

 545

PARALLEL QUEUING NETWORK SIMULATION WITH LOOKBACK-
BASED PROTOCOLS

Gilbert G. Chen and Boleslaw K. Szymanski

Department of Computer Science, Rensselaer Polytechnic Institute
110 Eighth Street, Troy, NY 12180, USA

E-mail: {cheng3,szymansk}@rpi.edu

KEYWORDS
Lookback, queuing networks, parallel simulation.

ABSTRACT

We first describe how to design a lookback-enabled
FCFS server with an infinite buffer, and how the more
realistic condition of a finite buffer will complicate the
modeling. We then present another design based on the
idea of lazy evaluation which is not only simpler and
clearer, but also more efficient. We also developed a
hybrid lookback-based protocol to reduce the modeling
complexity associated with direct exploitation of
lookback. The hybrid lookback-based protocol is an
alternative to traditional lookahead-based approach to
linking simulations, yet it possesses several advantages
over the latter which make it perform better.

INTRODUCTION

Queuing network simulations have been extensively
studied by many PDES researchers. There are many
varieties of queuing networks, differing in
interconnections between components and many
specific parameters of components, such as the mean of
the service time, the random distribution of the service
time, the scheduling policy, etc. We chose the
particular one that was described in (Bargodia and Liao
1992), which is known as Closed Queuing Network, or
CQN.

Figure 1: A CQN with 3 Switches and 9 FCFS Servers

A CQN consists of a configurable number of switches
and FCFS (First-Come-First-Served) servers (Figure 1).
Each packet traveling through one of the FCFS server
tandems will eventually arrive at a switch. The switch
will then dispatch the packet to one of the tandems
randomly. CQNs are readily amenable to conservative

protocols because lookahead usually comes from the
FCFS servers where packets have to be delayed for
random service time. Denote the arrival time, the
departure time and the service time of the i-th packet Pi

by Ai, Di and Si respectively. If the service is available
at Ai, then Di= Ai+Si otherwise Di=D i-1+Si.

The departure time can be determined as soon as the
packet arrives. If eager scheduling is employed, the
departure event will be immediately generated and sent
out. The lookahead, which is equal to Di-Ai, is at least
Si. Nicol noticed that lookahead can be augmented if
the service time of the next packet can be pre-sampled
(Nicol 1988). In such a case, the lookahead becomes
Di-Ai+Si+1. The service time must be independent of
packets if the service time is to be sampled ahead of
time. This, however, may not always be true in
practice. A more general case is the one in which a
lower bound on the next service time can be obtained,
and the lookahead is now Di-Ai+min{Si+1}.

(Bagrodia and Liao 1992) proposed a technique to
reduce the rollback distance for optimistic CQN
simulation. They distinguished between the receive
time of a packet and the time at which a packet can be
served. When a straggler packet arrives, the logical
process needs to be rolled back only to the earliest time
this message can be served. This approach bears some
resemblance to lookback-based protocols, for both
algorithms stem from the observation that rollback to
the timestamp of the straggler is unnecessary. However,
lookback-based protocols can totally eliminate
stragglers by deliberately delaying the execution of
events that would increase the virtual lookback time
above the minimum timestamp of any stragglers.

DEFINING LOOKBACK IN CQN SIMULATION

Lookback is defined as the ability of a component to
change its past without affecting others (Chen and
Szymanski 2002b, Chen and Szymanski 2003). It
enables a new class of synchronization protocols that
lie in between conservative and optimistic protocols.

Before applying lookback-based protocols to the CQN
simulation, we must make sure that every component in
the CQN contains substantial amount of lookback. This
is, however, not a necessary condition for the
applicability of lookback-based protocols. Even in a

szymansk
Text Box
Proc. International Mediterranean Modelling Multiconference of European Multi-Simulation Symposium (EMSS06), Barcelona, Spain, October 2006, pp. 545-551

 546

simulation where lookback is zero in every component,
they still work, because the earliest event in the entire
simulation is always guaranteed to be eligible for
execution. Without adequate lookback, the
performance of these protocols would be greatly
impacted.

Let us first look at the switch component only. The
function of a switch is to generate a uniformly
distributed random integer to determine the destination
of a packet. Normally a switch keeps a private random
number generator which is invoked when a packet
arrives. A problem arises with this solution when
packets can arrive in out-of-timestamp order. The
statistical properties of the destination distribution
remain unaffected if the random numbers are still
generated in the same way. However, the parallel
simulation is no longer repeatable, meaning two
simulation runs with exactly the same set of parameters
may produce totally different results as out-of-
timestamp order events are produced when different
processors advance the simulated time unevenly;
therefore they depend only on the runtime behaviors of
the simulation, which is completely uncontrollable.

A simple solution to preserve the repeatability is to let
the switch obtain a random number from a random
number generator carried by each packet. This would
not be a burden in terms of memory usage because a
random number generator in fact does not occupy much
space. For instance, a Linear Congruential Generator
requires as few as 8 bytes. Packets passing through the
switch now become completely independent of each
other.

Nevertheless, this solution is unnecessary in this
particular CQN simulation. We noticed an interesting
fact that a switch may never receive out-of-timestamp
order packets, because a switch receives packets from
only one FCFS server. The simulation would not have
received out-of-timestamp order packets, because a
switch receives packets from only one FCFS server.
The simulation would not have been correct had a
switch received a straggler. Therefore, the switch
component needs no change in lookback-based CQN
simulation.

As to the FCFS server, we have proven that in it
lookahead under eager delivering and lookback under
lazy delivering are always the same (Chen and
Szymanski 2002a, Chen and Szymanski 2003). With
lazy delivering, the virtual lookback time of the FCFS
server at any time is always equal to the arrival time of
the last packet leaving the server. Any received packet
with a timestamp smaller than that of the current packet
in service must preempt the later. All those stragglers
with a timestamp greater than or equal to the virtual
lookback time can be correctly inserted into the waiting
queue at positions decided by their timestamps. For

packet Pi at its departure time Di, the virtual lookback
time is Ai, resulting in a lookback of Di-Ai equal to the
lookahead under eager scheduling given previously. If
pre-sampling is employed, at time Di+min{Si+1} which
is the earliest time next packet can complete the
service, the virtual lookback time is still Ai. Therefore
at this instant the lookback is Di-Ai+min{Si+1} , still the
same as the lookahead.

Apparently, packets with timestamp smaller than the
virtual lookback time will trigger a causality error. But
such errors are preventable by adhering to the lookback
constraint: when a packet is about to leave the server,
its arrival time must be checked against the LBTS. If
the arrival time is greater than the LBTS, it means that
another packet with a smaller timestamp may arrive
later. The packet cannot be sent out, and the departure
event is returned back to the local event list. Two cases
can happen afterwards. Either the LBTS is advanced by
invoking a new round of LBTS computation, making
the same event eligible for execution according to the
lookback constraint, or a new event with a smaller
timestamp may be received which satisfies the
lookback constraint.

LOOKBACK-ENABLED FCFS SERVER

The FCFS server has two event handlers. One is called
when a new packet is received, the other is called when
an in-service packet is about to leave the server. For
simplicity, let us first assume that the FCFS sever has
an infinite buffer so that no packet will be dropped. We
will come back to the case of finite queues in the next
section.

Handling Arrivals

The sequential algorithm for handling the arriving
packets is simple. If the server is free, the departure
event is scheduled, and the packet is marked as in-
service while the server is marked as busy. Otherwise,
the packet is placed at the tail of the internal queue.
When the packet is a straggler, there are only two ways
to handle the packet. Either the packet must be marked
as the current in-service packet, or it must be inserted
into the internal queue at a position determined by its
timestamp. If the server is free, the first case must be
chosen. If it is not, the current in-service packet may
have a larger timestamp, so the arriving packet can
preempt the current in-service packet, cancel the old
departure event and schedule a new one. Only when
neither of these two conditions is true will the packet
go to the internal queue.

How to compute the departure time is worth
elaboration. In the case of a straggler packet, it could
happen that the last in-service packet with a departure
time later than the timestamp of the straggler has
already left the server, and the service starting time
should be the last departure time instead of the

 547

timestamp of the straggler. Consequently, the correct
formula to calculate the departure time should be
Di=max{Ai,Di-1}+Si. It can be verified that this is in
accordance with the other formula for calculating Di
given earlier. The implication is that we must keep
track of the departure time of last packet. This can be
done by writing the value of the departure time to a
local variable when a packet is about to leave.

Handling Departures

In the sequential case, processing the departure event is
also simple, the packet is sent out via the outport and if
the internal queue is not empty, the packet at the head
of the queue moves to service.

With stragglers, one significant difference is that before
delivering the in-service packet to the outport, its
arrival time must be checked against the LBTS. If the
arrival time is smaller than the LBTS, the event handler
returns immediately with a false value, indicating that
the departure event cannot be successfully processed.

A departure event could be a straggler. This occurs
when a packet straggler schedules a departure event
earlier than the current simulated time. Therefore, when
computing the departure time for the new in-service
packet, the starting service time must be the maximum
of its arrival time and the departure time of the packet
just departing (or the timestamp of the current
departure event).

Dealing with Finite Queues

So far the correctness of the lookback-enabled FCFS
server is based on an assumption that the internal queue
is infinite so no packet would be dropped. When
stragglers are allowed, the decision whether or not a
packet should be dropped due to a full queue is
extremely difficult to make.

To see how complicated the situation is, let us look at a
seemingly plausible hypothesis that if a packet arrives
at a time when the internal queue is already full, then
this packet is destined to be discarded, no matter how
many packets with a smaller timestamp will be received
later.

The intuition behind this hypothesis is that a straggler
packet can only make the internal queue more crowded.
It would have been very useful if it were true because
the decision of dropping a packet could then be made
immediately once the packet arrives when the internal
is full. However, it is not sustainable, due to the fact
that a straggler packet may leave earlier than the
current simulated time. Figure 2 depicts such an
example.

In the example we assume that the size of the internal
queue is 1, meaning that any packets other than the in-
service packet have to be discarding. At T1 Packet A

comes after packet B, so it has to be dropped if there
are no stragglers. When a straggler C arrives at T4, not
only does it force packet B to be dropped, but also it
leaves early at T2 to allow packet A to occupy the
empty server!

Figure 2: A Counterexample for the Hypothesis

Initial Positions

The implication of the above example is that the
decision of dropping a packet cannot be made at the
time the packet just arrives. A straightforward solution
is to keep track of initial positions, which can be used
to help make the dropping decision. The initial position
of a packet is defined as the number of packets in the
queue at the arrival time of the packet if all packets
were received in the timestamp order. The sufficient
and necessary condition for a packet to be discarded is
to have an initial position greater than or equal to the
size of queue.

At what time should we make the dropping decision?
We only have two choices: either at the time the packet
enters the service or at the time the packet leaves the
server. The latter seems feasible, because a packet only
leaves when it cannot be affected by any stragglers, so
its initial position in the queue will not change any
more. However, it is not a good choice for two reasons.
First, it is a waste of CPU time to schedule and process
the departure event of the to-be-dropped packet. We
should try to avoid scheduling these events. The second
reason will be presented when we discuss the
possibility of mixing up lookback-enabled components
and sequential components. This leaves the former
option, making the dropping decision when the packet
enters the service. At that time the initial position of the
packet is still subject to changes caused by stragglers
and by the disproof of Hypothesis whether or not a
packet should be discarded is never certain.
Fortunately, we can assure that the case depicted in
hypothesis would never happen when the packet is
entering the service.

Theorem: At the time a packet is to be marked as in-
service, if its initial position is greater than or equal to

 548

the size of queue, then it is destined to be discarded
anyhow.
Proof. As shown in Figure 3, suppose that the current
simulated time is T2 and the packet A with an arrival
time of T3 is about to start the service. It is allowed to
do so because the packet B which arrived at T5 has just
completed its service (its service starting time is
irrelevant to discussion here). There should be no other
arrival events between T3 and T5 at this time, because
otherwise it would be such an event that enters the
service at T2. Any straggler that is received later must
have a timestamp no smaller than T5, because
otherwise packet B would not be allowed to leave and
consequently packet A would not have any chance to
start the service (in the departure event handler the
lookback constraint is always checked first). If any
straggler occurs, say, packet C, with a timestamp
between T3 and T5. Its departure time must be greater
than T2, because it arrives later than packet B.
Therefore, no departure events can be added to the
window [T3,T5] after the simulated time reached T2,
which means the initial position of packet A can only
be increased once it enters the service. �

Figure 3: A Straggler Can Only Increase the Initial

Position of Another at Entering the Service

Notice that according to Theorem we are sure that a
packet can be dropped if it has an initial position that is
too large, but we are uncertain whether or not the a
packet with a small initial position can survive the
entire service time. It is possible that a number of
stragglers (sometimes one is enough) preempt a packet
that is already in service and increase its initial position
forcing it to be dropped.
Now the rest of the task is to calculate the initial
position for every packet. For this purpose we must
maintain a departure time list that records the times at
which packets leave the server (if the in-service packet
is viewed as not occupying a place in the queue, the
departure time list would contain the time each packet
leaves the queue and becomes the in-service packet).

Since there are only two types of events for an FCFS
component, and each event could be either a straggler
or not, we need to consider these four cases as well as
an additional one in which a packet is dropped. For a
non-straggler packet, the initial position is simply the
number of packets currently in the queue. It will not
affect the initial position of any other packets. For a
straggler packet, calculating the initial position those
packets that have already left but whose departure time
is greater than the timestamp of the straggler must be
considered. It can be shown that these packets must be
in the queue at the time the straggler arrives (otherwise
they would not leave earlier than the straggler). The
number of these packets can be obtained by scanning
through the departure time list. The initial position of a
straggler packet is then the number of these packets
plus the number of packets currently in the queue with
a smaller timestamp. A straggler packet would increase
by one the initial position of every packet with a larger
timestamp. A non-straggler departure event does not
change the initial position of any other packets. A
straggler departure event, triggered by a straggler
packet that leaves earlier than the current simulated
time, decreases by one the initial position of every
packet in the queue with a larger timestamp. Finally, a
dropped packet decreases by one the initial position of
every packet in the queue with a larger timestamp.

Lazy Evaluation

The algorithm to maintain the initial positions for all
received packets is not only complicated but also
inefficient. The worse case happens when a packet to
be sent into service is found out having to be dropped.
The entire queue must be scanned in order for initial
positions of all the packets currently in the queue to be
decreased by one. Apparently, FCFS components based
on this algorithm can only be fitted to the cases where
packets are rarely dropped.

A better design originates from the fact that initial
positions can be derived recursively. Denoting by IPi
the initial position of the i-th packet, we have IPi=0, if
the server is free at Ai and IPi-1+1-LP[Ai-1,Ai]
otherwise, where LP[Ai-1,Ai] is the number of packets
leaving between Ai-1 and Ai.

The useful observation is that the above formula for IPi
will have all its arguments fully determined by the time
when the i-th packet is entering the service. At this time
the i-1-th packet has already left, so Di-1 is known.
Whether the service is free at Ai can be determined by
comparing Di-1 with Ai. If Ai ≥ Di-1, the i-th packet
arrived after the last one left, so the server is free and
the packet can be immediately put into service.
Otherwise, Di-1>Ai, and IPi must be calculated from IPi-

1 and the number of packets leaving between Ai-1 and Ai.
We only need to make sure the no straggler can leave
within the window [Ai-1,Ai]. A straggler cannot arrive
before Ai-1 because the i-1-th packet has already left.

 549

Any straggler arriving after Ai-1 must leave at a time
later than Di-1, which is greater than Ai. Hence, after i-th
packet enters the service, LP[Ai-1, Ai], the number of
packets leaving between Ai-1 and Ai is fixed and cannot
be affected by any stragglers.

This idea reflects the general guideline of lazy
evaluation in designing lookback-enabled component:
everything should be computed as late as possible. The
previous implementation, referred to as eager
evaluation, attempts to calculate the initial position as
soon as the packet arrives. Obviously, the calculation of
the initial position at the arrival time is wasteful, for it
will much likely be changed by the arrival of a
straggler. At the time the packet enters the service it is
much less likely that a straggler would occur, so it is
meaningful to carry out the computation now. Notice
the result of computation should be regarded as merely
estimation, since it may still be affected by a straggler,
though with a much smaller probability. This
estimation is only true when no straggler would occur.
The dropping decision based on the estimation,
however, is guaranteed to be always correct: we would
never drop a packet that should not be dropped.

Performance Comparison

Figure 4: Eager and Lazy Evaluation of Initial Positions

To see the effects of calculating the initial positions at
different times, we made two changes on the
simulation. The capacity of the FCFS queue was set
equal to the number of packets initially in the queue,
and new packets are created by a Poisson process on
each queue continuously throughout the simulation.
Figure 4 shows their performances with the LB-GVT
protocol. As mentioned before, the inefficiency of the
eager evaluation comes from in-service packets that
have to be discarded, for these packets affect all other
packets currently in the server. The effect becomes
apparent when each server can hold a large number of
packets.

A HYBRID LOOKBACK-BASED PROTOCOL

The only disadvantage of lookback-based protocols is
their associated modeling complexity. Example is the
lengthy discussion in the previous chapter about the
implementation of the lookback-enabled FCFS server
with finite buffer, which is a trivial problem if events
are received in timestamp order. The most effective
technique to alleviate the modeling complexity is
design a hybrid lookback-based protocol that is capable
of mixing lookback-enabled components with
sequential components.

To understand how the hybrid lookback-based protocol
works, it must first be clarified where stragglers come
from. If all time-aware components on the same
processor share a single simulation clock, it is clear that
only those components that reside on the boundary can
receive stragglers from other processors. Thus a natural
idea is to “absorb” all stragglers in the boundary
components so that other intra-processor components
will never observe any stragglers.

Lookahead must exist in the boundary components to
ensure that the intra-processor components do not to
receive stragglers. Consider an event e in an intra-
processor component with a timestamp T'. Suppose that
the current simulated time of the processor is T and
T'>T. Since all components in the same processor share
the same simulation clock, all boundary components
must be at the same simulated time T. If they send out
in the future any messages with timestamp less than T',
the event e could be affected so its execution cannot
continue. Therefore, the sufficient but not necessary
condition for event e with timestamp T' to be safely
executable is that all boundary components must
guarantee that all messages they will send later must
have a timestamp greater than or equal to T'. By
definition of lookahead, this means that every boundary
component must have a lookahead of at least T'-T.

Another requirement is that a boundary component can
never output a message smaller than the current
simulated time. Suppose that a boundary component at
simulated time T outputs a message with timestamp T'
such that T'<T. It is possible that a previously
processed event e in an intra-processor component
contains a timestamp T'' satisfying T'<T''<T.
Apparently the event e may be affected by the message
at T', which becomes a straggler in the intra-processor
component.

This requirement rules out the choice of making the
dropping decision when a packet is departing from the
FCFS server. If the departing packet is to be dropped
after the calculation of its initial position, the next
packet may have an earlier departure time, given that
the service time is dependent on the packet itself. The
next packet would then leave at a timestamp earlier

 550

than the current simulated time, resulting in a potential
straggler for other components.

GUARD EVENTS

Guard events are scheduled by boundary components
to set a lower bound on the timestamp of events they
will send. The simulation engine handles the guard
events in the same way as regular events, so these two
types of events can share the same event list. When the
simulation engine sees a guard event, it dispatches the
guard event to the boundary component that scheduled
it. The component may or may no schedule another
guard event with same or greater timestamp, depending
on the estimated minimum timestamp of future events.

Inclusion of guard events demands no changes on the
lookback-based protocols. A regular event will be
chosen only if it is the earliest event in the processor,
therefore at this time there cannot be any guard events
with smaller timestamp. For convenience, we refer to
the LB-GVT protocol that allows for guard events as
the hybrid lookback-based protocol, or the Hybrid LB-
GVT protocol. The LB-EIT protocol is not considered
because its relatively poor performance.

There is a slight difference between guard events and
regular events: the GVT computation should not take
guard events into account. Otherwise, the hybrid
lookback-based protocol would be deadlock-prone with
a zero lookahead boundary component, because the
guard event with the smallest timestamp would be
chosen to execute which will in turn schedule another
guard event with the same timestamp, resulting in an
infinite chain of guard events. If the GVT is computed
from the timestamps of regular events, then the earliest
regular event is always eligible for execution, because
all guard events must have a timestamp equal to or
greater than the GVT calculated in this way.

Guard events may become unnecessary when a
boundary component has a regular future event which
is known to be the earliest among all future events,
because in this case any guard event must have a
timestamp greater than that of the earliest regular event,
so it can be scheduled after the regular event has been
processed.

COMPARING HYBRID LOOKBACK-BASED
AND CONSERVATIVE PROTOCOLS

In the FCFS server detailed in the last chapter, a guard
event is needed when there are no packets in the server
or all packets in the server have an arrival time greater
than the GVT. It is needed in the latter case because
another arriving packet preempting the current in-
service packet may leave earlier than the current in-
service packet. The guard event is not needed when the
current in-service packet arrived before the GVT, since
the departure event of such a packet cannot be affected

by a straggler and therefore is the earliest among all
future events. The timestamp of the guard event, if
necessary, is calculated according to the following
formula:
GTi=max{last-departure-time, GVT}+max{S}.
min{S} represents the minimum service time of any
packet.

For comparison, we developed a similar lookahead-
based protocol, referred to as LA-EIT, which exploits
only the lookahead on the boundary components. Here
the set of boundary components are different from
those defined for the hybrid lookback-based protocol,
for they are now components that may send messages
to other processors, rather than components that may
receive messages from other processors.

The LA-EIT protocol works as follows. Denote EOTij
as the Earliest Output Time of messages any boundary
components residing on the i-th processor may send to
the j-th processor. The Earliest Input Time of the i-th
processor is EITi=minj{CLOCKj+LAj,i}, where CLOCKj
is the current simulated time of the j-th processor, and
LAj,i is the lookahead in the boundary components
between the j-th and i-th processor. After the EIT is
known, each processor can then execute safe events
with a timestamp smaller than the EIT. Notice this
protocol is prone to deadlock if there exists a cycle of
zero lookahead, as in the traditional
Chandy/Misra/Bryant protocol.

Despite of the increased modeling complexity, the
hybrid LB-GVT protocol has several advantages over
the LA-EIT protocol . Guard events incur less overhead
because they are scheduled and received within the
same processor, whereas null messages must be sent
from one processor to another. They also disappear
automatically when lookahead becomes larger than the
difference between the GVT and the current simulated
time, whereas in the LB-GVT protocol null messages
are indispensable for advancing the simulated time. The
GVT computation is less sensitive to topology. The
EIT computation requires a large number of null
messages with high component connectivity. LB-GVT
is deadlock free even if the lookahead is zero.

EXPERIMENTAL RESULTS

The top of Figure 5 shows the performance of LB-
GVT, hybrid LB-GVT, and LA-EIT running on 4
processors and of COST which is our sequential
simulation tool described in Section 3. The LB-GVT
protocol is the most stable, for it is able to exploit
lookback intra-processor components when there are
few packets in each server. The hybrid LB-GVT and
LA-EIT protocols work better when there are abundant
packets, mainly due to the fact that intra-processor
components can be more efficiently implemented as
sequential component. Overall, the hybrid LB-GVT
protocol consistently outperforms the LA-EIT protocol.

 551

The middle of Figure 5 shows the speedup of these
three protocols on 4 processors with respect to the
COST and the bottom, with respect to their sequential
execution. The speedup of the LA-EIT protocol relative
to its sequential execution is the worst. This is mainly
due to the topology of the CQN network. When a
packet arrives at a switch, the switch may to dispatch
one null message for each processor to inform the
changes on EOTs, even if only one processor is the
destination of the packet.

CONCLUSION

The CQN simulation was our first attempt to apply
lookback-based protocols. Initial performance results
were promising. On 4 processors we were able to
obtain nearly linear speedup. This was the very first
evidence that lookback-based protocols did work.

We also proposed a hybrid lookback-based protocol
that is able to mix up lookback-enabled components
and sequential components. By only exploiting
lookback in the boundary components, it relieves the
burden of modeling dramatically. The experiments on
CQN simulation showed that it outperforms a
conservative protocol based on lookahead. Granted, the
results are fully extensible to other kinds of simulation.
For instance, FIFO (First-In-First-Out) links that are
widely used in communication networks are an FCFS
server with a delay. A lookback-enabled FIFO link can
be implemented by adding a few changes to the FCFS
components detailed in this paper. It will then enable us
to conduct communication network simulations by only
exploiting lookback in link components.

Figure 5: Performance, Speedup relative to COST and
Speedup relative to Sequential Execution for Three

Parallel Protocols (4 CPUs) on CQN

ACKNOWLEDGEMENT

This work was partially supported by the NSF grant
OISE-0334667. Any opinions, findings, and
conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

Bagrodia R.L. and W.-T. Liao. 1992. “Transparent
optimizations of overheads in optimistic simulations”. In
Proceedings of the 1992 Winter Simulation Conference},
637-645.

Chen G. and B.K. Szymanski. 2002a. “Lookahead, rollback
and lookback: Searching for parallelism in discrete event
simulation”. In Proceedings of the Summer Computer
Science Conference.

Chen G. and B.K. Szymanski. 2002b. “Lookback: A new
way of exploiting parallelism in discrete event

 552

simulation”. In Proceedings of the 16th Workshop on
Parallel and Distributed Simulation, 153-162.

Chen G. and B.K. Szymanski. 2003. “Four types of
lookback”. In Proceedings of the 17th Workshop on
Parallel and Distributed Simulation, 3-10.

Jha V. and R.L. Bagrodia. 1993. “Transparent
implementation of conservative algorithms in parallel
simulation languages”. In Proceedings of the Winter
Simulation Conference, 677-686.

Mascarenhas E. et~al. “Minimum cost adaptive
synchronization: Experiments with the Parasol system”.
ACM Transactions on Modeling and Computer
Simulation 8, No. 4, 401-430.

Nicol D.M. 1988. “Parallel discrete-event simulation of
FCFS stochastic queuing networks. SIGPLAN Notices
23, No. 9, 124-137.

