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Abstract 
 

The pervasive presence and availability of sensor and 
actuator networks creates the potential for widely distrib-
uted Internet-scale control systems. Given these systems’ 
potential magnitude and complexity, new tools will be 
required to facilitate their composition and operation, 
especially as they relate to distributed actuator coordina-
tion. This paper introduces and advocates our approach 
to implementing distributed actuator coordination algo-
rithms using a middleware framework. 
 
1. Introduction 
 

For decades, sensors and actuators have been used in 
implementing various forms of automated control systems 
(e.g., climate control or industrial plant control). Recent 
technology advances (and associated cost reductions), 
however, have enabled sensors and actuators to become 
much more connected and pervasive. These trends are 
further accelerated by factors such as the increasing per-
vasiveness of Internet access and new wireless network-
ing standards. These factors have enabled sensors and 
actuators to communicate with each other with growing 
ease within ever growing networked infrastructures form-
ing sensor and actuator networks, or SANETs. Depending 
on the application, other networked entities such as data-
bases, web services, and messaging systems may also be 
included as sensors or actuators. When combined with 
large-scale networked systems, the culmination of these 
advancements define a new generation of highly perva-
sive, dynamic, and heterogeneous Internet-scale control 
systems, which we refer to as SANET control systems. 

Along with the proliferation of SANET control sys-
tems comes an assortment of new research challenges. 
One significant challenge, and the focus of this paper, is 
distributed actuator coordination, which involves manag-
ing the behavior of actuators that are related via overlap-
ping treatment domains. Treatment domains are defined 
by the spatial extent over which an actuator affects an 
environment. Focusing on the details of actuator coordi-
nation in emerging SANET control systems is important 

for several reasons. First, overlapping treatment domains 
create both the potential for actuator interference and op-
portunity for cooperative shared task execution. While 
redundancy among sensors is typically not considered a 
negative feature, overlapping treatment domains could 
affect a SANET control system’s ability to satisfy local 
and global application goals. Second, the relationship 
between actuators and their corresponding treatment do-
mains may be dynamic. This may depend on factors such 
as the actuator(s) chosen to perform a specific task, in-
consistent actuator performance, or the nature of the me-
dium to be controlled. To compound these two chal-
lenges, SANET control systems will have a magnitude 
that far exceeds the scale of control systems encountered 
in prior generations. The number of distributed, transient, 
and potentially heterogeneous actuators and sensors that 
will populate SANET control systems will require novel 
programming abstractions that were previously unneces-
sary.  

Given the motivations above, we propose to address 
distributed actuator coordination via the Sentire frame-
work [1], which supports the composition of extensible 
middleware for SANET control systems in a high-level, 
platform-independent manner. In a sense, this paper pre-
sents the next step in the evolution of Sentire and intro-
duces its extensions for supporting the implementation of 
algorithms for distributed actuator coordination. We con-
centrate our initial research in defining suitable actuator 
programming abstractions and a service for facilitating 
coordination among actuators with interfering treatment 
goals. To the best of our knowledge, there is no previous 
proposal to address such a coordination scenario using a 
high-level middleware approach. This paper proceeds as 
follows. Section 2 describes our research scope and the 
pertinent research challenges. Section 3 describes the 
proposed Sentire approach to supporting actuator coordi-
nation. Section 4 illustrates the utility of this approach in 
building an example of a SANET control system. Section 
5 concludes with a discussion of related works and future 
research endeavors. 
 
2. Research scope and challenges 
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Our research focuses on providing a middleware 
framework, called Sentire, for facilitating distributed ac-
tuator coordination. We target Sentire towards supporting 
the composition of large-scale SANET control systems 
composed of distributed autonomous sub-controllers. 
Each sub-controller is responsible for controlling a pre-
scribed treatment domain by issuing commands to one or 
more attached SANETs. Sub-controllers may also may 
operate either singularly or collectively to enforce either 
local or global application goals. A significant challenge 
for such systems is managing the interaction (or, coordi-
nation) between various sub-controllers since their treat-
ment domains may intentionally or unintentionally over-
lap given their individual actuators’ treatment domains 
and the behavior of the environmental processes to be 
controlled. Overlaps could be beneficial, especially in 
helping to complete shared tasks in a resource-balanced 
manner. However, overlaps could also potentially de-
grade an application’s effectiveness if the related sub-
controllers are attempting to achieve interfering goals.  

The validity of the above descriptions and concerns is 
illustrated by the following descriptions of two examples 
of next-generation SANET control systems: vehicle traf-
fic management and distributed energy management. 
Multiple use cases help to identify salient research chal-
lenges and potential middleware-centric solutions for 
distributed actuator coordination. 

Vehicle traffic management. Advanced vehicle navi-
gation systems provide drivers with routes based on both 
their destinations and the collection of live traffic data 
(e.g., reports of congestion and accidents) using roadside 
sensors and other data sources [10][11]. We envision 
next-generation traffic systems to evolve with two charac-
teristics. First, we expect the development of decentral-
ized traffic management systems as a solution to adminis-
trative domains of control (e.g., the separate control of 
adjacent municipalities), in support of reduced and bal-
anced network traffic load, and due to physical network 
partitioning. Furthermore, distributed control will avoid 
single points of failure in the face of large metropolitan 
areas with growing traffic systems. Second, we expect the 
implementation of globally optimal routing algorithms 
that reduce aggregate trip delay for a population of users 
rather than individualistic, greedy algorithms. If conges-
tion is encountered on a roadway, such systems should re-
route traffic so as to reduce the probability of creating 
new sources of congestion elsewhere in the system.  

The composition of both decentralized and globally 
optimal routing algorithms require a great deal of coordi-
nation. When separate jurisdictions compose the overall 
system, they must coordinate to prevent their local rout-
ing decisions from interfering with the decisions of other 
domains. For instance, routing decisions for suburban 
New Jersey, Connecticut, and New York could affect 
traffic in New York City. 

Distributed energy management. It has been argued 
that the current centralized structure of the national power 
grid is inadequate to reliably sustain the increasing de-
mand for energy. A proposed solution is the microgrid 
paradigm [4]. A microgrid is a semiautonomous system in 
which a group of power supplying entities (e.g., micro-
turbines or fuel cells) is managed to intelligently distrib-
ute the larger grid’s energy to a subset of end-users (e.g., 
those within office buildings and residential districts). 
The microgrid can operate in two ways. First, it can oper-
ate interconnected with the larger grid and economically 
purchase energy (e.g., electricity or natural gas) from it so 
as to efficiently meet users’ demands. Second, it can dis-
connect from the larger grid, such as in the case of a 
blackout, and intelligently distribute stored and locally 
generated energy to users based on their usage behavior 
and priority of demands (possibly measured in terms of 
consumers’ willingness to pay premium prices). We envi-
sion separate disconnected microgrids coordinating pur-
chases of energy from each other to help meet users’ de-
mands distributed across multiple microgrid domains. In 
general, embedded sensors can be used to monitor and 
predict energy usage behavior and support energy pur-
chasing and distribution, i.e., collectively make actuation 
decisions. Actuation decisions can also involve selec-
tively controlling the operating state of appliances to con-
trol energy usage. 

The previous usage scenarios call attention to three re-
search challenges that should be addressed by a middle-
ware framework, such as Sentire, for supporting the sys-
tematic implementation of algorithms for distributed ac-
tuation coordination: 
1. Actuator programming abstraction: Designing a pro-

grammable abstraction and other middleware support 
for selecting appropriate underlying actuators for a 
task and controlling their actions in an abstract, plat-
form-independent, and scalable manner is the most 
fundamental challenge. 

2. Actuator coordination service: An extensible mid-
dleware service must be designed to enable the im-
plementation of customized algorithms for coordinat-
ing actuation decisions among related sub-controllers 
in order to reduce actuator interference and enable 
the enforcement of local or global application goals. 

3. Actuator treatment domain tracking: Middleware 
components and services must be designed to track 
actuators’ treatment domains. These can change over 
time in potentially unpredictable ways and are impor-
tant to track since they determine sub-controllers’ 
treatment domains and influence actuator coordina-
tion. 

Our initial research largely focuses on item 1 and (with a 
specific focus on actuator interference) item 2. Research 
regarding actuator treatment domain tracking is left for 
future study.  



3. Sentire approach to actuator coordination 
 

We augment Sentire for supporting distributed actua-
tor coordination by first proposing an extended architec-
ture of middleware components as illustrated in Figure 1. 
Within the Sentire middleware, two major components 
are shown: virtual actuator programming abstractions 
and the actuator coordination service manager. Note that 
other Sentire components described in [1] reside within 
the intermediary cloud surrounding the actuator coordina-
tion service manager; these other components will not be 
discussed in this paper. Next, we describe further how we 
envision the proposed components supporting distributed 
actuator coordination algorithms. 
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Figure 1. Sentire actuator coordination architecture 
 
3.1. Virtual actuator 
 

The virtual actuator is an abstraction for receiving 
programmer-level commands and passing them to indi-
vidual (or, groups of) underlying actuators residing within 
the same sub-controller’s domain1. Supporting the func-
tionality of virtual actuators consists of two fundamental 
tasks: resource discovery and command translation. 

Resource discovery matches and logically binds a vir-
tual actuator with an appropriate underlying actuator as-
sociated with the Sentire middleware. Two attributes of 
virtual actuators help Sentire determine which underlying 
actuator it binds to: action type and treatment domain. 
Action type describes the action that the underlying actua-
tor should be capable of performing (e.g., adjusting tem-
perature or messaging PDAs). Treatment domain de-
scribes the environmental region(s) that the underlying 
actuator should be able to affect. Because treatment do-
mains can change over time, the value of this attribute is 
dynamically updated. In the simplest case, one underlying 
actuator, fitting the virtual actuator’s criteria, will be 
bound to the virtual actuator, creating a one-to-one (1:1) 
binding. However, multiple candidates could be found, in 

                                                 
1 Underlying actuators may be realized as hardware or software-
based entities. 

which case the most appropriate one must be selected. To 
cope with such a case, in addition to the two attributes 
mentioned, Sentire will also maintain the resource avail-
ability and expected treatment latency of each underlying 
actuator. Resource availability describes the amount of 
resources (e.g., energy or treatment supplies) that are al-
lotted to an actuator. Expected treatment latency describes 
the mean time elapsed before a desired treatment takes 
effect. Expected treatment latency depends both on sys-
tem factors (e.g., network latency) and physical character-
istics of the actuator and the environment (e.g., how long 
it will take to heat up a room to the desired temperature, 
given the current outdoor temperature). The computation 
of expected treatment latency will depend on feedback 
from sensors, or even from end-users. These attributes 
can be used to select the most appropriate actuator to bind 
to a virtual actuator, based on either user preferences or 
system-defined policies. When a virtual actuator’s under-
lying actuator becomes unavailable (e.g., due to network 
or device faults), Sentire will also attempt to rebind the 
virtual actuator to a new comparable actuator. 

If the virtual actuator’s treatment domain is larger than 
that of any available underlying actuator, Sentire will 
attempt to use multiple underlying actuators to collec-
tively affect the treatment domain. This requires creating 
a one-to-many (1:n) binding. Even in this case, the previ-
ous descriptions regarding 1:1 bindings are still applica-
ble.  

Command translation defines how the commands that 
are received by virtual actuators are passed to underlying 
actuators. In the case of a 1:1 binding, Sentire will first 
approve the command based on the actuator’s resource 
availability before translating it and forwarding it to the 
bound actuator. However, in some cases, using 1:n bind-
ings may be more efficient than using 1:1 bindings. This 
is because 1:n bindings enable abstracted actuator control 
at varying scopes, which is beneficial for large-scale sys-
tems for which it would be inefficient to control multiple 
underlying actuators individually. Unlike 1:1 bindings, 
command translation with 1:n bindings requires more 
sophisticated command decomposition operations. There-
fore, in its current implementation, Sentire supports 1:n 
bindings by simply distributing replicated commands to 
individual actuators; more sophisticated implementations 
are left for future research. 
 
3.2. Actuator coordination service manager 
 

The actuator coordination service manager (ACSM) 
provides a messaging service and other mechanisms to 
support distributed coordination among actuators associ-
ated with different sub-controllers. We currently focus on 
enabling the ACSM to support the implementation of 
algorithms that attempt to reduce actuator interference. 



Preventing actuator interference involves three general 
steps. First, the ACSM determines if an actuator’s treat-
ment is being hindered. Second, the source of interference 
(i.e., other actuator(s)) is identified. Third, the relevant 
parties negotiate how to prevent interference. Regarding 
the first step, the ACSM interfaces with a virtual actuator 
(as shown in Figure 1) to determine the expected treat-
ment latency and outcome for the currently desired treat-
ment. Using sensor data corresponding to the virtual ac-
tuator’s treatment domain, the ACSM determines if the 
expected treatment outcome is met within the latency 
constraints while also accounting for variation due to 
network delays, jitter, etc. If it is not, and assuming that 
the underlying actuator(s) has adequate resources to com-
plete the treatment, the ACSM will assume that there is a 
source of interference and initiates a negotiation process. 
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Figure 2. ACSM coordination scheme for preventing 

actuator interference 
 

For this paper, we propose the coordination scheme il-
lustrated in Figure 2. First, the ACSM will send a coordi-
nation request message to all neighboring sub-controllers 
describing the pertinent treatment domain, action type, 
and time interval during which the interference was be-
lieved to have occurred. Using the information in this 
message, the solicited sub-controllers’ ACSMs will iden-
tify any of their actuators that have affected the pertinent 
treatment domain during the identified time interval. If 
any are found, the ACSM will check whether these actua-
tors are committed to any other significant tasks (e.g., 
cooperating with other actuators for shared task execu-
tion). Note that the ability to coordinate may be beyond 
the sub-controller’s control; this may occur in flow-based 
SANET applications where decisions regarding the flows 
of a resource are distributed among various sub-
controllers (e.g., traffic management). In this case, the 
solicited sub-controller’s ACSM will also attempt to co-
ordinate with other sub-controllers that are indirectly in-
terfering with the actions of the original solicitor. A pro-

grammer-defined policy uses the information gathered 
from these steps to determine if the ACSM originally 
solicited is able to coordinate. If so, the ACSM will reply 
with a coordination reply message including the duration 
of time it commits to coordinating and the expected treat-
ment latency of its actuator(s) that are involved in the 
interference. Once the original soliciting ACSM has re-
ceived this information from all sub-controllers willing to 
participate, it determines a schedule under which all par-
ticipating sub-controllers are allowed in time-divided 
slots to sequentially affect the pertinent treatment domain. 
A sub-controller’s respective slot is determined by its 
expected treatment latency plus a prescribed constant 
allowing the desired treatment goal to be sustained for a 
period of time. While waiting for its respective slot, the 
sub-controller’s relevant virtual actuator will automati-
cally be restricted from affecting the pertinent treatment 
domain. The total length of this schedule is determined by 
the smallest duration of time indicated in the coordination 
reply messages. 

This scheme represents an initial step in preventing 
distributed actuator interference; we make no claims that 
it is effective for all application scenarios. Therefore, 
strengthening this scheme and researching possible alter-
natives is a subject of future research. 

 
4. Example Sentire usage scenario 
 

We describe a scenario that illustrates how Sentire’s 
extensions can be utilized to implement a SANET control 
system. We focus on the vehicle traffic management sys-
tem described in Section 2. This is only a conceptual ex-
ample, as a rigorous solution for distributed traffic man-
agement is beyond the scope of this paper. 
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Treatment domain

Traffic flow

Virtual actuator

 
 
Figure 3. Logical virtual actuator definition for ve-

hicle traffic management system 
 

The general architecture would consist of a series of 
sub-controllers (belonging to different municipalities) 
interfaced with vehicle navigation messaging systems and 
roadside sensors, acting as actuators and sensors respec-
tively. Sub-controllers control traffic according to road 
congestion, drivers’ destinations, and the drivers’ current 
locations. A virtual actuator is logically defined as a loca-
tion corresponding to a road segment immediately pre-
ceding a major road division; the road segments resulting 
from this division characterizes the treatment domain (see 
Figure 3). The virtual actuators are defined in this way 



because it is at these decision points (the road divisions) 
where drivers’ actions can significantly affect traffic. In 
reference to Figure 3, an example virtual actuator com-
mand would be to route 20% of all vehicles with destina-
tion b (not shown) onto road z because of congestion on 
road y. The underlying messaging system would then 
transmit the corresponding instructions only to the vehi-
cles in the virtual actuator location shown in Figure 3. 
Note that other traffic authorities’ routing decisions could 
also affect congestion on road y or z, creating overlapping 
treatment domains. In this case, the process described in 
Section 3.2 can be used to enable the authorities to alter-
nately route traffic in an attempt to prevent creating new 
sources of congestion (or interference) and hence reduce 
travel delay on a global application scale. 
 
5. Concluding remarks 
 

Our research is related to other research activities 
which have addressed high-level SANET middleware. 
The research activities described in [3], [6], and [12] pro-
pose middleware that focus primarily on providing facili-
ties to adjust resource management, quality of service, 
and quality of sensed information regarding wireless sen-
sor networks and related systems. Other activities go be-
yond sensor networks to also provide support for actuator 
management. For example, [8] describes a system in 
which a high-level data-stream-centric composition model 
is used to build SANET middleware. In [9], a high-level 
file system abstraction model is used for SANET applica-
tion development. The research described in [2] and [7] 
largely use sentient object and event interaction models, 
respectively, to provide high-level SANET composition 
support. While the above research activities have made 
important contributions, we distinguish ourselves by ad-
dressing more sophisticated aspects of actuator program-
ming abstractions and explicitly offering support distrib-
uted actuator coordination. To our knowledge, the only 
activity that addresses actuator coordination is described 
in [5]. However, this activity focuses on a specific algo-
rithm for coordinating actuators for shared task execution 
while optimizing energy usage and task completion time. 

In general, Sentire exemplifies an on-going research 
effort to systematically build middleware for SANET 
control systems. We have identified several directions for 
future research. First, we intend to research more sophis-
ticated techniques for 1:n actuator command decomposi-
tion. 1:n sensor bindings have been proposed and sup-
ported mainly using data aggregation techniques. How-
ever, since actuators deal with command structures that 
fan out instead of coalesce, virtual actuator commands 
must be properly decomposed according to the connec-
tivity and capabilities of the underlying actuators. Second, 
while the ACSM’s current actuator coordination scheme 
is somewhat customizable, we intend to research how to 

further extend the ACSM to support swappable actuator 
coordination algorithms. This mainly involves research-
ing alternative actuator coordination schemes and identi-
fying common primitive operations that the middleware 
should offer to support their implementation. Third, we 
intend to research autonomous techniques for tracking 
actuators’ treatment domains. This process involves an 
analysis of actuator causal effects given environmental 
context and behavior and may be particularly challenging 
to track across different sub-controller’s domains. Finally, 
other on-going work involves intelligently determining 
actuator treatment latency and designing a substantial 
simulation test-bed for further evaluation purposes. 
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