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Abstract

Growth models have been proposed for constructing the scale-free overlay
topology to improve the performance of unstructured peer-to-peer (P2P)
networks. However, previous growth models are able to maintain the lim-
ited scale-free topology when nodes only join but do not leave the network;
the case of nodes leaving the network while preserving a precise scaling pa-
rameter is not included in the solution. Thus, the full dynamic of node
participation, inherent in P2P networks, is not considered in these models.
In order to handle both nodes joining and leaving the network, we propose a
robust growth model E-SRA, which is capable of producing the perfect lim-
ited scale-free overlay topology with user-defined scaling parameter and hard
cut-off. Scalability of our approach is ensured since no global information is
required to add or remove a node. E-SRA is also tolerant to individual node
failure caused by errors or attacks. Simulations have shown that E-SRA out-
performs other growth models by producing topologies with high adherence
to the desired scale-free property. Search algorithms, including flooding and
normalized flooding, achieve higher efficiency over the topologies produced
by E-SRA.
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1. Introduction

In addition to the specific search strategies and resource allocation meth-
ods, the overlay topologies (i.e. logical connectivity graph) have significant
impact on the performance of unstructured peer-to-peer (P2P) networks. It
has been shown that the scale-free topology with the power-law distribution
of node degrees is by definition well suited for P2P networks [1]. This is be-
cause such topology has a logarithmically scaled diameter [5] (ranging from
O(lnN) to O(ln lnN)), is highly tolerant to random failures [13] and network
congestion [15], and it also is highly synchronizable [14].

In the original Barabasi-Albert (BA) model [12], when a new node joins
the network, its likelihood to connect to a node increases with this node’s
degree. This behavior, also known as ”Preferential Attachment”, generates a
network with scale-free features. The BA model, however, does not consider
some important features of P2P applications, including the hard cut-off on
degree and dynamic peer participation [11]. The hard cut-off, which restricts
the feasible topologies to limited scale-free networks, is required because users
in P2P networks usually are not willing to serve as hubs (i.e. nodes with high
degree) because of the high bandwidth required to serve the ensuing traffic.
Moreover, users usually keep joining and leaving the network periodically,
which affects the degree distribution in an unpredictable manner. Efforts
have been made to build the limited scale-free overlay topology for P2P net-
works. Previous studies [6, 8, 7] have proposed cost-efficient growth models
to construct the limited scale-free topologies with hard cut-offs with nodes
constantly joining the network. However, the dynamic of nodes’ removal [11]
is another inherent property of P2P networks and it is not taken into ac-
count in these growth models. In previous studies [9, 10], although nodes
are allowed to leave, a precise scaling parameter can not be produced as
specified.

Scale-free topologies are relatively robust in face of the removal of ran-
domly chosen nodes but are very vulnerable to the removal of hubs [17, 18].
In P2P networks, a selfish hub may quit and rejoin the network to avoid
high communication costs, potentially distorting the degree distribution of
the topologies. Admittedly, the degree distribution of a scale-free topology
is not significantly influenced by infrequent node removal. However, when
node removals are significant fraction of node additions over some period,
the accumulated effects will eventually destroy the scale-free topology. In
order to preserve the scale-free topology, a mechanism is needed to keep the
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power-law degree distribution regardless of the frequency of node removals.
One challenge to preserve a scale-free topology is to avoid using global

knowledge because the communication cost required to obtain it grows lin-
early with the size of network. Yet, degree distribution is a global property.
In addition, when a node is removed, each of its neighbors has one connection
terminated. Thus, scale-free feature must be controlled with a cost-efficient
approach which does not require global information. On the other hand, it
is important to preserve an exact scaling parameter for a power-law scale-
free topology because the best performance of particular P2P application is
achieved when a specific scaling parameter is chosen. But previous decen-
tralized protocols can only produce overlays with an inexact and constant
scaling parameter, depending on the size of the network.

Here, we introduce the Enhanced Semi-Randomized Growth Algorithm
(E-SRA), which preserves the power-law degree distribution in an overlay
topology with nodes dynamically joining and leaving the network. It allows
arbitrary nodes to be removed from a network and does not require collecting
global information about the topology. Our approach assumes only local
information is available, i.e. degree of the neighbors of the removed node.
One advantage of our approach is that it provides partial tolerance to failing
nodes. If a single node1 fails due to attacks or errors, the neighbors are
able to detect the failure and work to preserve the power-law distribution.
In terms of the message complexity, one broadcast is needed to remove one
node. If nodes randomly leave the network, the average number of the point-
to-point messages sent by a single node to preserve the power-law degree
distribution is linear to the maximum (also called hard cut-off) degree of the
nodes. Combined with the growth model proposed in previous work [8], scale-
free overlay networks can be maintained efficiently with nodes freely joining
and leaving. As discussed in [8], it is important to adhere to exact scaling
parameters because only then full advantage of properties such as slowly
growing diameter hold. Moreover, capability to control post-construction
parameters gives the flexibility to have a desired γ that will give the best
efficiency in the search algorithm in use.

Simulations have shown that our approach can generate the perfect lim-
ited scale-free topologies with different patterns of adding/removing nodes

1We assume the nodes crash incrementally. When a group of connected nodes crash at
the same time, some global restoration algorithm would be more appropriate.
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while other models presented in the literature [6, 8, 7] have failed to handle
node removal, especially when nodes with high degrees leave the network
frequently. Moreover, the overlay topologies constructed by E-SRA provide
better search performance in various settings; here, we considered search
algorithms including flooding, where messages are forwarded to all neigh-
bors, and normalized flooding, where messages are forwarded to k (i.e. the
minimum degree) randomly selected neighbors.

The major properties of E-SRA include the following:

• Tolerance to dynamic peer participation: Nodes with any degree are
free to leave and join the network while the power-law distribution is
preserved.

• Partial tolerance to failures: the topology can recover from a single
node failure as long as the neighbors of the failing node are alive at the
moment of the failure.

• Scalability: no global information is required to add or remove a node.

• Flexible parameter settings: a topology with user-defined parameters
(i.e. the minimum/maximum degree, scaling parameter γ) is created
to ensure its optimal performance in applications such as search algo-
rithms.

Section 2 introduces the previous work on growth models for limited scale-
free topologies. Section 3 presents the detailed algorithms and its analysis.
Section 4 describes simulation results. The discussion is presented in Section
5 and the conclusions are included in Section 6.

2. Related Work

The scale-free property is shown to exist in many natural or artificial
systems, such as protein-protein interaction networks[19], the Internet[2],
the World Wide Web[3], and scientific collaboration networks[4]. The degree
distribution in these networks follows the power-law: P (i) ∼ i−γ, where P (i)
is the fraction of nodes with degree i and γ is the scaling parameter which100

varies between different types of networks (2 ≤ γ ≤ 3 in most cases). In a
limited scale-free topology, only nodes with degrees smaller than the hard
cut-off (i.e. the maximum) degree have degree distribution that follows the
power-law.
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The scale-free topology has some good properties, including high toler-
ance to random attacks [13], high synchronizability [14] and resistance to
congestion [15]. For this reason, several growth models are proposed to con-
struct the scale-free overlay topology. The BA model [12] manages to explain
the evolution of scale-free topologies by a core principle named ”Preferential
Attachment”. But it is not practical in real P2P applications because the
global information is required to maintain it. To address this issue, HAPA
[6], Gaian [7], subPA [9] and SRA [8] algorithms were introduced to construct
the scale-free overlay topology with partial or no global information.

”Preferential Attachment” [12] means a new node is more likely to connect
to heavily linked nodes when it joins the network. The BA model has some
disadvantages as the growth model for the overlay topology of P2P networks.
Firstly, it does not provide hard cut-offs. Since a heavily linked node uses a
lot of bandwidth in P2P networks, nodes usually are not willing to maintain
high degrees. For this reason, a user-defined hard cut-off (i.e. the maximum)
degree is imposed lower than the natural cut-off arising in the BA model. The
imposed hard cut-offs restrict the feasible overlays to the limited scale-free
topologies, which are more practical. Moreover, the BA model also requires
the global information about the topology to add connections when a new
node joins. In real-world applications, however, the communication cost
of obtaining the global information is prohibitive. Therefore, a distributed
approach that constructs the topology without global information is desired.

In [6], authors study the construction of limited scale-free overlay topolo-
gies for unstructured peer-to-peer networks. In the Hop-and-Attempt Pref-
erential Attachment (HAPA) algorithm [6], a new node joining the network
connects to k (i.e. the minimum degree) nodes in a random route starting
from a randomly chosen node. This scheme works because high degree nodes
are more likely to occur in a random route than nodes with low degree. The
hard cut-off is used to avoid ”superhubs”, which are nodes with degrees linear
to the network size. HAPA algorithm produces the topologies with degree
distribution approximately following the power-law with scaling parameter
γ = 3.

Gaian [7] algorithm is proposed for distributed database systems whose
efficiency and reliability depends on the overlay topology. In this algorithm,
a new node broadcasts a message when it joins the network using computing
with time principle [20]. Each receiver computes the maximum time of delay,
tv, which is proportional to the inverse of its degree, and chooses the time
of delay td in the interval [0, tv] uniformly randomly. Instead of replying to
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the sender instantly, the receiver waits the time of delay td and then replies.
In this way, nodes with higher degrees are likely to wait shorter period.
The new node connects to the first k responders. It gives a better chance
to the new node to connect to nodes with high degrees. This mechanism,
which reduces the communication overhead by allowing nodes to self-select
themselves according to their fitness to the desired property, is also known as
computing with time [20]. The communication cost for selection is constant
in the number of candidates. Similar to HAPA algorithm, Gaian algorithm
cannot produce an overlay topology with the user-defined scaling parameter.

Although the growth models such as Gaian and HAPA can construct a
limited scale-free topology efficiently and are also easy to implement, post-
construction parameters of network structures (i.e. the scaling parameter
related to the search performance) cannot be adjusted. In [8], the authors
propose a flexible growth model that can produce a limited scale-free topology
with user-defined parameters. The Semi-Randomized Growth Algorithm
(SRA)[8] requires no global information and imposes a hard cut-off on de-
grees. In SRA, when a node joins the network, it broadcasts a message
containing the desired degrees of the k new neighbors. These degrees are
computed according to the given network parameters. The receivers with the
desired degrees reply to the new node using computing with time rule [20].
The new node connects to the first k responders. The scaling parameter, as
well as the hard cut-off, can be defined by users in advance. So, the SRA
model is able to produce overlay topologies, over which the efficiency of ap-
plications such as search algorithms is maximized. The constraints of feasible
values of these network parameters are presented in [21]. SRA outperforms
other growth models by producing overlay topologies with perfect matching
to the arbitrary power-law degree distribution.

In [9], the authors propose an ad-hoc limited scale-free network model,
subPA2, which performs the Preferential Attachment process in a chosen
subset of nodes. When a new node joins the network, it constructs a set
of nodes reachable in at most τj hops from a random existing node and
connects to k nodes in this set. The probability a node being connected is
proportional to its degree. When a node is removed, its neighbors construct

2The approach proposed in [9] is named after ”subPA” because it performs the Prefer-
ential Attachment (PA) process in a chosen sub-graph. Originally, the authors of [9] did
not use any abbreviation for their approach.
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a set of nodes reachable in τl or less hops from the deleted node, and each
neighbor connects to one node using the similar preferential attachment rule.
The hard degree cut-off is achieved by prohibiting nodes with maximum
degree from accepting new connections. It is worth noting that this model
becomes the preferential attachment with global information when τj value
is large and τl is zero and a BA network with γ = 3 is obtained. In [10],
the subPA model is extended to consider the popularity of a node, which
is defined as the summation of the popularity of the items it holds. The
likelihood that an existing node being connected is proportional to the linear
combination of its degree and popularity. In this way, the degree of the nodes
which hold popular downloadable items increases, leading to reduced query
response time. But this framework could not specify the scaling parameter of
the produced topologies and it does not consider the removal patterns which
are likely to destroy the scale-free property, such as frequent removal of hubs.
The features of HAPA, Gaian, subPA and SRA algorithms are compared in
Table 1.

To the best of our knowledge, however, allowing nodes to leave network
during overlay maintenance while producing the precise scaling parameter
has not been studied. Yet, in peer-to-peer networks, nodes are likely to join
and leave the network frequently. With such dynamic peer participation,
the scale-free topology produced by previous growth models are affected by
node removal, especially when hubs are removed. This effect can accumulate,
negatively impacting the performance of P2P networks, which are built on
top of the overlays. In this paper, we propose a robust model, in which nodes
are allowed to leave the network in an arbitrary pattern. Combined with the200

growth model proposed in our previous work [8], the scale-free topology is
maintained while nodes are allowed to freely join and leave the network.

Other decentralized or self-organized algorithms which construct the over-
lay topologies in a wide variety of applications for unstructured peer-to-peer
systems include [23, 24, 25, 26]. These protocols construct overlay topologies
efficiently based on the superpeer which operates as the server for a set of
clients. They trade the strict adherence to the precise degree distributions for
increased resilience in the face of frequent and simultaneous join and leave
events. Compared with these protocols, the primary concern of our work
is to construct power-law topologies with a precise and controllable scaling
parameter so that P2P applications achieve the best performance over them.
And our work does not assume the existence of such superpeers for maintain-
ing overlay topologies, which in purely P2P applications are not assumed to
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exist.

3. Approach and Analysis

We describe the problem and propose our approach which focuses on
preserving the power-law degree distribution while nodes dynamically join
and leave the network. Below, we discuss leaving only since the joining part
is presented in detail in [8].

3.1. Problem Formulation

The degree of a node is defined as the number of connections it has in
an overlay topology. Using the same notation as in [8], the fraction of nodes
with degree i is denoted as Pi,

Pi =
Ni

N
(1)

where Ni is the number of nodes with degree i and N is the total number of
nodes.

In a scale-free topology, degree distribution follows the power-law: Pi ∼
i−γ where γ is a constant. In a limited scale-free topology, Pi follows the
power-law for i < m, where m is the hard cut-off (i.e. the maximum) degree.

The value of Pi in a limited scale-free topology is given by Eq. [7] in [8]
as fi as a function of the maximum degree m, the minimum degree k and
the scaling parameter γ,

fi =
m− 2k

iγ
∑m−1

j=k
m−j
jγ

for i < m (2)

and fm, that does not need to follow the power-law distribution, is given as,

fm = 1−
m−1∑
i=k

fi (3)

The goal is to maintain the degree distribution as fi for i = k, . . . ,m while
nodes with arbitrary degrees are added or removed3. For the sake of simplic-
ity, we assume one node is removed at a time and the node to be removed is
denoted as node R and the number of its neighbors is denoted by b.

3We are interested in preserving the power-law distribution because of the performance
improvements it brings. Our approach actually solves the general problem of keeping any
fixed degree distribution.
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3.2. Atomic Operations

In order to preserve the power-law distribution, we made three observa-
tions about the dynamics of the topology when a single node R is removed.
Observation 1: If an arbitrary node R is removed, the neighbors of R are
able to detect the removal because each of them has one connection termi-
nated.
Observation 2: If an arbitrary node R is removed, the degree of each neigh-
bor of R decreases by one, influencing the resulting degree distribution. One
simple countermeasure is to connect each neighbor with a random node so
that the degrees of R’s neighbors stay the same.
Observation 3: If an arbitrary node R with degree b is removed, the num-
bers of nodes with degrees both lower and higher than b should change to
preserve the power-law distribution. This scenario is analogous to maintain-
ing hierarchical management structure in a large company. If many middle
managers resign, in order to keep the original ratio of managers on differ-
ent levels without hiring new employees, some low-level managers must be
promoted while some managers have to be downgraded.

The main challenge here is that the pattern how the node degrees change
is unpredictable. In order to handle the dynamics, each neighbor of R can
connect to a new node, then all neighbors of R will have the same degrees. It
means there are a total of b connections added by the neighbors of R, and the
degrees of the nodes on the other end of these b connections will increase by
one. If the nodes on the other end of these b connections are chosen carefully,
then the change of degrees is predictable.

In addition, from Observation 3, we know that in some cases, certain
connections should be removed to preserve the power-law degree distribution.
How to locate these connections? A solution that we use here is based on the
following observation. Consider a node X that is a neighbor of node R and
two nodes A and B that are not but they are connected to each other. When
node A connects to X and also terminates its connection to B, then, nodes
A and X keep their original degrees while the degree of node B decreases by
one. If node B is carefully chosen to have the right degree, then the degrees
are changed as desired.

To sum up this idea, there are two types of operations that can be con-
ducted by each neighbor of R:

• PUSH: The neighbor of R connects to a new node A.
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• SHUFFLE: Besides connecting to a new node, the neighbor of R also
asks the new node A to terminate one connection to some node B.

One PUSH will increase the degree of node A by one and one SHUFFLE
will decrease the degree of node B by one. In the rest of this paper, we say
a neighbor of R PUSHes on degree i, if it connects to a new node A with
degree i, causing A to increase its degree to (i + 1). And we say a neighbor
of R SHUFFLEs on degree i, if it connects to a new node A and asks A
to terminate its existing connection to a node B of degree i, causing B to
decrease its degree to (i−1). The neighbor of R will keep the original degree
no matter whether it PUSHes or SHUFFLEs.

How many PUSHes and SHUFFLEs should be assigned to the neighbors
of R? Since the degree distribution of a limited scale-free topology does not
change, the same average degree 2k should be preserved. Thus, if one node is
removed, totally k connections should be removed. So, when b connections of
node R are removed, (b−k) connections should be added to keep the average
degree at 2k. This could be achieved by (b− k) PUSHes and k SHUFFLEs
per removal because each PUSH adds one connection and each SHUFFLE
does not change the total number of connections.

3.3. Analysis

We are interested in the degree of every PUSH and SHUFFLE when a
single node is removed. Let Di denote the number of SHUFFLEs on degree
i and Ii denote the number of PUSHes on degree i. Since (b − k) PUSHes
and k SHUFFLEs are needed, we have,

m−1∑
i=k

Ii = b− k (4)

m∑
i=k+1

Di = k (5)

These SHUFFLEs and PUSHs make Di nodes decreasing their degree from i
to (i−1) and Ii nodes increasing their degree from i to (i+1). Also, Im = 0,
Dk = 0 because the degrees of all nodes are kept in range [k,m]. Ii, Di are
non-negative for i ∈ [k,m].

Let’s consider the total number of nodes with degree k after node R
is removed from a network of size n. Before removal, there were fkn nodes
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originally of degree k. AdditionalDk+1 nodes originally with degree (k+1) are
added and Ik nodes are moved from this count by SHUFFLEs and PUSHes.
If the fraction of nodes with degree k is still fk, we have,

fk(n− 1) = fkn− Ik +Dk+1 (6)

where n is the total number of nodes before R quits. Similarly, the degrees
of Id nodes increase from d to (d + 1). The degrees of Id−1 nodes increase
from (d−1) to d. The degrees of Dd+1 nodes decrease from (d+1) to d. And
the degrees of Dd nodes decrease from d to (d− 1). If the fraction of nodes
with degree d remains fd, then

fd(n− 1) = fdn− Id + Id−1 +Dd+1 −Dd (7)

for k < d < m and d 6= b. Since node R itself is removed,

fb(n− 1) = fbn− Id + Id−1 +Dd+1 −Dd − 1 (8)

Due to the hard cut-off, nodes with degree m should not accept any new
connections,

fm(n− 1) = fmn+ Im−1 −Dm (9)

Simplifying Eqs [6,7,8,9], we obtain that for k ≤ i ≤ b− 1,

Ii −Di+1 =
i∑

j=k

fj (10)

and for b ≤ i < m,

Ii −Di+1 =
i∑

j=k

fj − 1 (11)

Let non-negative vectors ~D = (Dk+1, Dk+2, . . . , Dm)T , and ~I = (Ik, Ik, . . . , Im−1)
T

be such that,

~I − ~D =



fk
fk + fk+1

...∑b−1
i=k fi∑b

i=k fi − 1
...∑m−1

i=k fi − 1


(12)
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with the L1 norm ‖~I‖1 = b− k, ‖ ~D‖1 = k. The solution to Eq. [12] depends
on the degree distribution fi, the degree of removed node b and the hard
cut-off m, but is independent from the current network size n. It allows us
to design an algorithm that does not need any global information.
One simple solution to Eq. [12] is,

I∗i =

{
1 k ≤ i < b

0 otherwise
(13)

and for i ∈ [k + 1,m],

D∗i = 1−
i−1∑
j=k

fj (14)

It could be observed that D∗i+1 = a(i) which is the average number of nodes
increasing degree from i to (i+1) when a node joins the network in the growth
model [8]. This is because, intuitively, the decreasing degree is exactly the
opposite to a new node’s connecting to k neighbors.

The solution to Eq. [12] may not be unique, an optimized solution with
minimum message cost is discussed in Section 3.5.

3.4. Protocol Design

According to the analysis in Section 3.3, there should be Ii neighbors of
R that PUSH on degree i and Di neighbors of R that SHUFFLE on degree
i, for i = k, . . . ,m. For the specific protocol design, we use the solution I∗i
and D∗i presented in Eqs [13,14].

It is necessary for every neighbor of R to know operations needed when300

R leaves the network, regardless if the departure is voluntary or caused by
a crash. To ensure this, R should assign such operations to its neighbors as
early as possible because it may accidentally crash anytime. As shown in
Section 3.3, the operations which will be assigned depend on the degree of R
because the value of I∗i depends on the degree of R. Therefore, R should re-
compute I∗i and assign the new PUSH/SHUFFLE operations to the neighbors
if its degree changes; in such a case the node sends updates messages which
contain its own degree and PUSH and SHUFFLE operations to its neighbors.

If the degree of a node R changes to be b′, R computes two non-decreasing
sequences,

vi =
i∑

j=k+1

D∗j
k

and ui =
i∑

j=k

I∗j
b′ − k

(15)
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and generates two random values r1, r2 distributed uniformly over the range
[0, 1) for each of the b′ neighbors. If r1 < k/b′ and r2 is in the interval
[vi, vi+1), then the neighbor SHUFFLEs on degree i; if r1 ≥ k/b′ and r2 is in
the interval [ui, ui+1), then the neighbor PUSHes on degree i. In this way,

the probability of PUSH on degree i is (1− k
b′

)
I∗i
b′−k =

I∗i
b′

and the probability

of SHUFFLE on degree i is k
b′
D∗i
k

=
D∗i
b′

.
Furthermore, node R sends the list of its neighbors’ IPs in the update

message. When R is removed from the network, all neighbors of R broadcast
the last update message sent by R. Any receiver with one of the desired
degrees in the update message connects to the corresponding neighbor of
R. And each neighbor of R connects only to the first responder. It is worth
noting that only one broadcast is needed because all neighbors of R broadcast
an identical message and nodes in the network forward the first message they
receive.

The frequency of update messages being sent significantly influences the
efficiency and effectiveness of our protocol. If the messages were sent too
frequently, the channels would be overwhelmed by update messages, delay-
ing regular traffic. Thus, our protocol should only use a limited number of
update messages. It is particularly important when nodes join and leave the
network frequently. Here, we show that Mave, the average number of the
update messages sent by a node during its lifetime, is bounded linearly by
the maximum degree m if nodes are randomly removed. Specifically,

Mave ≤ 3(m− 1 + k)k (16)

where the minimum degree k is a small constant. The details of derivation
of this bound are given in Appendix A.

Applying the solution from Eqs [13,14] to our protocol, we obtain a new
Enhanced Semi-Randomized Growth Algorithm:

Approach: E-SRA (Assuming one node is removed at a time) To remove
a node R with degree b, each neighbor of R either SHUFFLEs on degree i

by the probability
1−

∑i−1
j=k fj

b
for i = k+ 1, . . . ,m or PUSHes on degree j with

probability 1
b

for j = k, . . . , b− 1.

The pseudo-code is listed as Algorithm 1. The message complexity of the
algorithm is one broadcast per removal.

13



Algorithm 1 Enhanced Semi-Randomized Growth Algorithm (E-SRA)

1: procedure OnQuit
2: Quit

3: procedure OnDegreeChange(newDegree)
4: b← newDegree
5: update message ← {}
6: for i = 1 to b do
7: r1 ← random number in [0, 1)
8: r2 ← random number in [0, 1)
9: if r1 <

k
b
then

10: for j = k + 1 to m do
11: if r2 ∈ [vj, vj+1) then
12: opi ← ( IPi , SHUFFLE on degree j )

13: else
14: for j = k to m− 1 do
15: if r2 ∈ [uj, uj+1) then
16: opi ← ( IPi , PUSH on degree j )

17: update message ← {op1, op2 . . . , opb, b}
18: Send the update message to every neighbor

19: procedure OnNeighborQuit
20: Broadcast the latest update message received from the quitting neigh-

bor
21: Connect to the first responder

22: procedure OnReceiveUpdateMessage(updateMsg)
23: b← the degree of itself
24: for each opi in updateMsg do
25: if opi = ( IPi , PUSH on degree b) then
26: Reply to the node with IPi

27: Return
28: else if opi = ( IPi , SHUFFLE on degree b) then
29: Terminate its existing connection to a random neighbor RN
30: Ask RN to reply to the node with IPi

31: Return
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As illustrated in Algorithm 1, if a node’s degree is changed, it sends
an update message to its neighbors (as shown in lines 3-18) so that they
know to which nodes to rewire if the failure occurs. The operations in the
update message are computed by generating a sequence of random numbers
(as shown in lines 7-16). Since a node knows its operations in advance, if a
neighbor fails, this node will operate as what it was assigned (as shown in
lines 19-21). And the design of this protocol does not require any extra steps
for a node gracefully quitting (as shown in lines 1-2) because the neighbors
of this quitting node already know the desired degrees of the nodes to which
they should rewire afterwards.

In Eq. [14], the greater i is, the smaller D∗i is. This fact makes the
protocol more practical because there are a large number of nodes with low
degrees and only a small fraction of nodes with high degrees in a scale-free
network. Nodes with low degrees are easily reached by broadcasts in a few
hops; Eq. [13] implies that the number of PUSH operations increases linearly
with the degree of node R.

Note that we assume the neighbors of node R are able to PUSH or SHUF-
FLE when R is removed. When two connected nodes voluntarily quit at the
same time, one node should wait until the other node quits successfully (the
tie can be broken by the order of IP addresses); if a node crashes while
its neighbors are alive, the neighbors can also PUSH or SHUFFLE correctly.
However, the above algorithm does not work if node R and its neighbor crash
at the same time because both crashed nodes can neither PUSH nor SHUF-
FLE. In this paper, we assume that the nodes crash incrementally, one after
the other; in the case that a group of connected nodes crash simultaneously,
a global restoration algorithm is more appropriate to use.

3.5. Optimization of the Message Costs

The number of replies to the neighbors of R can be optimized by applying
better solutions satisfying Eq. [12].

Let si denote the number of nodes with degree i for i ∈ [k,m] among the
neighbors of node R (thus,

∑m
i=k si = b). If a neighbor of R is assigned to

SHUFFLE on degree i and this neighbor has i connections, then it does not
broadcast because it lost the connection to R, so its degree decreases to (i−1),
matching the desired decrease of degree. Taking this into consideration, one
SHUFFLE on degree i can be skipped if R has a neighbor with degree i.
The average number of the skipped SHUFFLEs is

∑m
i=k+1 |si −Di|. Using

Eq. [12] as the constraint, the optimization problem can be formulated over
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Table 1: Comparison of Growth Models

Algorithm Global knowledge used Flexible γ Tolerance to removal

BA[12] Complete No No
HAPA[6] Partial No No
Gaian[7] None No No
subPA[9] τj-hop and τl-hop neighbors No Yes
SRA[8] None Yes No
E-SRA None Yes Yes

~I and ~D as,

min
~I≥0, ~D≥0

‖~S − ~D‖1 (17)

subject to ~I − ~D = ~Cb (18)

‖~I‖1 = b− k (19)

‖ ~D‖1 = k (20)

where ~Cb = (fk, fk + fk+1, . . . ,
∑b

i=k fi − 1, . . . ,
∑m−1

i=k fi − 1)T and ~S =
(sk+1, sk+2, . . . , sm). This problem can be rewritten as linear programming
problem and be solved by the linear programming technique efficiently in
real time.

The optimal solution depends on the degree distribution of R’s neighbors.
So, node R computes the new optimal solution and assigns new atomic op-
erations to its neighbors via sending an update message if its degree changes.

4. Simulations

Empirical experiments are conducted to evaluate the overlay topologies
produced by E-SRA in various settings. These topologies are compared with
those produced by HAPA, Gaian and subPA algorithms using the same con-
figurations. We measure the fitness of the produced degree distribution to
the power-law and then evaluate the search efficiency over these topologies by
running Flooding (FL) algorithm and Normalized Flooding (NF) algorithm,
which are simple search algorithms used in unstructured P2P networks[16].

4.1. Simulation Settings

By adding and removing nodes dynamically, a set of network topologies
are produced with different parameters. At the beginning, a network of
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(2k + 1) nodes is constructed. Each node connects to all the other 2k nodes
so that the average degree is 2k. For all simulations, 5,000 nodes are added
first and then we run 145,000 iterations of joining and removing nodes to
produce one topology. In each iteration, either a new node joins the network
or an existing node is removed. In order to simulate the dynamics of nodes
joining and leaving in real-world applications, a node joins with probability
(1− p) and quits with probability p in one iteration. Thus, a few nodes are
quite likely to join or leave the network in a sequence of iterations. The value
of p is smaller than 1/2 to keep the network growing. In a topology produced
by E-SRA, nodes with desired degrees may not exist when the network size
is small. In such cases, the nodes can rewire to the existing nodes with any
degree4. However, with the growth of the network, there will be sufficient
nodes with all possible degrees.

Experiments have been conducted on the topologies produced by HAPA,
Gaian and subPA algorithms with the same pattern of nodes joining and
leaving the network. After a sufficient number of such operations, the degree
distribution is calculated based on a ”snapshot” of the network topology and
is compared with the perfect power-law distribution. Since all four algorithms
utilize randomized approaches, we take the average of the degree distribution400

of 10 randomly produced topologies with the same parameters to study the
average cases.

Search algorithms are implemented to test the search efficiency over the
produced topologies in different settings. We consider two search algorithms
in P2P networks: 1) Flooding (FL), where every node forwards a query
to all neighbors until the query hits the target. 2) Normalized Flooding
(NF), where every forwarder randomly chooses k (i.e. the minimum degree)
neighbors and sends them the query. Time to live (TTL), which is the
maximum number of hops a message can traverse, is set up to limit the
lifetime of a query in a network. So, a query either reaches its destination or
expires due to its TTL. It is assumed that the message sources are uniformly
distributed in the network.

Gaian[7] and HAPA[6] algorithms do not specify how nodes are removed
so their nodes with the minimum degree k are likely to lose connections. This
results in appearance of nodes with the degree smaller than the minimum

4In our simulations, this case occurred in only 3% of the deletions until the first network
topology obtained with all degrees.
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degree k. To avoid such effect, we assume the node with degree smaller
than k will connect to existing nodes using the original approach to regain
k connections. Nodes with the maximum degree m will not accept new
connections. The hard cut-off is implemented as in the original approaches
and will not be influenced by the effect of removing nodes. In subPA, the
parameter used to constructed subset of nodes is τj = 2, τl = 2.

4.2. Degree Distribution

It can be observed that regardless of parameter settings E-SRA has pro-
duced topologies with the degree distribution perfectly matching the power-
law.

Figure 1 illustrates the degree distribution of the produced topologies
when nodes are removed randomly. In each iteration, either an existing
node quits with probability p = 1/3 or a new node joins the network with
probability 1−p = 2/3. The node to be removed is randomly chosen from the
network. We apply a total of 1.5×105 iterations to produce the final topology.
Thus every topology has approximately (1−2p)×(1.5×105) = 5×104 nodes.
In E-SRA, the scaling parameter is set as 2.5, 2.7 and 3 respectively. It
can be observed from Figure 1 that both Gaian and HAPA algorithms have
produced a sufficient number of nodes with low degrees whereas the number
of nodes with high degrees is insufficient. Since nodes with high degrees are
more likely to connect to the nodes to be removed, their degrees decrease
with high probability compared to nodes with low degrees. Compared to
HAPA and Gaian algorithms, E-SRA and subPA have generated sufficient
number of nodes with high degrees.

As the simulation results suggest, the power-law is approximately pre-
served in all four growth models compared here when the maximum degree
is m = 10. But, if the maximum degree is m = 50, HAPA and Gaian algo-
rithms produce fewer nodes with high degree than needed. This is because
the number of nodes with high degrees are of the order of several thousand
with m = 10, but there are fewer than 100 when m = 50. So the final degree
distribution is more sensitive to algorithm imprecision and the difference is
easier to observe for m=50 than for m=10. For the same reason, E-SRA
produces a topology with a small tail at degree 48, 49 when m = 50. As the
network size grows, the total numbers of nodes at all degrees increase and
the tail disappears.

Figure 2 shows the simulation results when the nodes with degree at
least 3k are randomly removed. Here, every iteration removes a node with
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Figure 1: Degree distribution of the topologies where nodes are randomly removed. n ≈
50000, p = 1/3.

degree at least 3k with probability p = 1/5 or adds a node with probability
1 − p = 4/5. This removal pattern simulates a topology with hubs leav-
ing frequently. As shown in Figures 2.d and 2.e, the scale-free topologies
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Figure 2: Degree distribution of the topologies where nodes with degree at least 3k are
randomly removed. n ≈ 90000, p = 1/5.

constructed without a special mechanism handling the removal are very vul-
nerable to attacks on hubs. The topologies produced by Gaian and HAPA
algorithms are significantly below the required number of nodes with high
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degrees when the maximum degree m = 20 or higher. In HAPA, nodes with
degrees close to the cut-off value completely vanish. The topologies with the
maximum degree 10 are a little more robust in subPA, HAPA and Gaian, but
even in this case nodes with degrees of 9 and 10 are less numerous than what
the power-law requires. In contrast to subPA, HAPA and Gaian algorithms,
E-SRA manages to maintain the limited scale-free topology when nodes with
degrees at least 3k are randomly removed.

The degree distribution of the topologies where nodes with degree smaller
than 2k are removed is shown in Figure 3. The probability to remove a node
in each iteration is p = 1/3. Figure 3 shows all four compared approaches
produce the network topologies approximately matching the power-law de-
gree distribution. In theory, a degree distribution following the power-law
should be presented as a straight line with slope −γ (parallel to the blue
dashed line) in the log-log plot. However, it can be observed in Figures 3.d
and 3.e that the slope of the curve in HAPA and Gaian cases for the range of
degrees [2, 4] is above the value of −γ, indicating lower than needed number
of low degree nodes for these methods. In contrast, subPA and E-SRA pro-
duce the network topology with a perfect matching to the power-law degree
distribution at low degrees, undisturbed by removal of nodes with degree
smaller than 2k.

We estimate the scaling parameter of the produced topologies using the
MLE method in [22]. In [22], the authors use the Kolmogorov-Smirnov or KS
statistic to quantify the difference between the observed degree distribution
and the power-law. The smaller is the KS statistic, the closer is the observed
degree distribution to the power-law.

In Table 2, the degree of removed nodes is denoted as d. When d ≥ 6, only
nodes with degree at least 6 are randomly removed from the topology. As
seen in Table 2, E-SRA produces topologies with a good fit to the scale-free
property. The estimated scaling parameters are close to the predefined value
γ = 2.5. In the topologies maintained by HAPA and Gaian algorithms, how-
ever, the estimated scaling parameters deviate from the scaling parameter,
3.0 and 2.5, respectively. In the topologies constructed by subPA in presence
of frequent removals, the estimated scaling parameter is larger than 3. In
the cases where removals are not involved, the estimated scaling parameter
of subPA is in the range (2,3). In all cases, the KS statistics of HAPA, Gaian
and subPA are larger than those of E-SRA.
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Figure 3: Degree distribution of the topologies where only nodes with degree smaller
than 2k are randomly removed. n ≈ 50000, p = 1/3.

4.3. Search Efficiency

We evaluate the search efficiency over the topologies produced by E-SRA,
HAPA, Gaian and subPA algorithms. We consider two search algorithms
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Table 2: Results of fitness analysis

Parameters Method
E-SRA

(γ = 2.5)
HAPA Gaian subPA

m = 20, d ≥ 6
γ 2.505169 3.820267 3.574570 3.885132

KS statistic 0.002982 0.102532 0.082440 0.152262

m = 50, d ≥ 6
γ 2.496524 2.672919 2.667210 3.885132

KS statistic 0.004415 0.117416 0.078553 0.099203

m = 20, d < 4
γ 2.502646 2.283350 2.397095 3.967446

KS statistic 0.002524 0.082762 0.023171 0.085813

m = 50, d < 4
γ 2.488510 2.269304 2.387625 3.967446

KS statistic 0.004728 0.075127 0.010877 0.036065

commonly used in unstructured P2P networks: 1) Flooding (FL), in which
every node forwards a query to all the neighbors until the query hits the
target. 2) Normalized Flooding (NF), in which every forwarder randomly500

chooses k (i.e. the minimum degree) neighbors and sends them the query.
Thus, the Normalized Flooding algorithm sets constraints on the number of
the messages forwarded by each node. The FL algorithm delivers a query to
the destination faster than the NL algorithm in an unstructured P2P network
but incurs higher message cost. The Normalized Flooding algorithm sets
constraints on the number of the messages forwarded by each node. Both
algorithms set time to live (TTL), which is the maximum number of hops a
message can traverse, is set up to limit the lifetime of a query in a network.
More sophisticated search algorithms in the power-law graphs have been
studied in [16].

In order to study the performance of the search algorithms, multiple
searching processes are simulated on the same topology. With the same
parameters, 10 network topologies are constructed. For each topology, 100
nodes are randomly chosen to broadcast a query, whose the average hit ratio is
calculated. Since the destinations of the queries are assumed to be uniformly
distributed in the network, the expected hit ratio of a query is proportional to
the number of nodes it reaches before the TTL expires. In these experiments,
the degrees of removed nodes are uniformly distributed in [k,m], and the
minimum degree is k = 2. The results are shown in Figure 4.

Figure 4.a shows that a query reaches more than 95% of the network
within 7 hops over the topologies produced by E-SRA with m = 50 (the
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Figure 4: Search efficiency in networks produced by different approaches and parameters.
n ≈ 5× 104, p = 1/3, k = 2.

red lines); it takes 8 hops for a query to reach 95% nodes in the topologies
with m = 10 (the blue lines). It shows hit ratio grows fast in the topology
constructed by subPA and the query reaches the majority of the network in 10
hops. In the topologies generated by Gaian algorithm, it takes approximately
10 hops for a query to reach 80% but the spreading process becomes much
slower after 12 hops. In HAPA, the hit ratio increases very slowly within the
first 10 hops and then increases rapidly. Because the topologies produced by
E-SRA highly adhere to the scale-free property, the FL algorithm achieves
better performance over these topologies.

The search efficiency of the Normalized Flooding algorithm is shown in
Figure 4.b. One interesting phenomenon is that NF algorithm achieves a
higher search efficiency on top of the topologies produced by E-SRA with a
small maximum degree m. This is because NF only forwards a query to k
neighbors, the nodes with high degrees do not have significant advantages
over the nodes with low degrees in forwarding queries. In the first 10 hops,
the spreading speed is very slow in the topologies constructed by all four
approaches. After 10 hops, the spreading speed becomes much faster. The
hit ratio of E-SRA is approximately at least 6% higher than other approaches
with the same TTL in the range [14, 18]. And NF algorithm achieves a
lower search efficiency in the topologies constructed by subPA than by other
models.

It is worth noting that E-SRA can produce the topologies with the user-
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defined parameters. Therefore, any proper value of the scaling parameter
γ could be adopted to produce the best overlay topology according to sim-
ulation results. For example, the FL algorithm achieves the best search
efficiency on top of the topologies constructed with m = 50 and γ = 3.5, and
the NF algorithm achieves the best search efficiency on top of the topologies
constructed with m = 10, γ = 2.5. E-SRA can use these parameters to
construct the desired overlay topologies.

5. Discussion

In E-SRA, we assume nodes crash incrementally, one after the other. It
guarantees that all neighbors of the node R are alive when R quits and are
able to connect to the remaining nodes. However, in realistic situations, a
group of connected nodes may crash at the same time. It is possible that R
and a neighbor of it fail simultaneously and its neighbor could not PUSH or
SHUFFLE correctly as requested by R. In such cases, restoration with global
knowledge on the network might be needed.

It is worth noting that as long as at least one neighbor of the crashed node
R is alive, R can be correctly removed from network to preserve the power-law
topology. This is because the alive neighbor of R could serve as a coordinator
for the crashed neighbors to finish their PUSH/SHUFFLE operations. The
nodes, which have the desired degree of those missing PUSH/SHUFFLE
operations, need to confirm with this coordinator to finish the corresponding
operations. Details of a distributed algorithm for this purpose is beyond the
scope of this paper.

In a network where nodes fail with low probability or are guaranteed
to recover from failures, a node can only send the update messages to its
neighbor before it quits. In this way, the message cost is reduced.

It is challenging to preserve the power-law topology while a group of
connected nodes fail simultaneously. This is because all the neighbors of a
failing node may also crash, thus, the remaining nodes in the network do not
know the existence of this failing node nor the degree of it. Consequently,
they can not rewire appropriately to preserve the original degree distribution.
However, if the knowledge of the nodes about the entire topology increases
while the associated cost can be handled, this could be achieved with similar
fashion as in our algorithm.

In general, the protocols maintaining topologies with the strict and precise
adherence to the power law require higher communication cost than those
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producing approximate topologies. And simultaneous failures of a group of
nodes can make the problem more difficult compared with individual random
failures. Thus, some protocols trade such precise adherence to the power
law for increased resilience in the face of highly frequent and simultaneous
join and leave events. In order to choose appropriate protocols in realistic
applications, the trade-off between the benefits of precise and strict adherence
to the limited power-law topology and the risk of high communication cost
for maintenance should be taken into consideration.

6. Conclusion

E-SRA, an efficient algorithm for maintaining the limited scale-free topol-
ogy with dynamic peer participation, is proposed. It produces the overlay
topology which improves the P2P network performance. The user can de-
fine scaling and cut-off parameters of the overlay network to achieve the
best performance. Nodes with any degrees, including hubs, are allowed to
be removed from the network freely. Our approach is tolerant to the re-
moval of nodes in any patterns and partially tolerant to node failures by
having the neighbors of the failing nodes connecting to the remaining nodes
smartly. Simulations have shown that E-SRA outperforms previous growth
models by producing overlay topologies with higher adherence to the scale-
free property. And search algorithms, including the Flooding algorithm and
the Normalized Flooding algorithm, achieve better search efficiency over the600

topologies produced by E-SRA than by previous growth models. In the fu-
ture, we plan to study the approach to preserve the power-law distribution
under simultaneous failures of a group of nodes. And we are also interested
in creating growth models which take user behaviors of P2P networks, such
as biased access, into consideration.

Appendix A. Upper Bound Derivation of Message Cost

According to the growth model proposed in previous work [8], when a
new node joins the network, it connects to k existing nodes. Among these k
nodes, each of the (1−

∑i
j=k fj) nodes needs to send the update messages to

i neighbors. Thus, if a node joins, the average number of update messages
sent is,

Mjoin =
m−1∑
i=k

(
1−

i∑
j=k

fj
)
i (21)
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If a node with degree b quits, then (b−k) PUSH operations and k SHUFFLE
operations are required. Due to the SHUFFLE operations, the degrees of
(1 −

∑i
j=k fj) nodes decrease from (i + 1) to i. This results in Msh update

messages.

Msh =
m−1∑
i=k

(
1−

i∑
j=k

fj
)
i (22)

The (b − k) PUSH operations change the degrees of (b − k) nodes, which
leads to a total of (

∑b−1
i=k i) update messages. If nodes are randomly removed

from the scale-free topology, the average number of update messages caused
by the PUSH operations is,

Mpush =
m∑

b=k+1

(
fb

b−1∑
i=k

i
)

(23)

Since
∑m

j=k fj = 1, we have,

m−1∑
i=k

(
1−

i∑
j=k

fj
)
i =

m−1∑
i=k

( m∑
j=i+1

fj
)
i =

m∑
b=k+1

(
fb

b−1∑
i=k

i
)

(24)

Thus,

Mpush = Msh = Mjoin =
m∑

b=k+1

(
fb

b−1∑
i=k

i
)

(25)

Using Eq. [3], the rightmost part of the above equation can be simplified as,

m∑
b=k+1

(
fb

b−1∑
i=k

i
)

=
m−1∑
b=k+1

(
fb

b−1∑
i=k

i
)

+ (1−
m−1∑
b=k

fb)
m−1∑
i=k

i

=
m−1∑
i=k

i+
m−1∑
b=k

[
fb
( b−1∑
i=k

i−
m−1∑
i=k

i
)]

=
m−1∑
i=k

i−
m−1∑
b=k

[
fb
(m−1∑
i=b

i
)]

(26)
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Using the definition of fi in Eq. [2], the rightmost part of the above equation
can be rewritten as,

m−1∑
i=k

i−
m−1∑
b=k

[ m− 2k

bγ
∑m−1

j=k
m−j
jγ

(m−1∑
i=b

i
)]

=
(m− 1 + k)(m− k)

2
− m− 2k

2

∑m−1
b=k

(m−1+b)(m−b)
bγ∑m−1

j=k
m−j
jγ

≤ (m− 1 + k)(m− k)

2
− m− 2k

2

(m− 1 + k)
∑m−1

b=k
(m−b)
bγ∑m−1

j=k
m−j
jγ

=
(m− 1 + k)(m− k)

2
− (m− 2k)(m− 1 + k)

2

=
(m− 1 + k)k

2

(27)

Consider a network with n nodes, where N nodes have been added to the
network (N � n). A total of (N − n) nodes have been removed from the
network. Every removal results in (Mpush +Msh) update messages and every
joining results in Mjoin update messages. If nodes are randomly added and
removed over a long period, the average number of update messages sent by
a single node is,

Mave = lim
N→∞

NMjoin + (N − n)(Mpush +Msh)

N

= 6
m∑

b=k+1

(
fb

b−1∑
i=k

i
)
≤ 3(m− 1 + k)k

(28)

Since the minimum degree k is a constant value, the average number of P2P
update messages is linear to the hard degree cut-off m. Specifically, when
k = 2, the average number of update messages sent by a single node is at
most 6(m+ 1).
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