Proc. International Mediterranean Modelling Multiconference of European Multi-Simulation Symposium (EMSSO06),
Barcelona, Spain, October 2006, pp. 545-551

PARALLEL QUEUING NETWORK SIMULATION WITH LOOKBACK-
BASED PROTOCOLS

Gilbert G. Chen and Boleslaw K. Szymanski
Department of Computer Science, Rensselaer Polyiedfstitute
110 Eighth Street, Troy, NY 12180, USA
E-mail: {cheng3,szymansk}@rpi.edu

KEYWORDS
Lookback, queuing networks, parallel simulation.

ABSTRACT

We first describe how to design a lookback-enabled
FCFS server with an infinite buffer, and how thereno
realistic condition of a finite buffer will comple the
modeling. We then present another design baseleon t
idea of lazy evaluation which is not only simpleda
clearer, but also more efficient. We also developed
hybrid lookback-based protocol to reduce the modeli
complexity associated with direct exploitation of
lookback. The hybrid lookback-based protocol is an
alternative to traditional lookahead-based apprdach
linking simulations, yet it possesses several atdps
over the latter which make it perform better.

INTRODUCTION

Queuing network simulations have been extensively
studied by many PDES researchers. There are many
varieties of queuing networks, differing in
interconnections between components and many
specific parameters of components, such as the ofean
the service time, the random distribution of theviee

time, the scheduling policy, etc. We chose the
particular one that was described in (Bargodialdad
1992), which is known as Closed Queuing Network, or
CQN.

L1y Switch FCFS [y—» FCFS [—» FCFS [r—
L% Switch FCFS [FCFS [y—1» FCFS [+—
L1y Switch FCFS [f—» FCFS [f—> FCFS [r—

Figure 1: A CQN with 3 Switches and 9 FCFS Servers

A CQN consists of a configurable number of switches
and FCFS (First-Come-First-Served) servers (Figyre
Each packet traveling through one of the FCFS serve
tandems will eventually arrive at a switch. Thetstvi
will then dispatch the packet to one of the tandems
randomly. CQNs are readily amenable to conservative

54¢

protocols because lookahead usually comes from the
FCFS servers where packets have to be delayed for
random service time. Denote the arrival time, the
departure time and the service time of itile packetP;

by Ai, D; and Srespectively. If the service is available
atAi, thenD;= Ai+S; otherwiseD;=D ;.1+S..

The departure time can be determined as soon as the
packet arrives. If eager scheduling is employee, th
departure event will be immediately generated aamd s
out. The lookahead, which is equal@gA,, is at least

S. Nicol noticed that lookahead can be augmented if
the service time of the next packet can be pre-kaimp
(Nicol 1988). In such a case, the lookahead becomes
Di-A+Si:1. The service time must be independent of
packets if the service time is to be sampled aldad
time. This, however, may not always be true in
practice. A more general case is the one in which a
lower bound on the next service time can be obthine
and the lookahead is ndy-Ai+min{S.}.

(Bagrodia and Liao 1992) proposed a technique to
reduce the rollback distance for optimistic CQN
simulation. They distinguished between the receive
time of a packet and the time at which a packethman
served. When a straggler packet arrives, the lbgica
process needs to be rolled back only to the ettlias

this message can be served. This approach beaes som
resemblance to lookback-based protocols, for both
algorithms stem from the observation that rollbéck
the timestamp of the straggler is unnecessary. Merve
lookback-based protocols can totally eliminate
stragglers by deliberately delaying the executidn o
events that would increase the virtual lookbacketim
above the minimum timestamp of any stragglers.

DEFINING LOOKBACK IN CQN SIMULATION

Lookback is defined as the ability of a component t
change its past without affecting others (Chen and
Szymanski 2002b, Chen and Szymanski 2003). It
enables a new class of synchronization protocas th
lie in between conservative and optimistic protscol

Before applying lookback-based protocols to the CQN
simulation, we must make sure that every compoiment
the CQN contains substantial amount of lookbacks Th
is, however, not a necessary condition for the
applicability of lookback-based protocols. Evenan

szymansk
Text Box
Proc. International Mediterranean Modelling Multiconference of European Multi-Simulation Symposium (EMSS06),
 Barcelona, Spain, October 2006, pp. 545-551

simulation where lookback is zero in every componen
they still work, because the earliest event inehtre
simulation is always guaranteed to be eligible for
execution. Without adequate lookback, the
performance of these protocols would be greatly
impacted.

Let us first look at the switch component only. The
function of a switch is to generate a uniformly
distributed random integer to determine the destina

of a packet. Normally a switch keeps a private camd
number generator which is invoked when a packet
arrives. A problem arises with this solution when
packets can arrive in out-of-timestamp order. The
statistical properties of the destination distribmt
remain unaffected if the random numbers are still
generated in the same way. However, the parallel
simulation is no longerrepeatable meaning two
simulation runs with exactly the same set of patamnse
may produce totally different results as out-of-
timestamp order events are produced when different
processors advance the simulated time unevenly;
therefore they depend only on the runtime behawbrs
the simulation, which is completely uncontrollable.

A simple solution to preserve the repeatabilityoidet

the switch obtain a random number from a random
number generator carried by each packet. This would
not be a burden in terms of memory usage because a
random number generator in fact does not occupyhmuc
space. For instance, a Linear Congruential Generato
requires as few as 8 bytes. Packets passing thithegh
switch now become completely independent of each
other.

Nevertheless, this solution is unnecessary in this
particular CQN simulation. We noticed an interegtin
fact that a switch may never receive out-of-timegta
order packets, because a switch receives packets fr
only one FCFS server. The simulation would not have
received out-of-timestamp order packets, because a
switch receives packets from only one FCFS server.
The simulation would not have been correct had a
switch received a straggler. Therefore, the switch
component needs no change in lookback-based CQN
simulation.

As to the FCFS server, we have proven that in it
lookahead under eager delivering and lookback under
lazy delivering are always the same (Chen and
Szymanski 2002a, Chen and Szymanski 2003). With
lazy delivering, the virtual lookback time of th€FS
server at any time is always equal to the arrivag tof

the last packet leaving the server. Any receivetkgia
with a timestamp smaller than that of the currexuket

in service must preempt the later. All those stiagg
with a timestamp greater than or equal to the airtu
lookback time can be correctly inserted into théting
queue at positions decided by their timestamps. For

54¢€

packetP; at its departure tim®;, the virtual lookback
time isAi, resulting in a lookback dd;-A; equal to the
lookahead under eager scheduling given previolfly.
pre-sampling is employed, at tinBg+min{S.;} which

is the earliest time next packet can complete the
service, the virtual lookback time is st|. Therefore

at this instant the lookback B-A+min{S+1}, still the
same as the lookahead.

Apparently, packets with timestamp smaller than the
virtual lookback time will trigger a causality errdut
such errors are preventable by adhering to theblacik
constraint: when a packet is about to leave theeser
its arrival time must be checked against the LBIFS.
the arrival time is greater than the LBTS, it metrat
another packet with a smaller timestamp may arrive
later. The packet cannot be sent out, and the tiepar
event is returned back to the local event list.oToases
can happen afterwards. Either the LBTS is advabged
invoking a new round of LBTS computation, making
the same event eligible for execution accordinghto
lookback constraint, or a new event with a smaller
timestamp may be received which satisfies the
lookback constraint.

LOOKBACK-ENABLED FCFS SERVER

The FCFS server has two event handlers. One isccall
when a new packet is received, the other is calleeh
an in-service packet is about to leave the server.
simplicity, let us first assume that the FCFS sews
an infinite buffer so that no packet will be drodp&e
will come back to the case of finite queues in tieat
section.

Handling Arrivals

The sequential algorithm for handling the arriving
packets is simple. If the server is free, the depar
event is scheduled, and the packet is marked as in-
service while the server is marked as busy. Otlserwi
the packet is placed at the tail of the internatug
When the packet is a straggler, there are onlywrags

to handle the packet. Either the packet must béeuar

as the current in-service packet, or it must beries

into the internal queue at a position determinedtdy
timestamp. If the server is free, the first casestnbe
chosen. If it is not, the current in-service packety
have a larger timestamp, so the arriving packet can
preempt the current in-service packet, cancel tde o
departure event and schedule a new one. Only when
neither of these two conditions is true will thecket

go to the internal queue.

How to compute the departure time is worth
elaboration. In the case of a straggler packetpitid
happen that the last in-service packet with a dapar
time later than the timestamp of the straggler has
already left the server, and the service startinge t
should be the last departure time instead of the

timestamp of the straggler. Consequently, the cbrre
formula to calculate the departure time should be
Di=max{A,Di.1}+S;. It can be verified that this is in
accordance with the other formula for calculatibg
given earlier. The implication is that we must keep
track of the departure time of last packet. This ba
done by writing the value of the departure timeato
local variable when a packet is about to leave.

Handling Departures

In the sequential case, processing the departanmet &/
also simple, the packet is sent out via the outpod if
the internal queue is not empty, the packet athte
of the queue moves to service.

With stragglers, one significant difference is thafore
delivering the in-service packet to the outporg it
arrival time must be checked against the LBTShéf t
arrival time is smaller than the LBTS, the evermdiar
returns immediately with a false value, indicatiigt
the departure event cannot be successfully prodesse

A departure event could be a straggler. This occurs
when a packet straggler schedules a departure event
earlier than the current simulated time. Therefatgen
computing the departure time for the new in-service
packet, the starting service time must be the maxim

of its arrival time and the departure time of tleeket

just departing (or the timestamp of the current
departure event).

Dealing with Finite Queues

So far the correctness of the lookback-enabled FCFS
server is based on an assumption that the intgueale

is infinite so no packet would be dropped. When
stragglers are allowed, the decision whether oranot
packet should be dropped due to a full queue is
extremely difficult to make.

To see how complicated the situation is, let uk laba
seemingly plausible hypothesis that if a packeivesr
at a time when the internal queue is already fhn
this packet is destined to be discarded, no matter
many packets with a smaller timestamp will be resei
later.

The intuition behind this hypothesis is that a ggtar
packet can only make the internal queue more crdwde
It would have been very useful if it were true hesm
the decision of dropping a packet could then beanad
immediately once the packet arrives when the iatern
is full. However, it is not sustainable, due to faet
that a straggler packet may leave earlier than the
current simulated time. Figure 2 depicts such an
example.

In the example we assume that the size of thenaker
queue is 1, meaning that any packets other thamthe
service packet have to be discarding.TAt PacketA

comes after packed, so it has to be dropped if there
are no stragglers. When a stragdlearrives afT4, not
only does it force packe® to be dropped, but also it
leaves early aff2 to allow packet A to occupy the
empty server!

| Simulared Time

T1 A arnives

T2 -~ C leaves
L]

b
— % B amives

T3

T4 [w--=" C amives

Figure 2: A Counterexample for the Hypothesis

Initial Positions

The implication of the above example is that the
decision of dropping a packet cannot be made at the
time the packet just arrives. A straightforwardusioin

is to keep track oinitial positions,which can be used
to help make the dropping decision. The initialipos

of a packet is defined as the number of packethen
gueue at the arrival time of the packet if all petsk
were received in the timestamp order. The sufficien
and necessary condition for a packet to be disdaigle
to have an initial position greater than or equathe
size of queue.

At what time should we make the dropping decision?
We only have two choices: either at the time thekpta
enters the service or at the time the packet lethes
server. The latter seems feasible, because a paicket
leaves when it cannot be affected by any straggsers

its initial position in the queue will not changaya
more. However, it is not a good choice for two ozess
First, it is a waste of CPU time to schedule aratpss

the departure event of the to-be-dropped packet. We
should try to avoid scheduling these events. Thersd
reason will be presented when we discuss the
possibility of mixing up lookback-enabled comporgent
and sequential components. This leaves the former
option, making the dropping decision when the packe
enters the service. At that time the initial pasitof the
packet is still subject to changes caused by deegg
and by the disproof oHypothesiswhether or not a
packet should be discarded is never certain.
Fortunately, we can assure that the case depicted i
hypothesis would never happen when the packet is
entering the service.

Theorem: At the time a packet is to be marked as in-
service, if its initial position is greater than egqual to

the size of queue, then it is destined to be diszhr
anyhow.

Proof. As shown in Figure 3, suppose that the current
simulated time iST2 and the packef with an arrival
time of T3 is about to start the service. It is allowed to
do so because the paclBwhich arrived afl'5 has just
completed its service (its service starting time is
irrelevant to discussion here). There should bether
arrival events between3 and T5 at this time, because
otherwise it would be such an event that enters the
service afT2. Any straggler that is received later must
have a timestamp no smaller thafb, because
otherwise packeB would not be allowed to leave and
consequently packed would not have any chance to
start the service (in the departure event handier t
lookback constraint is always checked first). Ifyan
straggler occurs, say, pack€, with a timestamp
betweenT3 and T5. Its departure time must be greater
than T2, because it arrives later than pack®t
Therefore, no departure events can be added to the
window [T3,T9 after the simulated time reachd@,
which means the initial position of pack&tcan only

be increased once it enters the service.

Simulated Time

Straggler C leaves

Tl -—#
hY
\
Current . Y
. T2 — + Bleaves, A enters
Simulated .,
Timne i

|
i .
T3 |+— . I‘Am‘rﬂ'e-‘.-
I
f

4
T4 [=--- [Suaggler C arrives

B amives

Figure 3: A Straggler Can Only Increase the Initial
Position of Another at Entering the Service

Notice that according t@heoremwe are sure that a
packet can be dropped if it has an initial positiaat is
too large, but we are uncertain whether or notahe
packet with a small initial position can surviveeth
entire service time. It is possible that a numbér o
stragglers (sometimes one is enough) preempt aepack
that is already in service and increase its infi@dition
forcing it to be dropped.

Now the rest of the task is to calculate the ihitia
position for every packet. For this purpose we must
maintain a departure time list that records theesirat
which packets leave theerver {f the in-service packet

is viewed as not occupying a place in the queue, th
departure time list would contain the time eachkpac
leaves thejueueand becomes the in-service packet).

54¢

Since there are only two types of events for an $CF
component, and each event could be either a s&laggl
or not, we need to consider these four cases dsawel
an additional one in which a packet is dropped. &or
non-straggler packet, the initial position is siynpie
number of packets currently in the queue. It wik n
affect the initial position of any other packetarFa
straggler packet, calculating the initial posititrose
packets that have already left but whose depatitune

is greater than the timestamp of the straggler rbast
considered. It can be shown that these packets Imeust
in the queue at the time the straggler arrivesefwitse
they would not leave earlier than the stragglebe T
number of these packets can be obtained by scanning
through the departure time list. The initial pasitiof a
straggler packet is then the number of these psacket
plus the number of packets currently in the queite w

a smaller timestamp. A straggler packet would iasee

by one the initial position of every packet wittteager
timestamp. A non-straggler departure event does not
change the initial position of any other packets. A
straggler departure event, triggered by a straggler
packet that leaves earlier than the current siredlat
time, decreases by one the initial position of gver
packet in the queue with a larger timestamp. Rnall
dropped packet decreases by one the initial paositfo
every packet in the queue with a larger timestamp.

Lazy Evaluation

The algorithm to maintain the initial positions faH
received packets is not only complicated but also
inefficient. The worse case happens when a packet t
be sent into service is found out having to be pdeap

The entire queue must be scanned in order forlniti
positions of all the packets currently in the queube
decreased by one. Apparently, FCFS components based
on this algorithm can only be fitted to the caséens
packets are rarely dropped.

A better design originates from the fact that aliti
positions can be derived recursively. DenotinglBy
the initial position of tha-th packet, we haviP;=0, if
the server is free atA; and IP;;+1-LP[A.,A]
otherwise, wherd P[A.,A]is the number of packets
leaving betweer ; andA,.

The useful observation is that the above formutdPp
will have all its arguments fully determined by tivae
when thei-th packet is entering the service. At this time
the i-1-th packet has already left, 4B, is known.
Whether the service is free Atcan be determined by
comparingD;; with A. If A= D;4, the i-th packet
arrived after the last one left, so the serveres fand
the packet can be immediately put into service.
Otherwise D;.1>A;, andIP; must be calculated froi®;.
;and the number of packets leaving betwdgrandA;.

We only need to make sure the no straggler careleav
within the window A;,Aj]. A straggler cannot arrive
before A.; because thé1-th packet has already left.

Any straggler arriving afteA.; must leave at a time
later tharD; ;, which is greater thay. Hence, aftei-th
packet enters the service, I¥{, A], the number of
packets leaving betwee®; andA is fixed and cannot
be affected by any stragglers.

This idea reflects the general guideline tazy
evaluationin designing lookback-enabled component:
everything should be computed as late as possilie
previous implementation, referred to asager
evaluation attempts to calculate the initial position as
soon as the packet arrives. Obviously, the caliculaif
the initial position at the arrival time is wasteffor it
will much likely be changed by the arrival of a
straggler. At the time the packet enters the seritics
much less likely that a straggler would occur, 5 i
meaningful to carry out the computation now. Netic
the result of computation should be regarded alyer
estimation, since it may still be affected by aggler,
though with a much smaller probability. This
estimation is only true when no straggler wouldurcc
The dropping decision based on the estimation,
however, is guaranteed to be always correct: wedvou
never drop a packet that should not be dropped.

Per formance Comparison

. dare [

..................... Fo 7= g
Ly Evafualon (1 cpas) ——
Ly Esmuaton (i dgus) —ik—
e[Eager Evauabon |1 opy) —— o
H,_.I"‘I-..-"‘- '-an Exmualon (4 cpus) ——
.‘. e[-
: M
g A0
-
4
i A0
]
-3
'!' 400000
1]
20000

Canfiguraton

Figure 4: Eager and Lazy Evaluation of Initial Riosis

To see the effects of calculating the initial posis at
different times, we made two changes on the
simulation. The capacity of the FCFS queue was set
equal to the number of packets initially in the agie
and new packets are created by a Poisson process on
each queue continuously throughout the simulation.
Figure 4 shows their performances with the LB-GVT
protocol. As mentioned before, the inefficiencytioé
eager evaluation comes from in-service packets that
have to be discarded, for these packets affeaitiadr
packets currently in the server. The effect becomes
apparent when each server can hold a large nunfber o
packets.

54¢

A HYBRID LOOKBACK-BASED PROTOCOL

The only disadvantage of lookback-based protocls i
their associated modeling complexity. Example i th
lengthy discussion in the previous chapter aboat th
implementation of the lookback-enabled FCFS server
with finite buffer, which is a trivial problem ifvents
are received in timestamp order. The most effective
techniqgue to alleviate the modeling complexity is
design a hybrid lookback-based protocol that isabép

of mixing lookback-enabled components with
sequential components.

To understand how the hybrid lookback-based prdtoco
works, it must first be clarified where stragglexsme
from. If all time-aware components on the same
processor share a single simulation clock, itéacthat
only those components that reside on the boundary ¢
receive stragglers from other processors. Thudwaala
idea is to “absorb” all stragglers in the boundary
components so that other intra-processor components
will never observe any stragglers.

Lookahead must exist in the boundary components to
ensure that the intra-processor components doaot t
receive stragglers. Consider an evenin an intra-
processor component with a timestampSuppose that
the current simulated time of the processor is @ an
T'>T. Since all components in the same processor share
the same simulation clock, all boundary components
must be at the same simulated timdf they send out

in the future any messages with timestamp lessThan
the evente could be affected so its execution cannot
continue. Therefore, the sufficient but not necessa
condition for evente with timestampT' to be safely
executable is that all boundary components must
guarantee that all messages they will send latest mu
have a timestamp greater than or equalTto By
definition of lookahead, this means that every lazup
component must have a lookahead of at [€a$t

Another requirement is that a boundary component ca
never output a message smaller than the current
simulated time. Suppose that a boundary comporient a
simulated timeT outputs a message with timestafip
such that T'<T. It is possible that a previously
processed evene in an intra-processor component
contains a timestampT" satisfying T'<T"<T.
Apparently the everg may be affected by the message
at T', which becomes a straggler in the intra-processor
component.

This requirement rules out the choice of making the
dropping decision when a packet is departing frben t
FCFS server. If the departing packet is to be dedpp
after the calculation of its initial position, theext
packet may have an earlier departure time, givan th
the service time is dependent on the packet it3&ié
next packet would then leave at a timestamp earlier

than the current simulated time, resulting in aeptéal
straggler for other components.

GUARD EVENTS

Guard events are scheduled by boundary components
to set a lower bound on the timestamp of eventg the
will send. The simulation engine handles the guard
events in the same way as regular events, so these
types of events can share the same event list. \Wigen
simulation engine sees a guard event, it dispattifees
guard event to the boundary component that schédule
it. The component may or may no schedule another
guard event with same or greater timestamp, depgndi
on the estimated minimum timestamp of future events

Inclusion of guard events demands no changes on the
lookback-based protocols. A regular event will be
chosen only if it is the earliest event in the pssDr,
therefore at this time there cannot be any guasshtsv
with smaller timestamp. For convenience, we refer t
the LB-GVT protocol that allows for guard events as
the hybrid lookback-based protocol, or the Hybrig L
GVT protocol. The LB-EIT protocol is not considered
because its relatively poor performance.

There is a slight difference between guard events a
regular events: the GVT computation should not take
guard events into account. Otherwise, the hybrid
lookback-based protocol would be deadlock-proné wit
a zero lookahead boundary component, because the
guard event with the smallest timestamp would be
chosen to execute which will in turn schedule aeoth
guard event with the same timestamp, resultingnin a
infinite chain of guard events. If the GVT is contgul
from the timestamps of regular events, then théesar
regular event is always eligible for execution, dese

all guard events must have a timestamp equal to or
greater than the GVT calculated in this way.

Guard events may become unnecessary when a
boundary component has a regular future event which
is known to be the earliest among all future events
because in this case any guard event must have a
timestamp greater than that of the earliest regauant,

so it can be scheduled after the regular evenbbas
processed.

COMPARING HYBRID LOOKBACK-BASED
AND CONSERVATIVE PROTOCOLS

In the FCFS server detailed in the last chaptgyad
event is needed when there are no packets in thierse
or all packets in the server have an arrival timeater
than the GVT. It is needed in the latter case bezau
another arriving packet preempting the current in-
service packet may leave earlier than the curnent i
service packet. The guard event is not needed titeen
current in-service packet arrived before the G\iice
the departure event of such a packet cannot betadfe

55C

by a straggler and therefore is the earliest amalhg
future events. The timestamp of the guard event, if
necessary, is calculated according to the following
formula:

GT,=max{last-departure-time, GVT}+max{S}.

min{S} represents the minimum service time of any
packet.

For comparison, we developed a similar lookahead-
based protocol, referred to as LA-EIT, which exisloi
only the lookahead on the boundary components. Here
the set of boundary components are different from
those defined for the hybrid lookback-based prdtoco
for they are now components that may send messages
to other processors, rather than components thgt ma
receive messages from other processors.

The LA-EIT protocol works as follows. DenoEOT;

as the Earliest Output Time of messages any bowndar
components residing on tli¢h processor may send to
the j-th processor. The Earliest Input Time of ki
processor i€ITi=min{CLOCK+LA,;}, whereCLOCK

is the current simulated time of th¢h processor, and
LA is the lookahead in the boundary components
between thg-th andi-th processor. After the EIT is
known, each processor can then execute safe events
with a timestamp smaller than the EIT. Notice this
protocol is prone to deadlock if there exists aleyf
Zero lookahead, as in the traditional
Chandy/Misra/Bryant protocol.

Despite of the increased modeling complexity, the
hybrid LB-GVT protocol has several advantages over
the LA-EIT protocol . Guard events incur less oeath
because they are scheduled and received within the
same processor, whereas null messages must be sent
from one processor to another. They also disappear
automatically when lookahead becomes larger than th
difference between the GVT and the current simdlate
time, whereas in the LB-GVT protocol null messages
are indispensable for advancing the simulated fifhe.
GVT computation is less sensitive to topology. The
EIT computation requires a large number of null
messages with high component connectivity. LB-GVT
is deadlock free even if the lookahead is zero.

EXPERIMENTAL RESULTS

The top of Figure 5 shows the performance of LB-
GVT, hybrid LB-GVT, and LA-EIT running on 4
processors and of COST which is our sequential
simulation tool described in Section 3. The LB-GVT
protocol is the most stable, for it is able to expl
lookback intra-processor components when there are
few packets in each server. The hybrid LB-GVT and
LA-EIT protocols work better when there are aburidan
packets, mainly due to the fact that intra-processo
components can be more efficiently implemented as
sequential component. Overall, the hybrid LB-GVT
protocol consistently outperforms the LA-EIT pratbc

The middle of Figure 5 shows the speedup of these
three protocols on 4 processors with respect to the
COST and the bottom, with respect to their seqaknti
execution. The speedup of the LA-EIT protocol iietat

to its sequential execution is the worst. This &inty

due to the topology of the CQN network. When a
packet arrives at a switch, the switch may to didpa
one null message for each processor to inform the
changes on EOTSs, even if only one processor is the
destination of the packet.

CONCLUSION

The CQN simulation was our first attempt to apply
lookback-based protocols. Initial performance ressul
were promising. On 4 processors we were able to
obtain nearly linear speedup. This was the verst fir
evidence that lookback-based protocols did work.

We also proposed a hybrid lookback-based protocol
that is able to mix up lookback-enabled components
and sequential components. By only exploiting
lookback in the boundary components, it relieves th
burden of modeling dramatically. The experiments on
CON simulation showed that it outperforms a
conservative protocol based on lookahead. Gratited,
results are fully extensible to other kinds of diion.

For instance, FIFO (First-In-First-Out) links thate
widely used in communication networks are an FCFS
server with a delay. A lookback-enabled FIFO lirsnc
be implemented by adding a few changes to the FCFS
components detailed in this paper. It will thentdaais

to conduct communication network simulations byyonl

Tt |

A0 |

a0

A

200000 |

551

i
LI LI L L L L L ELIRLI L L e

Hylsidl LEHOWT
L&-E

i

[
T I_BI.GI‘IT T T
il LE-ONT ——
LAET —-

Figure 5: Performance, Speedup relative to COST and
Speedup relative to Sequential Execution for Three
Parallel Protocols (4 CPUs) on CQN

ACKNOWLEDGEMENT

This work was partially supported by the NSF grant
OISE-0334667. Any opinions, findings, and
conclusions or recommendations expressed in this
paper are those of the authors and do not nedgssari
reflect the views of the National Science Foundatio

REFERENCES

Bagrodia R.L. and W.-T. Liao. 1992. “Transparent
optimizations of overheads in optimistic simulagtnin
Proceedings of the 1992 Winter Simulation Confeggnc
637-645.

Chen G. and B.K. Szymanski. 2002a. “Lookaheadback
and lookback: Searching for parallelism in discetent
simulation”. In Proceedings of the Summer Computer
Science Conference

Chen G. and B.K. Szymanski. 2002b. “Lookback: A new
way of exploiting parallelism in discrete event

simulation”. In Proceedings of the 16th Workshop on
Parallel and Distributed Simulatiori53-162.

Chen G. and B.K. Szymanski. 2003. “Four types of
lookback”. In Proceedings of the 17th Workshop on
Parallel and Distributed Simulatigr8-10.

Jha V. and R.L. Bagrodia. 1993. “Transparent
implementation of conservative algorithms in pagall
simulation languages”. IProceedings of the Winter
Simulation Conferenc&77-686.

Mascarenhas E. et~al. “Minimum cost adaptive
synchronization: Experiments with the Parasol syste
ACM Transactions on Modeling and Computer
Simulation8, No. 4, 401-430.

Nicol D.M. 1988. “Parallel discrete-event simulatiaf
FCFS stochastic queuing networkSIGPLAN Notices
23, No. 9, 124-137.

552

