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ABSTRACT
We present a text mining approach that enables an extension
of a standard authorship assessment problem (the problem
in which an author of a text needs to be established) to
role identification in communications within some Internet
community. More precisely, we want to recognize a group
of authors communicating in a specific role within such a
community rather than a single author. The challenge here
is that the same author may participate in different roles in
communications within the group, in each role having differ-
ent authors as peers. An additional challenge of our problem
is the length of communications. Each individual exchange
in our intended domain, communications within an Internet
community, is relatively short, in the order of several dozens
of words, so standard text mining approaches may fail. An
example of such a problem is recognizing roles in a collection
of emails from an organization in which middle level man-
agers communicate both with superiors and subordinates.
To validate our approach we use the Enron email dataset
which is such a collection.
Our approach is based on discovering patterns at varying
degrees of abstraction in a hierarchical fashion. Such dis-
covery process allows for certain degree of approximation
in matching patterns, which is necessary for capturing non-
trivial structures in realistic datasets. The discovered pat-
terns are used as features to build efficient classifiers. Due
to the nature of the pattern discovery process, we call our
approach Recursive Data Mining. The results show that
a classifier that uses the dominant patterns discovered by
Recursive Data Mining performs well in role detection.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; I.2.7 [Artificial Intelligent]: Natural Lan-
guage Processing—Text analysis; I.5.2 [Pattern Recogni-
tion]: Design Methodology—Feature evaluation and selec-
tion, Pattern analysis
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1. INTRODUCTION
The problem of understanding characteristics of data has
attracted keen interest of scientists from early years of com-
puter science. Specifically, characteristics that represent a
certain “style” within the data have been widely used to an-
alyze and discriminate between different attributes of data,
their sources and the underlying generative models.
Within the data mining community, the term feature extrac-
tion is commonly used for techniques that identify features
relevant to the application at hand. Within this context,
the term feature has been loosely used for attributes of data
that can range, for instance, from keywords for text docu-
ments to principle eigenvectors for high dimensional genetic
data. Feature extraction is broadly considered to be com-
posed of two sub-tasks – feature construction and feature se-
lection [11], each addressing one of the two main challenges
of the problem. The first challenge arises when a lot of noise
is present in the data resulting in construction of ineffective
features. The second challenge results from the large number
of features usually generated. The features are ranked based
on optimality criteria – such as information gain, usefulness
for novelty detection – and only the top-ranked features are
used to avoid the curse of dimensionality [7] and to enhance
generalization capabilities.
Each human communication carries not only semantic con-
tent defining its meaning but also a unique word and pat-
tern of words structure characteristic of its author. Hence,
proper feature selection and extraction may enable reliable
attribution of a communication’s authorship in the process
of authorship assessment. In this paper, we present a more
complex problem of detecting roles of communicators within
a communicating group based on styles of their communica-
tions. To solve this new problem, we apply a general feature
extraction method, termed Recursive Data Mining (RDM),
that uses statistically significant, approximately matched se-
quential patterns.
Identifying patterns using significance tests was used exten-
sively in biological sequence analysis [16]. In this paper, we
focus on extracting patterns from electronic media; those
patterns are later used to build a classifier. The approach
is independent of any semantic information contained in the
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communication, making it amenable to text documents writ-
ten in different languages. The method also controls degree
of flexibility by allowing different degree of inexactness in
matching of patterns. Otherwise, presence of noise (in the
form of spelling mistakes, use of abbreviations, etc.) would
lead to very few matches.
Even though RDM can be applied to data of any nature
(time series data, genome data, etc.), we focus here on text
documents that are traces of electronic communication, and
specifically, we consider the Enron email dataset introduced
in [17] as a benchmark for email classification. In our work,
the features obtained from Enron email dataset are used
to identify the organizational role (e.g., manager, president,
administrative assistant, etc.) of the sender of an email.
Potential applications of our approach include analysis of
groups on the Internet of which structure is not clear or not
explicitly defined and, in some cases intentionally obstructed
or hidden by the group members. Identifying the leaders and
followers in such informal groups is of great value for social
sciences, network science and security.
The basic premise behind our approach is that within any
form of communication, not only traces of personal style
can be identified but also its variations can be detected.
Moreover, the variations of the personal style based on the
stature or relationship to the recipient of the communication
are similar among large groups of users sharing the common
cultural heritage. This similarity is so strong that such a
style variation can be detected for a group of the authors
and not only for the specific individual author. For instance,
the manner in which a person communicates with his/her
superior is quite different from the manner in which one
would communicate to his/her friend.
To address the above mentioned challenges, RDM uses an
approach that extracts syntactic patterns. These patterns
capture the stylistic characteristics, which are in turn used to
attribute a role to an individual. We built a framework for
discovering statistically significant sequence patterns from
a stream of data. The methods developed can be applied
for finding significant sentences in a stream of text such as
email, blog or chat-room session. The methods can also be
applied for finding significant regions in a DNA sequence.
Previously, RDM was presented in [9, 22] for social network
analysis and masquerade detection.
Some of the key contributions of RDM approach are as fol-
lows:

• The patterns formed do not have any length restric-
tion. This allows arbitrary size patterns to be discov-
ered. Most of the other published techniques work on
a fixed size window.

• The method is hierarchical in nature. This enables us
to capture patterns at various levels of abstractions.
Moreover, the hierarchical nature allows us to remove
noisy symbols from the stream as we move from a lower
to a higher level in the hierarchy. This ultimately leads
to discovery of long range patterns that are separated
by long noisy intermediate text segments.

• The method is also able to discover approximate (sim-
ilar) patterns with the level of inexactness of matching
controlled by a user provided parameter.

The rest of the paper is organized as follows. We discuss
related work in Section 2. Section 3 introduces the basic

terminology for this work and is followed by Section 4 con-
taining a detailed description of our methodology. The ex-
perimental results are presented in Section 5, while Section
6 offers conclusions.

2. RELATED WORK
There is a large body of work that deals with extracting pat-
terns and features from unstructured raw text data. Experts
in the fields of information retrieval, natural language pro-
cessing, data mining and statistical learning have focused on
a diverse set of techniques for feature extraction and feature
selection to solve the author identification problem. Lin-
guists use statistical techniques to obtain a set of significant
words that would help identify authors. In 1964 Mosteller
and Wallace [18] solved the Federalist Papers problem by
identifying 70 function words and applying statistical infer-
ence for the analysis. In the Natural Language Processing
(NLP) community, the Hidden Markov Model has greatly
influenced many techniques used for speech recognition [3].
Other complementary techniques used by the NLP commu-
nity include part of speech tagging [12], which is used for
assigning a syntactic category to each word in a text doc-
ument. In [11], authors provide a comprehensive introduc-
tion to feature selection techniques. Many other applica-
tions also benefit from feature extraction and feature se-
lection, which include automatic painting classification [6],
detection of malicious alterations of images [20], grouping
proteins and genes into classes based on function, location
and biological process in bioinformatics [25] and character-
izing the behavior of an individual or a group of individuals
in e-Commerce [23].
Our work is a continuation of an approach introduced in [8]
which was developed concurrently and independently with
the approaches presented in [19, 21]. All these papers dis-
cuss how the underlying structure in a communication in
a human language can be learned in a hierarchical man-
ner. In [8] we have shown that a hierarchical structure can
model an emergence of basic speech capabilities in human
infants. In [19] the authors extract a hierarchical nested
structure by substituting grammar for repeated occurrences
of segments of tokens. Similarly, in [21] the authors present
a data independent hierarchical method for inferring signifi-
cant rules present in natural languages and in gene products.
Our efforts differ in that we provide certain flexibility in the
patterns found by allowing gaps. This enables us to work
with much smaller datasets as compared to [21]. In recent
works [1, 2], the frequent mining was modified to obtain
useful patterns which are used for classification in various
domains.

3. PRELIMINARIES
Consider a set of sequences, denoted as SEQ. Each sequence
consists of a series of tokens from a set T . Thus, a sequence
S ∈ SEQ of length n can be represented as t1, t2, . . . , tn,
where ti ∈ T . Depending on the application, a token may
represent a different entity. For instance, in the domain
of text documents, a token can either represent a charac-
ter or a word and a sequence S would then correspond to
the whole document. For stock market data, each token
could represent a numeric value (price and volume) while
the sequence would represent the entire time series of pur-
chases (or sales) of a certain stock. A special token, called



the gap token, corresponds to a blank entry and is repre-
sented by the symbol ⊥. The gap token mimics the ’.’ char-
acter in regular expressions - it can be matched with any
other token. A sequence pattern P is an ordered sequence
of tokens from T ∪ {⊥}. Formally, P can be denoted as
{si : s1, sl(P) ∈ T ∧ si ∈ T ∪{⊥}, i = 2 . . . l(P)− 1}, where i

is the index of a token in the sequence and l(P) is the length
of the pattern P . It should be noted that the first and last
tokens are never the gap tokens. This restriction is useful
for combining contiguous patterns.
Two patterns are said to have an exact match if they consist
of the same sequence of tokens. Given a similarity function,
sim(P1,P2) a similarity score between 0 and 1 is assigned to
each pair of patterns. Exact matching restricts the similarity
score to binary values - sim(P1,P2) = 1 if P1 = P2, 0
otherwise. The presence of a gap token in a sequence pattern
relaxes the exact match constraint, allowing it to match a
wider set of patterns with sim(P1,P2) ∈ [0, 1]. A match
with similarity score greater than α ∈ (0, 1) is called a valid
match. The set MP(α) is the set of valid matches for a
pattern P at the level of similarity α. A pattern P of length
l and g gaps is termed as a (l, g) − pattern. If P has a
match at index i in sequence S, then it belongs to the set
of Si(l, g)-patterns. The set of patterns Si(l), given by the
expression ∪max gap

g=0 Si(l, g) represents all patterns of length
l starting at index i in S. max gap, as the name indicates,
is the maximum number of gaps allowed in a pattern. In
the rest of the paper, the term pattern would always imply
a sequence pattern and terms pattern and feature would be
used interchangeably, unless stated otherwise.

4. RECURSIVE DATA MINING
Recursive Data Mining (RDM) is an approach for discov-
ering features from sequences of tokens. Given a set of se-
quences as input, the algorithm captures statistically sig-
nificant patterns from the initial sequences. The patterns
obtained are assigned new tokens. The initial sequences
are re-written by collapsing each sequence pattern to its
newly assigned token, while retaining the rest of the tokens.
The algorithm now operates on the re-written sequences and
continues to iterate through the pattern generation and se-
quence re-writing steps until either the sequences cannot be
re-written further or a predefined number of iterations is
reached. Each generation of sequences in the above process
is termed a level, with the initial set of sequences called
level(0) sequences. The patterns obtained at each level
form a set of features. The term “recursive” in the name
refers to this iterative step that obtains the next level by op-
erating on the current level. In the RDM process, we claim
that the recursive (hierarchical) processing of the data cap-
tures distinctive features at varying levels of abstraction.
Intuitively, at lower levels the patterns obtained are more
specific, resulting is a smaller set of valid matches, M(α).
At higher levels, the patterns are more general, resulting is a
larger M(α) set. On the other hand, with increasing levels,
the number of patterns found decreases monotonically.
In this section we present the details of an RDM based clas-
sifier. Like most supervised learning tools, RDM has two
stages of processing – training and testing. The training
phase starts with pattern generation, followed by pattern se-
lection through the pattern significance step. Out of the
significant patterns, the dominant patterns form the feature
set for the current level. The overall RDM process is out-

lined in Algorithm 1. The input is a set of sequences SEQ0

(level(0) sequences), which also forms the initial set of se-
quences in the iterative procedure. The set of sequences for
level (i+l) are generated from the sequences in level i and the
corresponding set of dominant patterns D. PALL and PSIG

represent the sets of all and significant patterns, respectively.
Dominant patterns (denoted by D) for the current level are
generated by the get dominant patterns method. The union
of dominant patterns at each level is collected in L.

Algorithm 1 Recursive Data Mining

Input: Set of sequences SEQ0

Output: Sets of patterns (features) L, one for each level
1: L = {}, i = 0
2: repeat
3: if i > 0 then
4: SEQi = make next level(SEQi−1,D) // Level(i)
5: end
6: PALL = pattern generation(SEQi)
7: PSIG = sig patterns(SEQi,PALL)
8: D = get dominant patterns(SEQi,PSIG)
9: L = L ∪ D

10: i++
11: until D == ∅ ∨ i == max level

12: return L

4.1 Pattern Generation
Each input instance is converted into a sequence of tokens.
The initial sequence of tokens, level(0) sequence, will be re-
ferred to as S0. A sliding window of length lw moves over Sv

(v = 0 initially). At each position p of the window, all pos-
sible (lw, max gap)–sequence patterns are generated. The
number of patterns generated equals the number of combi-
nations of tokens covered by the window along with the gap
token. A bounded hash keeps count of the number of oc-
currences of each pattern at level v, as the sliding window
moves over Sv. This processing forms the first pass over
the sequence Sv. Figure 1, shows the patterns generated at
position 1 and 2 of the sequence.

Figure 1: Pattern Generation Step (lw =
6, max gap = 2)

4.2 Pattern Significance
The number of (lw, max gap)-patterns uncovered in the se-
quences is generally large. Many of those patterns are ei-
ther very specific to a certain sequence or insignificant be-
cause they contain commonly occurring tokens. In either
case, they are ineffective in capturing any stylistic attributes



while adding to the computation cost of the algorithm. The
“usefulness” of a pattern is computed with a statistical sig-
nificance test. Patterns that are deemed insignificant are
eliminated from further consideration. Recall that the set
of unique tokens appearing in a set of sequences SEQ is
denoted by T . The frequency of a token ti appearing in
SEQ will be denoted by fti

. So the probability of token ti

appearing in SEQ denotes as P (ti) is

P (ti) =
fti

P|T |
j=1 ftj

. (1)

For a pattern P of length lw, the probabilities of tokens
appearing in the pattern can be represented as a vector
(pt1 , pt2 , · · · , ptlw

). Recall that a gap is represented by a
special token ⊥. The probability of pattern P is thus given
by the expression

P(P) = P (RV1 = t1, RV2 = t2, · · · , RVlw = tlw ) (2)

= p(t1)p(t2 | t1) · · · p(tlw | t1, · · · tlw−1)

where RVi is a random variable for appearance of token ti.
Assuming that the words appear independently of each other
(this assumption is just for the purpose of measuring pattern
significance, because if they are not, co-appearing words will
eventually be merged into a single token at the higher level
of RDM abstraction), just the marginal probabilities for the
words need to be computed, resulting in

P(P) =

lw
Y

i=1

pti
. (3)

The probability of a gap token, denoted as ǫ, is a user defined
constant (see 4.3 for details). The probability of occurrence
of P under the independent appearance of tokens assump-
tion is given by

PR(P) = P (RV1 = t1, RV2 = t2, · · · , RVlw = tlw ). (4)

Further assuming equal probability for each token to appear
(we will call a model satisfying this assumption a random
appearance model), the above expression simplifies to

PR(P) =
“ 1

| T |

”lw
. (5)

The ratio PR(P)
P(P)

is used to determine significance of the

pattern. If the above ratio is smaller than 1, then the pat-
tern is considered significant, otherwise it is considered in-
significant. The ratio indicates the likelihood of pattern oc-
currence under the random appearance model as compared
to its occurrence under the unknown observed distribution.
This is similar in essence to the log-likelihood ratio test, with
null hypothesis (H0), that the observed distribution is sim-
ilar to the random appearance distribution. The alternate
hypothesis H1 states otherwise. The log-likelihood ratio is
given by the expression

LRT = −2loge

“LR(θ)

LO(θ)

”

, (6)

where LR(θ) is the likelihood function under the random ap-
pearance model and LO(θ) is the likelihood for the observed
distribution. H0 is a special case of H1, since it has fewer
parameters (captured by θ) as compared to the more gen-
eral alternate hypothesis. Applying the significance test to

the set of patterns PALL gives us a smaller set of significant
patterns, PSIG.
Other significance tests for sequence patterns have been pro-
posed. Permutation tests [10] provide a simple approach for
comparing the observed occurrences of a pattern with the
number of likely occurrences over a random sequence. The
practical application of this method requires generating a
large number of random permutations of the input sequence
and computing the statistics on the random permutations.
If the input sequence is long, this operation can be compu-
tationally expensive. Karlin et al. [16, 15] have proposed
significance tests for identifying relevant regions in protein
sequences.

4.3 Dominant Patterns
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Figure 2: Sequence Re-writing Step

After the significant patterns at level v are determined, a
second pass is made over the sequence of tokens Sv. At
each position in the sequence, the tokens in the significant
patterns are matched against the tokens in the sequence.
The matching score is defined as the conditional probability
of a match given two symbols, i.e., if P [i] and Sv[j] are the
same then the conditional probability of a match is 1. On
the other hand, if P [i] = ⊥ then the conditional probability
is ǫ. The matching score can be computed as follows:

score(P [i], Sv[j]) =

8

<

:

1 if P [i] = Sv[j]
ǫ if P [i] =⊥, 0 < ǫ < 1
0 otherwise

, (7)

where P [i] is the ith token of the pattern and j is the cor-
responding index over sequence S. ǫ is intended to capture
the notion that a ⊥ symbol is not as good as an exact match
but much better than a mismatch. The value of ǫ is user de-
fined. It was set to 0.95 in our experiments to favor a match
with the gap token. The total score for a pattern, starting
at index j in S, is given by

score(P , Sv[j]) =

|P|
X

i=1

score(P [i], Sv[j + i]). (8)

The pattern that has the highest score starting at location
j in the input sequence is termed as the dominant pattern
starting at position j. In other words, this is a pattern x

defined by the expression argmaxx∈Sv
score(x,Sv[j]). The

term dominant pattern reflects the fact that this pattern



dominates over all other significant patterns for this position
in the sequence. Two dominant patterns that are placed
next to each other can be merged to form longer dominant
patterns. The merging process is continued till no further
dominant patterns can be merged.
An example of the merging process is shown in Figure 2.
After the first pass of the sequence at level v, a new token is
assigned to each dominant pattern found. During the second
pass at this level, the sequence for level v + 1 is generated.
In this process, each subsequence corresponding to a domi-
nant pattern is replaced by the new token for this dominant
pattern. When no dominant pattern can be matched at po-
sition j, the original token is copied from sequence Sv to the
new sequence Sv+1. Figure 2 illustrates this step.

9 1016 21 N 10 N 16 21 N 9 N 16 21

109 16 212116 219 10 16 Level−k sequence

Level−(k+1) sequence

Pattern Count
16,21,N,9

21,N,9,10
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2
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Figure 3: Removing Noisy Tokens from Long Range
Patterns

As the RDM algorithm generates subsequent levels, certain
tokens get carried over from lower levels without participat-
ing in any dominant patterns at higher levels. Such tokens
are termed “noisy” for the following reasons. First, they
do not contribute to any patterns at these levels. Second,
they obstruct the discovery of patterns that are separated
by a long sequence of noisy tokens. Patterns separated by
noisy tokens are called long range patterns. These long range
patterns can be captured only if the noisy tokens lying in
between them can be collapsed. As a result, at each level,
we collapse contiguous sequence of tokens that have not re-
sulted in new dominant patterns for the last k levels, into
a special noise token. Value of constant k is selected using
the tuning dataset (see Section 5). Figure 3 illustrates the
process of collapsing noise tokens into a single special token
N . Once the noise tokens are collapsed, distant tokens can
now fall within the same window, leading to more patterns
being discovered at higher levels.
The set of dominant patterns Dv at level v form the features
for this level. This iterative process of deriving level v + 1
sequence from level v sequence is carried on till no further
dominant patterns are found or v + 1 has reached a user
predefined maximum value. The sets of features extracted
are utilized by an ensemble of classifiers.

4.4 Training Phase and Testing Phase
The training phase involves using dominant patterns gen-
erated at each level to construct an ensemble of classifiers
(C1, C2, · · · , Cmax level), one for each level. The dominant

patterns reflect the most relevant patterns, ignoring the highly
frequent and infrequent patterns (upper and lower cut–offs
in the pattern frequency distribution). The upper and lower
cut–offs are intended to prevent the use of insignificant pat-
terns as features. The classifiers can be created from any
machine learning method, such as Näıve Bayes or Support
Vector Machine.
Given a set of text documents SEQtr, along with the labels
r1, r2, · · · , rv of all possible classes, dominant patterns are
generated for each document starting at level 0 up to level
max level. The union of all tokens in T and dominant pat-
terns at a level v across all documents in SEQtr forms the
set of feature for classifier Cv. For the ensemble of classi-
fiers, the final prediction value is the weighted sum of the
class prediction of individual classifier. Each classifier is as-
signed a weight that reflects the confidence of the classifier.
In order to determine this confidence value, the set SEQtr

is further split into a tuning set SEQtu and a training set
SEQtr\SEQtu, where A\B denotes the set difference oper-
ation A − B (A minus B). Each classifier in the ensemble
trains its model based on SEQtr\SEQtu. The accuracy of
the classifier on the tuning set determines the confidence of
classifier Ci as

conf(Ci) =
accuracy(Ci)

Pmax levels

j=1 accuracy(Cj)
, (9)

where accuracy(Cj) is computed over the tuning set SEQtu.
After the training phase discovers features from the training
data, the testing phase finds occurrences of those features in
the test data. Hence, the testing phase follows the training
phase in terms of the level by level operating strategy. If a
dominant pattern X was discovered at level(v) during the
training phase, then it can be only applied to level(v) in
the testing phase. Initially, the frequencies of tokens and
level(0) dominant patterns are counted over the level(0) test
sequence. This vector of frequencies forms the feature vector
at level(0). Once the feature vector for level(0) is obtained,
the next level sequence is generated. This is achieved by
substituting the token of the best matching pattern at every
position in the level(0) test sequence. It should be noted
that if the best match has a score below the user specified
threshold α, then the token at level(0) is carried over to
level(1). Now, the occurrences of the dominant patterns at
level(1) are counted over level(1) test sequence. This process
continues till all levels of dominant patterns are exhausted.
Each classifier in the ensemble classifies the test data and the
final prediction value is according to the following weighing
scheme:

P(C | x) =

max levels
X

i=1

conf(Ci) × PCi
(C | x), (10)

where x is a test sequence and PCi
(C | x) is the prediction

value assigned by classifier Ci.

5. EXPERIMENTS AND RESULTS
We show that RDM performs better than comparable clas-
sifiers such as Näıve Bayes (NB), Support Vector Machines
(SVM) and Predictive Association Rule based (CPAR [24],
which combines the advantages of associative and traditional
rule-based classifiers). Support Vector Machines based clas-
sifiers have been shown by [13] to perform well for text clas-
sification tasks. We used SVMLight as the SVM implemen-



Table 1: Dataset for Role Identification
Training Testing Total # Sent

Set Set folders

CEO 1010 250 1260 3
Manager 1403 349 1752 4
Trader 654 162 816 4

VP 1316 327 1643 4

Total 4383 1088 5471 15

tation [14], and IlliMine package for CPAR [24]. RDM does
not use any semantic tools (part-of-speech tagging or syn-
onym groups) in order to extract patterns that later serve
as features for the classifiers. As a result, we compare RDM
with other techniques that do not utilize domain or semantic
knowledge either. A brief introduction to the Enron email
dataset used for running the experiments is provided before
the discussion of the experimental setup.

5.1 Data Preparation and Experimental Setup
Experiments are performed on the March 2, 2004 version of
Enron email dataset, distributed by William Cohen [4]. The
dataset was cleaned to eliminate attachments, quoted text
and tables from the body of the email messages and header
fields from the email. No effort was made to correct spelling
errors or to expand abbreviations in an attempt to reduce
the noise in the data. However, stemming was performed on
the dataset.
For our purpose of identifying roles, employees were par-
titioned into groups based on their organizational role in
Enron, as suggested in [5]. Only the roles of CEO, Man-
ager, Trader and Vice-President were used in our experi-
ments since a large number of employees were designated
with these roles. Since we are concerned with identifying
roles based on messages sent by employees, we only deal
with the messages in the Sent folder of each participant.
For each of the roles, the emails are divided into two sets as
summarized in Table 1. Finally, each stemmed word in an
email is considered a token, and each email represents one
sequence.
The RDM algorithm requires a few parameters to be set
for the classification model. The parameters to be selected
include 1) the size of the window, 2) the maximum number
of gaps allowed in the window, 3) the weights assigned to the
classifier at each level, 4) the parameter k used to eliminate
noisy tokens. A greedy search over the parameter space is
conducted to determine the best set of parameter values.
To compute the parameter values, the training set is further
split into two parts. A classifier is trained on the larger part,
and tuned on the smaller part (called the tuning set).

5.2 Results
We compare the classifiers – Näıve Bayes, RDM with NB,
SVM, RDM with SVM and CPAR – under two classifi-
cation settings: binary and multi-class. RDM was used
both with Näıve Bayes, and SVM as the ensemble classi-
fiers. For both classification settings, F-measure, which is
the harmonic mean of precision and recall, is used to com-
pare performance of the classifiers. In the binary classifica-
tion setting, given a test message m, the task is to answer
the question “Is message m sent by a person with role r”?
where r ∈ R = {CEO, Manager, Trader, Vice-President}.

 0
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Figure 4: Binary Classification – F-measure

The training set is divided in such a way that all messages
belonging to role r form the positive class and all messages
belonging to R\r form the negative class. The performance
for the five classifiers is shown in Figure 4, where the values
of 1 - F-measure are presented to highlight the differences in
performances. Note that a smaller value of 1 - F-measure in-
dicates a better classifier. In terms of the F-measure, RDM
with SVM performs better than NB, SVM or CPAR for all
tested roles while RDM with NB performs better for most of
the roles. To further analyze the results, we computed the
Root Mean Square Error (RMSE) for NB and RDM with
NB. The RMSE is computed using the expression
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Figure 5: Binary Classification – RMSE Comparison

RMSE(Ttest) =

s

P|Ttest|
i=1 (1 − P (r | Ttest

i))2

| Ttest |
, (11)

where Ttest
i is the ith document in the test set and r =

argmaxc P (c | Ttest
i). Since the decision function value from

SVMLight could not be converted to an error term, the plot
in Figure 5 does not show comparison with SVM. Similarly,
CPAR does not provide any comparable measure. The lower
the RMSE value is, the more confident is the classifier in
its prediction. Figure 5 shows that RDM with NB is more
confident in its predictions even when the F-scores for RDM
with NB and NB are very close for a certain role.
The second set of results compares the performance under
the multi-class classification setting, wherein the task is to
answer the question “Which is the most likely role, out of



roles R1, . . . , Rn, for sender of message m?” For NB and
RDM, the training data is split into four groups and proba-
bilities computed for each of the roles. For SVM, four sets
of datasets are generated, one for each pair of roles (r, R\r).
The comparison for the classifiers is shown in Figure 6. RDM
convincingly outperforms the other classifiers in this com-
parison.
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Figure 6: Multi-class Classification – F-measure

To further investigate the results obtained for the multi-class
scenario, we performed the paired t-test for statistical signif-
icance. The paired t-test provides a hypothesis test of the
difference between population means for a pair of random
samples whose differences are approximately normally dis-
tributed. Note that a pair of samples, each of which may not
be from a normal distribution, often yields differences that
are normally distributed. The null hypothesis H0 states that
the difference in performance between RDM and the other
methods is not significant. In other words, H0 states that
the two methods perform equally well. The alternate hy-
pothesis, states otherwise.
A 20-fold cross validation was performed on the data. The
accuracy results obtained therein are used for the t-test,
where SVM and CPAR are compared against RDM with
SVM (denoted as RDM-SVM), and NB is compared against
RDM with NB (denoted as RDM-NB). The results are shown
in Table 2. Based on the p-value in Table 2 we reject the
null hypothesis, indicating a definite improvement provided
by RDM. The confidence interval for the mean difference
shows that the improvement lies between 1.8% and 3% as
compared to NB, whereas compared to SVM (and CPAR),
it is between 8% and 10%.
For the final test we divide each role into two parts based
on the user identities. For instance, the folders of Jeffrey
Skillings, David Delainey and John Lavorato form the CEO
group, because CEO’s of Enron subsidiaries are also consid-
ered as Enron CEO’s for our experiments. The first part,
namely training set, contains messages from John Lavorato
and David Delainey, while messages from Jeffrey Skillings
form the second part (test set). An RDM based classifier is
trained using messages in the first part and tested on mes-
sages in the second part. In this experiment, we analyze the
performance of the classifier for a member whose messages
are not in the training set. The results for different roles are
shown in Figure 7. The test set size is gradually increased
and the accuracy is noted. Notice that for the roles of Man-
ager, Trader and Vice-President, the accuracy increases with

larger number of message. The converse is observed for the
role of CEO. After examining the messages for the CEO, we
observed that most of the messages were written by CEO’s
administrative assistants. This explains the relatively poor
performance of classifiers for this role.
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Figure 7: Frequency of Accurate Classification over
Unseen Message Folder

6. CONCLUSIONS
We propose a general framework for feature extraction from
a sequence of tokens. The framework is based on the idea
of capturing statistically significant sequence patterns at in-
creasing levels of generalization. These patterns act as fea-
tures for an ensemble of classifiers, with one classifier de-
fined at each level of generalization. The proposed method
is simple and flexible, hence, it can be applied to a range of
applications. We applied it to capture stylistic patterns in
the Enron email dataset and used those patterns for identi-
fying the organizational roles of authors. The method, in its
current state, is devoid of any semantic knowledge, which
can be easily incorporated to identify semantically related
patterns. Techniques such as part of speech tagging and
synonym dictionaries can augment our approach. Based on
the success of the method on a noisy dataset, we believe that
the method can perform better on cleaner datasets and on
other application areas such as grouping gene products by
their families.
For our future work, we plan to conduct experiment to
demonstrate the broad applicability of this method on cleaner
and more structured text categorization datasets, such as
gene datasets, including GenBank database, and foreign lan-
guage datasets, including the Reuters dataset and Russian
Blogosphere data.
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Table 2: Results of paired t-test
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NB vs RDM-NB 0.02393 0.002525 9.48 1.23E-08 (0.0186 - 0.0292)
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