
Towards Middleware Components for Distributed Actuator Coordination

Joel W. Branch and Boleslaw Szymanski
Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180
{brancj, szymansk}@cs.rpi.edu

Chatschik Bisdikian, Norman Cohen, John S.
Davis, Maria R. Ebling, and Daby M. Sow

IBM T. J. Watson Research Center
Hawthrone, NY 10532

{bisdik, ncohen, davisjs, ebling,
sowdaby}@us.ibm.com

Abstract

The pervasive presence and availability of sensor and
actuator networks creates the potential for widely distrib-
uted Internet-scale control systems. Given these systems’
potential magnitude and complexity, new tools will be
required to facilitate their composition and operation,
especially as they relate to distributed actuator coordina-
tion. This paper introduces and advocates our approach
to implementing distributed actuator coordination algo-
rithms using a middleware framework.

1. Introduction

For decades, sensors and actuators have been used in
implementing various forms of automated control systems
(e.g., climate control or industrial plant control). Recent
technology advances (and associated cost reductions),
however, have enabled sensors and actuators to become
much more connected and pervasive. These trends are
further accelerated by factors such as the increasing per-
vasiveness of Internet access and new wireless network-
ing standards. These factors have enabled sensors and
actuators to communicate with each other with growing
ease within ever growing networked infrastructures form-
ing sensor and actuator networks, or SANETs. Depending
on the application, other networked entities such as data-
bases, web services, and messaging systems may also be
included as sensors or actuators. When combined with
large-scale networked systems, the culmination of these
advancements define a new generation of highly perva-
sive, dynamic, and heterogeneous Internet-scale control
systems, which we refer to as SANET control systems.

Along with the proliferation of SANET control sys-
tems comes an assortment of new research challenges.
One significant challenge, and the focus of this paper, is
distributed actuator coordination, which involves manag-
ing the behavior of actuators that are related via overlap-
ping treatment domains. Treatment domains are defined
by the spatial extent over which an actuator affects an
environment. Focusing on the details of actuator coordi-
nation in emerging SANET control systems is important

for several reasons. First, overlapping treatment domains
create both the potential for actuator interference and op-
portunity for cooperative shared task execution. While
redundancy among sensors is typically not considered a
negative feature, overlapping treatment domains could
affect a SANET control system’s ability to satisfy local
and global application goals. Second, the relationship
between actuators and their corresponding treatment do-
mains may be dynamic. This may depend on factors such
as the actuator(s) chosen to perform a specific task, in-
consistent actuator performance, or the nature of the me-
dium to be controlled. To compound these two chal-
lenges, SANET control systems will have a magnitude
that far exceeds the scale of control systems encountered
in prior generations. The number of distributed, transient,
and potentially heterogeneous actuators and sensors that
will populate SANET control systems will require novel
programming abstractions that were previously unneces-
sary.

Given the motivations above, we propose to address
distributed actuator coordination via the Sentire frame-
work [1], which supports the composition of extensible
middleware for SANET control systems in a high-level,
platform-independent manner. In a sense, this paper pre-
sents the next step in the evolution of Sentire and intro-
duces its extensions for supporting the implementation of
algorithms for distributed actuator coordination. We con-
centrate our initial research in defining suitable actuator
programming abstractions and a service for facilitating
coordination among actuators with interfering treatment
goals. To the best of our knowledge, there is no previous
proposal to address such a coordination scenario using a
high-level middleware approach. This paper proceeds as
follows. Section 2 describes our research scope and the
pertinent research challenges. Section 3 describes the
proposed Sentire approach to supporting actuator coordi-
nation. Section 4 illustrates the utility of this approach in
building an example of a SANET control system. Section
5 concludes with a discussion of related works and future
research endeavors.

2. Research scope and challenges

szymansk
Text Box
 Proc. Third Workshop on Embedded Networked Sensors (EmNets 2006), Boston, MA, May, 2006

Our research focuses on providing a middleware
framework, called Sentire, for facilitating distributed ac-
tuator coordination. We target Sentire towards supporting
the composition of large-scale SANET control systems
composed of distributed autonomous sub-controllers.
Each sub-controller is responsible for controlling a pre-
scribed treatment domain by issuing commands to one or
more attached SANETs. Sub-controllers may also may
operate either singularly or collectively to enforce either
local or global application goals. A significant challenge
for such systems is managing the interaction (or, coordi-
nation) between various sub-controllers since their treat-
ment domains may intentionally or unintentionally over-
lap given their individual actuators’ treatment domains
and the behavior of the environmental processes to be
controlled. Overlaps could be beneficial, especially in
helping to complete shared tasks in a resource-balanced
manner. However, overlaps could also potentially de-
grade an application’s effectiveness if the related sub-
controllers are attempting to achieve interfering goals.

The validity of the above descriptions and concerns is
illustrated by the following descriptions of two examples
of next-generation SANET control systems: vehicle traf-
fic management and distributed energy management.
Multiple use cases help to identify salient research chal-
lenges and potential middleware-centric solutions for
distributed actuator coordination.

Vehicle traffic management. Advanced vehicle navi-
gation systems provide drivers with routes based on both
their destinations and the collection of live traffic data
(e.g., reports of congestion and accidents) using roadside
sensors and other data sources [10][11]. We envision
next-generation traffic systems to evolve with two charac-
teristics. First, we expect the development of decentral-
ized traffic management systems as a solution to adminis-
trative domains of control (e.g., the separate control of
adjacent municipalities), in support of reduced and bal-
anced network traffic load, and due to physical network
partitioning. Furthermore, distributed control will avoid
single points of failure in the face of large metropolitan
areas with growing traffic systems. Second, we expect the
implementation of globally optimal routing algorithms
that reduce aggregate trip delay for a population of users
rather than individualistic, greedy algorithms. If conges-
tion is encountered on a roadway, such systems should re-
route traffic so as to reduce the probability of creating
new sources of congestion elsewhere in the system.

The composition of both decentralized and globally
optimal routing algorithms require a great deal of coordi-
nation. When separate jurisdictions compose the overall
system, they must coordinate to prevent their local rout-
ing decisions from interfering with the decisions of other
domains. For instance, routing decisions for suburban
New Jersey, Connecticut, and New York could affect
traffic in New York City.

Distributed energy management. It has been argued
that the current centralized structure of the national power
grid is inadequate to reliably sustain the increasing de-
mand for energy. A proposed solution is the microgrid
paradigm [4]. A microgrid is a semiautonomous system in
which a group of power supplying entities (e.g., micro-
turbines or fuel cells) is managed to intelligently distrib-
ute the larger grid’s energy to a subset of end-users (e.g.,
those within office buildings and residential districts).
The microgrid can operate in two ways. First, it can oper-
ate interconnected with the larger grid and economically
purchase energy (e.g., electricity or natural gas) from it so
as to efficiently meet users’ demands. Second, it can dis-
connect from the larger grid, such as in the case of a
blackout, and intelligently distribute stored and locally
generated energy to users based on their usage behavior
and priority of demands (possibly measured in terms of
consumers’ willingness to pay premium prices). We envi-
sion separate disconnected microgrids coordinating pur-
chases of energy from each other to help meet users’ de-
mands distributed across multiple microgrid domains. In
general, embedded sensors can be used to monitor and
predict energy usage behavior and support energy pur-
chasing and distribution, i.e., collectively make actuation
decisions. Actuation decisions can also involve selec-
tively controlling the operating state of appliances to con-
trol energy usage.

The previous usage scenarios call attention to three re-
search challenges that should be addressed by a middle-
ware framework, such as Sentire, for supporting the sys-
tematic implementation of algorithms for distributed ac-
tuation coordination:
1. Actuator programming abstraction: Designing a pro-

grammable abstraction and other middleware support
for selecting appropriate underlying actuators for a
task and controlling their actions in an abstract, plat-
form-independent, and scalable manner is the most
fundamental challenge.

2. Actuator coordination service: An extensible mid-
dleware service must be designed to enable the im-
plementation of customized algorithms for coordinat-
ing actuation decisions among related sub-controllers
in order to reduce actuator interference and enable
the enforcement of local or global application goals.

3. Actuator treatment domain tracking: Middleware
components and services must be designed to track
actuators’ treatment domains. These can change over
time in potentially unpredictable ways and are impor-
tant to track since they determine sub-controllers’
treatment domains and influence actuator coordina-
tion.

Our initial research largely focuses on item 1 and (with a
specific focus on actuator interference) item 2. Research
regarding actuator treatment domain tracking is left for
future study.

3. Sentire approach to actuator coordination

We augment Sentire for supporting distributed actua-
tor coordination by first proposing an extended architec-
ture of middleware components as illustrated in Figure 1.
Within the Sentire middleware, two major components
are shown: virtual actuator programming abstractions
and the actuator coordination service manager. Note that
other Sentire components described in [1] reside within
the intermediary cloud surrounding the actuator coordina-
tion service manager; these other components will not be
discussed in this paper. Next, we describe further how we
envision the proposed components supporting distributed
actuator coordination algorithms.

Sentire middleware

Virtual
actuator

SANET

Sentire middleware

Virtual
actuator

SANET

…

Sentire middleware

Virtual
actuator

SANET

Sub-controller1

Sub-controller2 Sub-controllern

Sensor
data

Sensor
data

Sensor
data

Actuator coordination
service manager

Actuator coordination
service manager

Actuator coordination
service manager

(physical sensors and
actuators)

Figure 1. Sentire actuator coordination architecture

3.1. Virtual actuator

The virtual actuator is an abstraction for receiving
programmer-level commands and passing them to indi-
vidual (or, groups of) underlying actuators residing within
the same sub-controller’s domain1. Supporting the func-
tionality of virtual actuators consists of two fundamental
tasks: resource discovery and command translation.

Resource discovery matches and logically binds a vir-
tual actuator with an appropriate underlying actuator as-
sociated with the Sentire middleware. Two attributes of
virtual actuators help Sentire determine which underlying
actuator it binds to: action type and treatment domain.
Action type describes the action that the underlying actua-
tor should be capable of performing (e.g., adjusting tem-
perature or messaging PDAs). Treatment domain de-
scribes the environmental region(s) that the underlying
actuator should be able to affect. Because treatment do-
mains can change over time, the value of this attribute is
dynamically updated. In the simplest case, one underlying
actuator, fitting the virtual actuator’s criteria, will be
bound to the virtual actuator, creating a one-to-one (1:1)
binding. However, multiple candidates could be found, in

1 Underlying actuators may be realized as hardware or software-
based entities.

which case the most appropriate one must be selected. To
cope with such a case, in addition to the two attributes
mentioned, Sentire will also maintain the resource avail-
ability and expected treatment latency of each underlying
actuator. Resource availability describes the amount of
resources (e.g., energy or treatment supplies) that are al-
lotted to an actuator. Expected treatment latency describes
the mean time elapsed before a desired treatment takes
effect. Expected treatment latency depends both on sys-
tem factors (e.g., network latency) and physical character-
istics of the actuator and the environment (e.g., how long
it will take to heat up a room to the desired temperature,
given the current outdoor temperature). The computation
of expected treatment latency will depend on feedback
from sensors, or even from end-users. These attributes
can be used to select the most appropriate actuator to bind
to a virtual actuator, based on either user preferences or
system-defined policies. When a virtual actuator’s under-
lying actuator becomes unavailable (e.g., due to network
or device faults), Sentire will also attempt to rebind the
virtual actuator to a new comparable actuator.

If the virtual actuator’s treatment domain is larger than
that of any available underlying actuator, Sentire will
attempt to use multiple underlying actuators to collec-
tively affect the treatment domain. This requires creating
a one-to-many (1:n) binding. Even in this case, the previ-
ous descriptions regarding 1:1 bindings are still applica-
ble.

Command translation defines how the commands that
are received by virtual actuators are passed to underlying
actuators. In the case of a 1:1 binding, Sentire will first
approve the command based on the actuator’s resource
availability before translating it and forwarding it to the
bound actuator. However, in some cases, using 1:n bind-
ings may be more efficient than using 1:1 bindings. This
is because 1:n bindings enable abstracted actuator control
at varying scopes, which is beneficial for large-scale sys-
tems for which it would be inefficient to control multiple
underlying actuators individually. Unlike 1:1 bindings,
command translation with 1:n bindings requires more
sophisticated command decomposition operations. There-
fore, in its current implementation, Sentire supports 1:n
bindings by simply distributing replicated commands to
individual actuators; more sophisticated implementations
are left for future research.

3.2. Actuator coordination service manager

The actuator coordination service manager (ACSM)
provides a messaging service and other mechanisms to
support distributed coordination among actuators associ-
ated with different sub-controllers. We currently focus on
enabling the ACSM to support the implementation of
algorithms that attempt to reduce actuator interference.

Preventing actuator interference involves three general
steps. First, the ACSM determines if an actuator’s treat-
ment is being hindered. Second, the source of interference
(i.e., other actuator(s)) is identified. Third, the relevant
parties negotiate how to prevent interference. Regarding
the first step, the ACSM interfaces with a virtual actuator
(as shown in Figure 1) to determine the expected treat-
ment latency and outcome for the currently desired treat-
ment. Using sensor data corresponding to the virtual ac-
tuator’s treatment domain, the ACSM determines if the
expected treatment outcome is met within the latency
constraints while also accounting for variation due to
network delays, jitter, etc. If it is not, and assuming that
the underlying actuator(s) has adequate resources to com-
plete the treatment, the ACSM will assume that there is a
source of interference and initiates a negotiation process.

Sub-controller1’s ACSM Sub-controller2’s ACSM … Sub-controllern’s ACSM

Determine reply:
Identify actuators that have affected the treatment region,

Identify conflicting actuator task dependencies,
Make further coordination requests

Determine reply:
Identify actuators that have affected the treatment region,

Identify conflicting actuator task dependencies,
Make further coordination requests

Determine treatment schedule using
data from coordination reply message:

Set virtual actuator action restrictions

Determine treatment schedule using
data from coordination reply message:

Set virtual actuator action restrictions

Time
interval

Action
type

Treatment
region

Coordination request message
Time

interval
Action
type

Treatment
region

Coordination request message

Expected
treatment latency

Coordination
duration bound

Positive coordination reply
message

Expected
treatment latency

Coordination
duration bound

Positive coordination reply
message

Treatment scheduleTreatment schedule

Follow schedule:
Set virtual actuator treatment restrictions

Follow schedule:
Set virtual actuator treatment restrictions

Figure 2. ACSM coordination scheme for preventing

actuator interference

For this paper, we propose the coordination scheme il-
lustrated in Figure 2. First, the ACSM will send a coordi-
nation request message to all neighboring sub-controllers
describing the pertinent treatment domain, action type,
and time interval during which the interference was be-
lieved to have occurred. Using the information in this
message, the solicited sub-controllers’ ACSMs will iden-
tify any of their actuators that have affected the pertinent
treatment domain during the identified time interval. If
any are found, the ACSM will check whether these actua-
tors are committed to any other significant tasks (e.g.,
cooperating with other actuators for shared task execu-
tion). Note that the ability to coordinate may be beyond
the sub-controller’s control; this may occur in flow-based
SANET applications where decisions regarding the flows
of a resource are distributed among various sub-
controllers (e.g., traffic management). In this case, the
solicited sub-controller’s ACSM will also attempt to co-
ordinate with other sub-controllers that are indirectly in-
terfering with the actions of the original solicitor. A pro-

grammer-defined policy uses the information gathered
from these steps to determine if the ACSM originally
solicited is able to coordinate. If so, the ACSM will reply
with a coordination reply message including the duration
of time it commits to coordinating and the expected treat-
ment latency of its actuator(s) that are involved in the
interference. Once the original soliciting ACSM has re-
ceived this information from all sub-controllers willing to
participate, it determines a schedule under which all par-
ticipating sub-controllers are allowed in time-divided
slots to sequentially affect the pertinent treatment domain.
A sub-controller’s respective slot is determined by its
expected treatment latency plus a prescribed constant
allowing the desired treatment goal to be sustained for a
period of time. While waiting for its respective slot, the
sub-controller’s relevant virtual actuator will automati-
cally be restricted from affecting the pertinent treatment
domain. The total length of this schedule is determined by
the smallest duration of time indicated in the coordination
reply messages.

This scheme represents an initial step in preventing
distributed actuator interference; we make no claims that
it is effective for all application scenarios. Therefore,
strengthening this scheme and researching possible alter-
natives is a subject of future research.

4. Example Sentire usage scenario

We describe a scenario that illustrates how Sentire’s
extensions can be utilized to implement a SANET control
system. We focus on the vehicle traffic management sys-
tem described in Section 2. This is only a conceptual ex-
ample, as a rigorous solution for distributed traffic man-
agement is beyond the scope of this paper.

Road x
Road y

Road z

Treatment domain

Traffic flow

Virtual actuator

Figure 3. Logical virtual actuator definition for ve-

hicle traffic management system

The general architecture would consist of a series of
sub-controllers (belonging to different municipalities)
interfaced with vehicle navigation messaging systems and
roadside sensors, acting as actuators and sensors respec-
tively. Sub-controllers control traffic according to road
congestion, drivers’ destinations, and the drivers’ current
locations. A virtual actuator is logically defined as a loca-
tion corresponding to a road segment immediately pre-
ceding a major road division; the road segments resulting
from this division characterizes the treatment domain (see
Figure 3). The virtual actuators are defined in this way

because it is at these decision points (the road divisions)
where drivers’ actions can significantly affect traffic. In
reference to Figure 3, an example virtual actuator com-
mand would be to route 20% of all vehicles with destina-
tion b (not shown) onto road z because of congestion on
road y. The underlying messaging system would then
transmit the corresponding instructions only to the vehi-
cles in the virtual actuator location shown in Figure 3.
Note that other traffic authorities’ routing decisions could
also affect congestion on road y or z, creating overlapping
treatment domains. In this case, the process described in
Section 3.2 can be used to enable the authorities to alter-
nately route traffic in an attempt to prevent creating new
sources of congestion (or interference) and hence reduce
travel delay on a global application scale.

5. Concluding remarks

Our research is related to other research activities
which have addressed high-level SANET middleware.
The research activities described in [3], [6], and [12] pro-
pose middleware that focus primarily on providing facili-
ties to adjust resource management, quality of service,
and quality of sensed information regarding wireless sen-
sor networks and related systems. Other activities go be-
yond sensor networks to also provide support for actuator
management. For example, [8] describes a system in
which a high-level data-stream-centric composition model
is used to build SANET middleware. In [9], a high-level
file system abstraction model is used for SANET applica-
tion development. The research described in [2] and [7]
largely use sentient object and event interaction models,
respectively, to provide high-level SANET composition
support. While the above research activities have made
important contributions, we distinguish ourselves by ad-
dressing more sophisticated aspects of actuator program-
ming abstractions and explicitly offering support distrib-
uted actuator coordination. To our knowledge, the only
activity that addresses actuator coordination is described
in [5]. However, this activity focuses on a specific algo-
rithm for coordinating actuators for shared task execution
while optimizing energy usage and task completion time.

In general, Sentire exemplifies an on-going research
effort to systematically build middleware for SANET
control systems. We have identified several directions for
future research. First, we intend to research more sophis-
ticated techniques for 1:n actuator command decomposi-
tion. 1:n sensor bindings have been proposed and sup-
ported mainly using data aggregation techniques. How-
ever, since actuators deal with command structures that
fan out instead of coalesce, virtual actuator commands
must be properly decomposed according to the connec-
tivity and capabilities of the underlying actuators. Second,
while the ACSM’s current actuator coordination scheme
is somewhat customizable, we intend to research how to

further extend the ACSM to support swappable actuator
coordination algorithms. This mainly involves research-
ing alternative actuator coordination schemes and identi-
fying common primitive operations that the middleware
should offer to support their implementation. Third, we
intend to research autonomous techniques for tracking
actuators’ treatment domains. This process involves an
analysis of actuator causal effects given environmental
context and behavior and may be particularly challenging
to track across different sub-controller’s domains. Finally,
other on-going work involves intelligently determining
actuator treatment latency and designing a substantial
simulation test-bed for further evaluation purposes.

6. References

[1] J. W. Branch, J. S. Davis, D. M. Sow, and C. Bisdikian,

“Sentire: a framework for building middleware for sensor
and actuator networks,” in Proc. of the 3rd IEEE PERCOM
Workshops, pp. 396-400, March 2005.

[2] A. Casimiro, J. Kaiser, and P. Verissimo, “An architectural
framework and middleware for cooperating smart compo-
nents,” in Proc. of the 1st ACM Conf. on Computing Fron-
tiers, pp. 28-39, April 2004.

[3] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, and M.
A. Perillo, “Middleware to support sensor network applica-
tions,” in IEEE Network, vol. 18, no. 1, pp. 6-14, Jan./Feb.
2004.

[4] C. Marnay and O. C. Bailey, “The CERTS microgrid and
the future of the macrogrid,” in Proc. of the ACEEE 2004
Summer Study on Energy Efficiency in Buildings, Aug.
2004.

[5] T. Melodia, D. Pompili, V. C. Gungor, and I. F. Akyildiz,
“A distributed coordination framework for wireless sensor
and actor networks,” in Proc. of the 6th ACM MobiHoc, pp.
99-110, May 2005.

[6] M. Modahl, I. Bagrak, M. Wolenetz, P. Hutto, and U.
Ramachandran, “MediaBroker: an architecture for perva-
sive computing,” in Proc. of the 2nd IEEE PERCOM, pp.
253-262, March 2004.

[7] A. Senart, M. Bouroche, G. Biegel, and V. Cahill, “A com-
ponent-based middleware architecture for sentient comput-
ing,” in Proc. of the 2004 ECOOP Workshop on Compo-
nent-oriented Approaches to Context-aware Computing,
June 14.

[8] L. St. Ville and P. Dickman, “Garnet: a middleware archi-
tecture for distributing data streams originating in wireless
sensor networks,” in Proc. of the 23rd IEEE ICDCS Work-
shops, pp. 235-240, May 2003.

[9] S. Tilak, B. Pisupati, K. Chiu, G. Brown, and N. Abu-
Ghazaleh, “A file system abstraction for sense and respond
systems,” in Proc. of the 2005 ACM MobiSys EESR Work-
shop, pp. 1-6, June 2005.

[10] Traffic.com, http://www.traffic.com.
[11] XM NavTraffic, http://www.xmradio.com/xmnavtraffic.
[12] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Issues in

designing middleware for wireless sensor networks,” in
IEEE Network, vol. 18, no. 1, pp. 15-21, Jan./Feb. 2004.

