations and mobile 
agents. If a simulation and an agent on the same host need to 
communicate efficiently, they can be recompiled to form a 
single program within which they can directly access the 
variables owned by the other. Such recompilation, however, 
is rarely feasible for web-based simulations. The more 
practical solution is to require that each participating 
simulation server exposes an interface through which the 
agent can interact with it. Instead of loading the interface 
directly, the mobile component system places a driver 
between the interface and the simulation server. This driver 
is responsible for loading the interface and the incoming 
agent, both of which are written in the same component 
description language.  Before execution, the incoming agent 
and the interface are merged by the driver into a single 
executable, in the form of a dynamic library, with the 
connected ports being eliminated. The driver then loads the 
generated dynamic library which will execute under the 
same address space with the simulation server. Thus, the 
final result is that the agent can access the component 
simulation information using direct memory references. 

 

CONCLUSIONS 
In this paper, we outlined challenges for web-based 

simulations and described our approaches to some of them. 
In particular, we described the novel approach to building 
components that can be reused in many different 
simulations. We also developed an agent-based brokering 
system that enables the location and matching of 
components on the web. Finally, we developed the linkage 
techniques that enable efficient composition of the 
components into an integrated simulation. 

The components that we propose use standard interfaces 
that describe the types of data expected on each but also 
allow for additional, simulation-specific types such as timers 
and clocks that deal with simulation time. The most 
important feature of components is their independence from 
the sources and targets of data that are provided by the 
interfaces. The binding of ports represented by the interfaces 
happens in a stage separate from component definition and 
compilation. This stage, called configuration, defines the 
interconnection between ports and also optimizes the 
linkages between components.  

Our current work on novel synchronization protocol for 
parallel execution of simulation components focuses on 
lookback, its types and uses in both conservative and 
optimistic parallel discrete even simulations [15]. We 
identified four types of lookback: direct strong, direct weak, 
universal strong and universal weak. These types differ in 
the level to which they can avoid rollbacks and anti-
messages. Their definitions are based on the impact time of 
events. We also showed that all four types of lookback exist 
in, for example, Portable Communication System (PCS) 
simulation and presented the performance gains that can be 
achieved by each one used individually or in combination 
with others. Using lookback improves the performance of 
Web-based simulation. 

There are two important results from our current work. 
One is negative but expected. The Internet cannot provide 
large computation resources for truly interactive simulations. 
An overhead of an order of magnitude or more makes such 
interactions infeasible. The important part in this negative 
result is interactiveness which is limited by the latency of 
the Internet communication. This latency is the result of 
laws of physics (the speed of light) and no future 
technological advances can diminish this problem. (If 
anything, such advances can only exacerbate the problem. 
The latency of communication from the East Coast to the 
West Coast in the United States, for example, is bounded 
from below by the speed of light, but the amount of 
computation that an average computer can do at the time 
equal to this bound is increasing exponentially with 
improving technology, so the same time delay cost more in 
terms of computer cycles as computer technology evolves.) 
Fortunately, the bandwidth grows even faster than the 
computational power of processors, so simulations that do 
not require interactions (no cause-effect feedback) can be 
efficiently executed over the Internet.  

The second conclusion from our current work is 
positive as it clearly indicates that the Internet could (and in 
our opinion should) be used as a convenient repository for 
simulation components. Our brokering technique can 
reliably and quickly provide information about the sources 
of components and match data producer components with 
consumer components. Furthermore, it allows the 
transparent replacement of one producer component with 
another that provides similar functionality. Yet, there are 
still unresolved issues to reap the full potential of such a 



solution.  The most important among them relate to the 
component semantics and information assurance. How to 
describe the function of a component in an abstract way, 
how to make sure that the component does what it advertises 
(no less to have trustworthy results, but also no more, to 
avoid Trojan horse type of attacks) are the most important 
questions. We plan to investigate such issues in the future.  
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Table 1. Comparison of different implementations of the synchronization agent. Note that no agent exists in the 
multiparadigm approach; instead, an extra communicating thread in the continuous simulation is responsible for cooperating 
with the discrete event simulation. This thread uses memory references to access continuous simulation state variables, and 
uses TCP/IP to interact with discrete event simulation. 
 

 
 
 

Source 
Language 

Communication between  
Agent and Continuous 

Simulation 

Communication between  
Agent and Discrete-Event 

Simulation 

Execution 
Time 

(seconds) 

Multi-paradigm 
Approach 

C++   52 

Java TCP/IP TCP/IP 1946 

C++ TCP/IP TCP/IP 1320 

C++ Shared-memory TCP/IP 289 

Mobile 
Component 
Approach 

C++ Shared-memory Shared-memory 117 
  




