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Abstract. We investigate the effect of a specific edge weighting scheme ∼ (kikj)
β on distributed flow

efficiency and robustness to cascading failures in scale-free networks. In particular, we analyze a simple,
yet fundamental distributed flow model: current flow in random resistor networks. By the tuning of control
parameter β and by considering two general cases of relative node processing capabilities as well as the
effect of bandwidth, we explore the dependence of transport efficiency upon the correlations between the
topology and weights. By studying the severity of cascades for different control parameter β, we find that
network resilience to cascading overloads and network throughput is optimal for the same value of β over
the range of node capacities and available bandwidth.

1 Introduction

Distributed flows are ubiquitous in natural and man made
systems. Examples of such distributed flows include but
are not limited to: water flow in riverbeds, data flow on the
Internet, current flow in the power grid, nutrient flows in
leaves. By studying real-world transport systems, a natu-
ral question appears as to how such flows can be designed
in order to optimize various transport characteristics, col-
lectively referred to as objective functions, e.g. searchabil-
ity [1], transport efficiency [2,3], average packets travel-
ing time [4], resilience against cascading overloads [5] and
against damages [6].

In a large class of transport models in networks, flow is
assumed to be limited to and directed along the shortest
paths between the source and destination [5,7,8]. In an-
other class of flow models, motivated primarily by search
and discovery in networks, routing of packets can be ran-
dom, which have led to the studies of regular [9,10], weighted
[11–14], or adaptive random walks (RWs) in networks [15].
A third class of models comprises those where transport
and flow is both directed and distributed: transport occurs
along all possible paths between source and target node. In
this paper we systematically study the simplest such ex-
ample of a directed, distributed flow: currents in resistor
networks.

Resistor networks are arbitrary networks in which all
edges are resistors with a specific “electrical” conductance
and a pair of nodes have been designated to be the source

a Present address: asztaa@rpi.edu

and sink (target) of a current I flowing through the net-
work. They have not only been used to capture inherent
transport capabilities of the underlying (possibly weighted)
complex communication or information networks [3,11,
16–18], but also to describe the transport of carbohydrates
in plants [19], to investigate flow of fluids in porous me-
dia [20,21], to find communities in complex networks [22],
or to construct page-ranking schemes for search engines
[23]. Further, there are fundamental connections between
random walks (hitting times) and resistor networks (two-
point resistance) [9,11,24–28]. These fundamental observ-
ables (and the corresponding load and betweenness mea-
sures) can also serve as a starting point in routing schemes
in actual communication networks [29,30].

Here, we present extensive and systematic numerical
results pertaining to two general cases of relative node
processing capabilities along with the effect of bandwidth
on current flows in weighted resistor networks. In the fol-
lowing section (see Sect. 2) we describe the model we use
to study distributed flows. In Sect. 3 we study numerically
the effect of two different node capacities and bandwidth
upon flow efficiency. In Sect. 4 we present results about
maximizing network robustness against cascading failures,
and present concluding remarks in Sect. 5.

2 Model

In this paper we consider a specific scheme of assigning
conductances to edges − edge weighting scheme− and
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study how the parameter in this scheme affects the effi-
ciency of flow and robustness of the network to cascading
failures. Consider a resistor network having N nodes and
M edges. The conductance of an arbitrary edge e = (i, j)
is set to be proportional to the end-point degrees, namely
Cij ∼ aij(kikj)β , where aij is the (i, j)th element of the
network’s adjacency matrix and β is a control parameter,
taking only real values. This choice, also studied before in
[11,31,32], has been motivated by empirical studies [33,
34] where edge weights were observed to follow a similar
trend. An additional motivation is that this scheme pro-
vides a convenient way of studying topologically (struc-
turally) biased flows as a function of β control parameter.
This parameter allows one to bias the current flow pre-
dominantly towards large degree nodes (hubs) (for posi-
tive β) or to avoid them (for negative β). When β = 0,
all edge weights are equal, thus the current flow is solely
influenced by the network topology.

Currents along the edges of the network are obtained
following the method summarized in [35]. When I units of
current flow into the network at a source s and leave at a
target t, then for an arbitrary node i, charge conservation
(Kirchhoff’s law) combined with Ohm’s law dictates:

N∑

j=1

Cij(Vi − Vj) = I(δis − δit), ∀i = 1, . . . , N. (1)

Keeping in mind that the weighted network Laplacian can
be written as Lij = δijCi −Cij , where Ci =

∑N
j=1 aijCij ,

the system of linear equations (1) can be transformed into
the matrix equation

LV = I. (2)

V is the unknown column voltage vector, while Ii is the
net current flowing into the network at node i, which
is zero in all cases except the source and target nodes.
Equation 2 is solvable for voltages, as long as the inverse
of the Laplacian L is known. As the L matrix is singu-
lar (all rows and columns of L sum up to zero implying
that there is an eigenvalue λ1 = 0 with a correspond-
ing constant eigenvector) it can not be directly inverted.
This, however presents no technical difficulty, as all rel-
evant physical observables can be expressed in terms of
the inverse (or pseudo-inverse) Laplacian, defined in the
space orthogonal to the zero mode: G = L−1. This is
achieved by using spectral decomposition of the network
Laplacian [11,36]. For example, by choosing the reference
potential to be the mean voltage [18], V̂i = Vi−〈V 〉, where
〈V 〉 = (1/N)

∑N
j=1 Vj , one obtains:

V̂i = (GI)i =
N∑

j=1

GijI(δjs − δjt) = I(Gis −Git), (3)

for each node i. Thus, for I units of current and for a
given source/target pair, the current flowing through an
arbitrary edge e = (i, j) is

Istij = Cij(Vi − Vj) = CijI(Gis −Git −Gjs +Gjt), (4)

while the current flowing through node i is given by

Isti =
1

2

∑

j

|Istij |, (5)

where the sum is taken over all neighbors of node i. So far
we have considered the general case of I units of current
entering (leaving) the network at a given source (target)
pair. For the studies in this paper, with the exception
of Sect. 4.2, we assume that unit current flows between
N source/target pairs simultaneously. Specifically, we as-
sume that all nodes are simultaneously sources and unit
current flows into the network at each source. For each
source node a target is chosen randomly and uniformly
from the remaining N − 1 nodes. Consequently, the net
current flowing through an arbitrary edge/node gives the
edge/node current-flow betweenness [35,37,38]:

$ij =
1

N − 1

N∑

s,t=1

|Istij |, $i =
1

N − 1

N∑

s,t=1

|Isti |. (6)

Note, $i = 1/2
∑

j $ij , where the sum is over all neigh-
bors of node i. These quantities capture appropriately
the amount of information passing through an edge or
a node in a distributed fashion, and therefore we will refer
to them as edge and vertex loads. We clarify, this is dif-
ferent from the quantity ‘vertex load’ introduced in [39,
40], defined as the accumulated number of data packets
passing through a vertex when all pairs of nodes send and
receive a data packet in unit time transmitted along the
shortest paths connecting them. Currents along the edges
and nodes are uniquely determined by the network topol-
ogy and the weight exponent β. Therefore, this is a fully
deterministic model and the only source of randomness in
the problem is in the network structure.

We restrict our studies to random, uncorrelated scale-
free networks constructed using the configuration model
[41] characterized by a fat-tailed degree distribution P (k) =
ck−γ , where c is the normalization constant and kmax ∼
(〈k〉N)1/2 [42].

3 Vertex and edge load landscapes

Attributes of the vertex load landscapes for random scale-
free networks are shown in Fig. 1. Positive load-degree
correlations are observed in Fig. 1(a) for unbiased (β = 0)
flow and these correlations become stronger as the flow
gets increasingly biased towards the hubs (β > 0) as shown
in Fig. 1(b). The correlations disappear when β ≈ −1; the
loads become balanced, however the average vertex load
in the network increases slightly. As the hub-avoiding bias
of flows increases (by lowering β) relatively high loads
start to appear on small degree nodes, contributing to
an increase in the average vertex load. The same ten-
dency was previously observed [35,43] for Barabási-Albert
(BA) scale-free graphs [44]. Furthermore, vertex-load dis-
tributions [Fig. 1(c)] show a power-law tail for unbiased
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Fig. 1. (a) Scatterplot between vertex load and degree showing
strong correlation between these variables for unbiased flow
(β = 0). Color coded horizontal lines show the average vertex
load in the network: green solid line for β = 0.0, red dashed line
for β = −1.0 and blue dashed line with two dots for β = −2.0.
(b) Average vertex load for different degree classes as we vary
β. Data in both (a) and (b) are plotted for random scale-free
networks with γ = 2.5. (c) Vertex-load distributions calculated
on scale-free networks with γ = 3.0 for various values of β. (d)
Vertex-load distributions for unbiased flow for different values
of degree exponents γ. Data were averaged over 400 different
network realizations (N = 103, 〈k〉 = 10).

and hub-biased flows with gradually increasing exponen-
tial cut-offs. The tail significantly diminishes as the flow
is biased against hubs and towards small degree nodes
e.g., for β ≈ −0.5 and disappears for β ≈ −1. Note, that
for β ≈ −1 the variance of the distribution is the small-
est among all β values. A strong correlation between the
degree exponent of the network and the exponent δ char-
acterizing the power-law tail of the vertex-load distribu-
tions for unbiased flow (β = 0) can also be observed as

shown in Fig. 1(d). For γ = 2.5, 3.0 and 3.5 we obtain
δ = 2.52± 0.01, 3.01± 0.02 and 3.59± 0.01, respectively.

The edge-load distributions for various values of β val-
ues are shown in Fig. 2(a). Large heterogeneity in the
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Fig. 2. (a) Edge-load distributions in random scale-free net-
works (γ = 3.0) obtained for various values of β. (b) Edge-load
distributions for unbiased flow (β = 0.0). Network specifica-
tions are the same as in Fig. 1.

edge-load distribution is observed for strong hub-biased
flows (β = 2.0). This heterogeneity diminishes as the hub
bias is decreased and the tail of distribution becomes expo-
nential-like. In contrast with node loads in Fig. 1(d), the
edge loads, for unbiased flows are normally distributed as
shown in Fig. 2(b). Interestingly, the edge loads become
most balanced for β ≈ 0.1, when flows are slightly biased
towards large degree nodes.

4 Distributed flow optimization

4.1 Optimal network throughput

Having considered the load landscapes for different β ranges,
we are interested in how to characterize the flow efficiency
in the network. Here, we characterize traffic flow efficiency
by network throughput [7,35]: the maximum input current
Φc that the network is able to transport without becom-
ing congested. To begin with, we consider two cases. In the
first case (i) which we call node-limited, nodes have iden-
tical processing capability, set to unity, and edges have
transport capacity (which is also interchangeably referred
to as bandwidth) b that is unbounded (b = ∞). In the
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second case (ii) which we call edge-limited, the processing
capability of every node is unbounded and all edges in the
network have a finite and identical bandwidth (b = 1). In
both cases, we now assume that Φ units of current flow
between N source-target pairs simultaneously. As we in-
crease the input current Φ, the node with the highest load
will be the first to become congested. Thus, for a given
network, we are interested in the problem of choosing the
link conductances such that the network is least suscepti-

ble to congestion. To fix notations, we denote by Φ(n)
c the

node-limited throughput, which is the maximum input cur-
rent for which the network is congestion free in the node-

limited case, and by Φ(e)
c the edge-limited throughput, that

is the maximum input current for which the network is
congestion free in the edge-limited case. As shown earlier
[7,35], these quantities are only limited by the maximum
vertex load $max and maximum edge load $(e)max in the
network, respectively. Mathematically, they are defined as

Φ(n)
c =

1

$max
, Φ(e)

c =
1

$(e)max
, (7)

and their dependence for various link conductances are
shown in Figs. 3(a) and 3(b). For random scale-free net-
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Fig. 3. (a) Node-limited throughput and (b) edge-limited
throughput is shown as function of β control parameter ob-
tained for scale-free and ER networks (N = 103, 〈k〉 = 10)
averaged over 400 network realizations.

works, for γ in the range of [2.5, 3.5], as well as for Erdős-
Rényi (ER) random graphs [45], the node-limited through-
put attains a maximum value for the hub-avoiding flow
around β ≈ −1 (observed also previously in scale-free BA
network [35,43]), contrary to the edge-limited throughput

attaining an optimal value for the weakly hub-biased flow
around β ≈ 0.1 and a slightly higher value around β ≈ 0.2
for ER networks. As it was shown in Figs. 1(c) and 2(a)
the β ≈ −1 and β ≈ 0.1 values are not coincidental. These
are the values for which the vertex and edge loads are bal-
anced, respectively. We also observe that for all values of β

and for various network topologies, Φ(e)
c > Φ(n)

c , indicating
that node-capacity constraints have a more severe effect
on network throughput than bandwidth constraints. The

quantities Φ(n)
c and Φ(e)

c increase as the fatness of the de-
gree distribution tails reduces. Furthermore, the homoge-
neous ER graph exhibits a larger node- and edge-limited
throughput than the heterogeneous scale-free topologies
with similar characteristics. Finally, the increase of the
network average degree results in the decrease of the max-
imum vertex and edge loads, which in turn contributes to

the increase of Φ(n)
c and Φ(e)

c (not shown).
An interesting application of the above weighted and

distributed traffic scheme is its implementation to an ac-
tual empirical network structure. To that end, we analyzed
a July 2006 snapshot of the Internet at the autonomous
system (AS) level [46]. The network, composed of 22963
nodes has an average degree 〈k〉 = 4.22; it is characterized
by a fat-tailed degree distribution and shows disassorta-
tive mixing by degree [47](see inset of Fig. 4(a)). The ver-
tex load corresponds to the net number of data packets
passing through an AS. Qualitative similarities are ob-
served between Fig. 4(a) and Fig. 1(b); furthermore be-
tween Figs. 4(b), 4(c) and Figs. 3(a) and 3(b), respectively.
Following the presented results from our model so far, it
is obvious that the vertex loads would be optimally bal-
anced in the hub-avoiding regime. For the Internet, the
maximum of the node-limited throughput occurs around
β ≈ −1.75 [Fig. 4(b)], a significantly lower value than the
one obtained for uncorrelated scale-free networks. Further,
the edge-limited throughput is optimal at around β ≈ 0
[Fig. 4(c)], essentially unchanged from uncorrelated scale-
free graphs. This behavior of general disassortative net-
works can be qualitatively understood as follows. Assum-
ing that the scaling of the vertex load is dominated by
the weighted degree Ci =

∑
j aijCij for each node, one

can qualitatively argue that the value of β which balances
the vertex loads will be lower for disassortative networks
(such as the Internet) than for uncorrelated ones. There-
fore, a stronger hub avoidance is required to balance the
loads on a disassortative network as compared to an un-
correlated one. On the other hand, assuming that the edge
load is dominated by the weighted couplings Cij [Eq. (4)],
the degree-degree correlations have no major impact scal-
ing of the edge load. Hence, the value of the weighting
parameter which balances the edge load remains about
β ≈ 0, unchanged from uncorrelated networks. Finally, in
both cases one can assume that maximal throughput is
associated with balanced loads.

In addition to the node-limited and edge-limited cases,
we consider a third case (iii) that we call node-edge-limited,
when all nodes have unit processing capabilities and all
edges have a finite, identical bandwidth, b ≥ 0. The net-
work is congestion free for any Φ units of current flowing



Andrea Asztalos et al.: Distributed flow optimization and cascading effects in weighted complex networks 5

(a)

k

〈!
〉

k

β = −1.5
k̄ n

n

β = −2.0

β = 0.0

(b)

x10-4

Φ
(n

)
c

β

(c)

β

Φ
(e
)

c

Fig. 4. (a) Average vertex load for different degree classes
obtained for the Internet at AS level [46] for hub-avoiding (β =
−2.0,−1.5) and unbiased (β = 0.0) flows. The inset shows the
average nearest neighbor degree k̄nn as function of node degree.
(b) Node-limited throughput and (c) edge-limited throughput
is shown as function of β control parameter.

through the network as long as Φ$i ≤ 1 and Φ$ij ≤ b
conditions are satisfied for each node i and edge (i, j), re-

spectively. The node-edge-limited throughput Φ(ne)
c , that is

the maximum input current for which the network is con-
gestion free in the node-edge-limited case is defined as:

Φ(ne)
c =

1

max{$i, $ij/b}
. (8)

In the case of infinite bandwidth, Φ(ne)
c (b = ∞) ≡ Φ(n)

c ;
for no bandwidth (b = 0) the network is unable to trans-

fer current flow, therefore Φ(ne)
c = 0. As seen in Figs. 3(a)

and 3(b) the node capacity constraint Φ$i ≤ 1 (for all
nodes i) is a more restrictive constraint than Φ$ij ≤ 1
(for all edges (i, j)) constraint. Thereby, in this model the
unit bandwidth b = 1 is an upper limit of increasing net-

work throughput expressed mathematically as Φ(ne)
c (b =

1) ≡ Φ(n)
c . By lowering the bandwidth of edges, we restrict

the current flowing through the network, consequently de-

creasing the Φ(ne)
c . This is shown in Fig. 5(a). As b de-
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Fig. 5. (a) Node-edge-limited throughput Φ(ne)
c as function

of control parameter β and finite bandwidth b of edges. (b)

Cross-sections of the Φ(ne)
c surface shown in (a) highlighting

the transition of the optimum value from hub-avoiding flows
(β ≈ −1) to weakly hub-biased flows (β ≈ 0.1) as bandwidth
is lowered from b = 0.78 to b = 0.02. Data were obtained for
random scale-free network of degree exponent γ = 2.5. Network
specifications are the same as in Fig. 1.

creases we observe the continuum of cases between the
node-limited and edge-limited extremes. This decrease is

accompanied by the shift of the optimal value of Φ(ne)
c

from the region of hub-avoiding flows (β < 0) to the re-
gion of slightly hub-biased flows (β > 0) also shown in

Fig. 5(b). The overall shape of Φ(ne)
c (β, b) surface remains

unaltered as we increase γ degree exponent (not shown)
in agreement with Figs. 3(a) and 3(b).

4.2 Heterogeneous allocation of network resources

In the previously considered cases we implicitly assumed
that the probability of being a source is the same across
all nodes (1), and so is the probability of being a tar-
get [1 − (1 − 1/(N − 1))N−1]; additionally, the current
flowing between each source-target pair is identical. In
the following, we address a particular case of heteroge-
neous flow where the incoming and outgoing flow rate be-
tween each source-target pair is proportional to the de-
gree of source ks and target kt nodes, namely ∼ (kskt)ρ,
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for ρ ≥ 0 real. Considered previously in [35], this model
of heterogeneous flow is inspired by a study of the world-
wide air-transportation network [33], wherein the traffic
(total number of passengers) handled by each airport was
observed to scale as ∼ kθ, where k was the total degree of
the airport. The appropriately weighted vertex load $i(ρ)
in this case is defined as [35]

$i(ρ) =
N∑

s,t(kskt)
ρ

∑

s,t

(kskt)
ρIsti , ∀i = 1, . . . , N. (9)

Note, $i(ρ = 0) = $i. Further, we denote by Φ(n)
c (ρ), the

node-limited weighted throughput and by Φ(e)
c (ρ) the edge-

limited weighted throughput that are generalizations of the
node-limited and edge-limited throughputs defined in the

previous subsection. Therefore, similar to Φ(n)
c and Φ(e)

c

defined by (7), their weighted counterparts are only lim-
ited by the maximum weighted vertex and edge loads,
respectively.

In the following, we restrict our studies to the case
when ρ = 1.0. Qualitative similarities are observed be-
tween the insets of Figs. 6(a), (b) and Figs. 3(a) and 3(b),
respectively. Additionally, we observe a shift towards lower
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Fig. 6. (a) Maximum weighted vertex load and (b) maximum
weighted edge load as function of β control parameter for ρ =
1.0. Data were obtained for scale-free networks (N = 103, 〈k〉 =
10) with various γ degree exponents, averaged over 400 network
realizations. Insets show the node-limited weighted throughput
Φ(n)

c (ρ) and edge-limited weighted throughput Φ(e)
c (ρ), respec-

tively, when ρ = 1.0.

values of β in the position of both node-limited and edge-

limited optimal throughputs. Specifically, the Φ(n)
c (1.0) at-

tains a maximum value for the hub-avoiding flow around

β ≈ −1.5, while Φ(e)
c (1.0) reaches its maximum value for

the unbiased flow, when β ≈ 0. The strong hub avoidance
arises to compensate for the hub bias implicitly introduced
by the heterogeneous flow (∼ kρ). The network through-
put for this case is significantly lower than for the case of
ρ = 0.

Further on, we restrict ourselves to the case when there
is infinite bandwidth associated to the edges and the only
flow limiting factor is the processing capacity of the nodes,
denoted by Qi for all node i in the network. Rather than
consider an optimization of the functional form of the
Q distribution, we consider the case when Qi follows a
parametrized form Qi(λ) ∼ kλi . As previously, we con-
sider the constraint that the sum of the node processing
capacities is equal to N . We then focus on the question
of how the node processing capacities can be distributed
such that the congestion-free throughput of the network
is maximized. The network is congestion free as long as
condition

Φ$i(ρ) ≤
kλi N∑
j k

λ
j

, ∀i = 1, . . . , N (10)

is satisfied. Fig. 7(a) depicts the Φ(n)
c (ρ = 1.0)(β, λ) sur-

face. A clearer picture of the relevant range of λ values
for which this particular network throughput becomes op-
timal is shown in Fig. 7(b). The global maximum of the
throughput is attained for hub-biased flow (β ≈ 0.5) when
λ ≈ 1.25. As λ is increased, not surprisingly, optimal
throughputs occur at increasing values of β, i.e. for in-
creasingly hub-biased flows. However optimal throughput
values themselves behave non-monotonically, increasing as
λ is increased from zero and then decreasing after a max-
imum is attained around λ ≈ 1.25. The scale-free world
wide airline transportation network [33] has been reported
to operate in the hub-biased regime. However, to make
any conclusive statements whether this network operates
close to its optimal regime would be debatable for lack
of empirical data on how the flow of passengers between
source-target airports as well as airport capacities scale
with local connectivity.

4.3 Comparing distributed flow to shortest path flow

Our study has focused on distributed flows that utilize all
possible paths between a source and target node pair in
proportion to the conductances of these paths. As pointed
out in the introduction, another commonly studied model
of flow is one that utilizes solely the shortest path(s) be-
tween a source/target node pair. In the latter case the
relevant measure of load for the optimization problem we
discuss here is the shortest-path betweenness centrality
[48,49]. We now compare the two different flow strate-
gies to examine which one would yield a higher network

throughput. The node-limited throughput Φ(n)
c , defined in

Sect. 4.1 is plotted for random scale-free and ER networks
in Figs. 8(a). Here, the weight associated to edge (i, j) is
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Fig. 7. (a) Node-limited weighted throughput when nodes’
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kλ
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of throughput surface shown in (a) highlighting the relevant
range of λ values for which the throughput is optimal. Data
were obtained for scale-free networks of γ = 2.5. Network spec-
ifications are the same as in Fig. 1.

1/Cij and the shortest-path betweenness centrality is de-
fined with a similar normalization as in the case of current-
flow betweenness: CB(i) = 1/(N − 1)

∑
s"=t"=i σst(i)/σst

for any node i. σst(i) denotes the number of those short-
est paths between source s and target t node that pass
through node i, while σst gives the total number of short-

est paths between s and t. The maximum of Φ(n)
c for both

types of flows is attained in the hub-avoiding regime, al-
though the current flow requires a stronger hub avoid-
ance (β ≈ −1) than shortest-path flow (β ≈ −0.5). The
optimal values for both cases are larger in case of ER
graphs: the homogeneous structure of the network con-
tributes positively to its transport ability. As seen from
Fig. 8(a), for the particular system size N = 103, the
maximum value of node-limited throughput is larger in

the case of shortest paths than for currents (Φ(n)
c (sh.p.) >

Φ(n)
c (current)). To see how this comparative feature is af-

fected by network size, we investigated the values of $max

on networks of different sizes, for both kinds of flow. The
results shown in Fig. 8(b) indicate that shortest path be-
tweenness scales faster with N than current flow between-
ness. Extrapolation of the linear fits indicate that this

trend (Φ(n)
c (sh.p.) > Φ(n)

c (current)) holds up to 15000

nodes, after which Φ(n)
c (sh.p.) < Φ(n)

c (current). The max-
imum vertex load scales with system size as ∼ N0.65 while

Curr
Shp
ER, curr
ER, shp

(a)

β

Φ
(n

)
c

SF, Current ow

SF, Shortest path ow

ER, Current ow

ER, Shortest path ow

10
2

10
3

10
4

10
1

10
2

10
3

Current
Shortest path

(b)
Current ow

Shortest path ow

N
! m

a
x

∼ N0.65

∼ N0.8

Fig. 8. (a) Node-limited network throughput obtained for two
different flow strategies: current and shortest-path flow, for
scale-free (γ = 2.5) and ER networks (N = 103, 〈k〉 = 10).
(b) System size dependence of the largest vertex load on un-
biased (β = 0.0) current (black circles) and shortest path flow
(blue squares) in scale-free networks (〈k〉 = 5.0).

the highest shortest path betweenness centrality scales
with system size as ∼ N0.80, value also reported in [7].

5 Robustness against cascading failures

Cascading failures embody one of the common vulnerabil-
ities of infrastructure networks [50,51]. Models of cascad-
ing failures have been previously studied in [52–55]. Addi-
tionally, based on the analogy between electrical networks
and random media, random fuse networks have been also
studied on percolating lattices [56–59] providing the un-
derstanding of basic features of breaking processes in con-
densed matter. Here we study the model of cascading fail-
ures introduced by Motter and Lai [53], extending it to the
case of distributed flows. As defined in [53], the initially as-

signed processing capacities of nodes are Qi = (1+α)$(0)i ,

where $(0)i is the current vertex load on node i for unit
current flowing between all source-target pairs as defined
in Sect. 2, for an undamaged network. Equivalently, each

node i can handle an excess load α$(0)i where α ≥ 0 is
called tolerance (excess capacity) parameter. A cascading
failure is then triggered by the removal of node i∗ with
highest load. The loss of node i∗ results in the redistribu-
tion of flows through the network that further leads to the
redistribution of loads in the network. By assuming that
failure happens at all nodes whose loads are greater than
their respective capacities, the (simultaneous) removal of
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all failed nodes results in the redistribution of loads among
the remaining nodes, thereby resulting in more overloaded
nodes and more failures. The cascade ends when none of
the vertex loads exceed their respective capacities.

In the following we analyze cascades triggered by the
removal of the highest load and ask for what values of con-
ductance β weighting parameter and α excess capacity pa-
rameter is the network the most resilient to such cascades.
Following [53], the resilience of a network is quantified in
terms of the fraction of surviving largest connected compo-
nent after the cascade:G = N ′/N , whereN ′ is the number
of nodes belonging to the largest network component after
the cascade and N is the undamaged (connected) network
size.

Network vulnerability to cascades can be increased by
increasing the excess load capacity of nodes. However,
this might not always be a feasible, cost-effective solu-
tion. The question, therefore arises: is there an optimal
conductance weighting scheme of the network that would
limit the damage resulting from a cascading failure for
low values of α? As shown in Figs. 9(a) and 9(b) the net-
work resilience G against cascading failure for low values
of α attains its maximum for hub-avoiding flows around
β ≈ −1, the same value for which the node-limited net-
work throughput, shown in Sect. 4.1, becomes the high-
est. Hence, a necessary condition for scale-free networks

(a)

β

G
=

N
′ /
N

γ = 3.5

γ = 3.0

γ = 2.5

α = 0.1

(b)

β

G
=

N
′ /
N

γ = 3.5

γ = 3.0
γ = 2.5

α = 0.15

Fig. 9. Fraction of the largest surviving network component
following a cascading failure (G) triggered by the removal of
the highest vertex load as function of β conductance weighting
parameter for (a) α = 0.10 and (b) α = 0.15 tolerance param-
eters. Data were obtained for scale-free networks (N = 103,
〈k〉 = 4.5) averaged over 60 network realizations.

(including the BA model) to achieve the highest resilience

against cascading failures is having a balanced vertex load
profile. This condition also assures that the node-limited
network throughput is optimal (see Sect. 4.1). In general,
hub-avoiding flows result in relatively higher network re-
silience to cascades than hub-biased flows.

As Fig. 9 already points out, the network resilience
against cascading failures varies with the degree exponent
of the network. This is shown in detail in Fig. 10 for two,
relatively low values of α (0.1 and 0.15.) For hub avoiding
flows [Figs. 10(a), (b)], increasing γ yields more robust
structures; for unbiased and hub biased flows [Figs. 10(c),
(d)], increasing γ yields less robust structures. In the latter
case, the node with the highest load is among the high-
est degree nodes in the network [Fig. 1(b)]; thus, removal
of such node results in the overload of many low degree
nodes. The failure of low degree nodes results in a larger
damage of a scale-free network with narrow degree distri-
bution, i.e., γ = 3.5 compared to a network with broader
degree distribution, i.e., γ = 2.5. In the case of hub-
avoiding flows, the node with the highest load is among
the low degree nodes [Fig. 1(b)], therefore its removal re-
sults in the overload of some of the large degree nodes.
The failure of hub(s) yields a larger connected component
in a scale-free network with narrow P (k) compared to a
network with broader P (k). The monotonicity of function
G(γ) for all values of β indicates that network robustness
is solely determined by network topology and link conduc-

tances for a fixed value of α$(0)i excess load capacity.

6 Summary

We have studied the problem of optimizing the through-
put and robustness of networks carrying distributed flows,
from a design perspective. Specifically, we have used a for-
malism where the coupling between (local) network struc-
ture and the conductance of individual links can be tuned
to get the best results for a given objective. This approach
has been inspired by the observation of correlations be-
tween link ‘weights’ and local topology in various man-
made and natural systems [33,34]. Whether these systems
are tuned for optimal throughput or robustness is an open
question, although there have been some indications of bi-
ological systems operating in a near-optimal regime [60,
61]. Analogous weighting schemes have been proven to
be efficient for optimizing flow in RW [11–13] and short-
est path routing [5,13,35], optimizing synchronization [62]
and also for optimizing spreading [63].

The goal of this paper has been to systematically con-
sider the optimization of throughput for distributed flows
under various cases. We find that in uncorrelated scale-free
and ER networks, for identical flows between all sources
and sinks and identical node capacities, each set to unity,
hub-avoiding flows provide optimal throughput in the node-
limited case, while weakly hub-biased flows do the same
in the edge-limited case. The same trend is observed qual-
itatively for the Internet [46], and also when the flows
are heterogeneous, i.e., when current between each source-
target pair scales as the product of their degrees. Inter-
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(a)
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N
′ /
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β = −2

β = −1

β = −0.5

α = 0.1

γ

(b)
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=
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′ /
N

γ

β = −2

β = −1

β = −0.5

α = 0.15

(c)
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=

N
′ /
N

γ

β = 0

β = 0.5

β = 1

α = 0.1

(d)

G
=

N
′ /
N
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β = 0.5
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α = 0.15

Fig. 10. Fraction of the largest surviving network component
after a cascading failure (G) in scale-free networks (N = 103,
〈k〉 = 4.5) as function of γ degree exponent. (a) and (b) corre-
spond to the case of hub avoiding flows while (c) and (d) cor-
respond to the case of unbiased and hub-biased flows. Data is
shown for two values of the tolerance parameter: α = 0.1 ((a)
and (c)) and α = 0.15 ((b) and (d)). Error bars are smaller
than symbol size.

estingly though, if the capacities of nodes are also dis-
tributed heterogeneously (still conserving the total capac-
ity), the optimal throughput occurs for a hub-biased flow.
As mentioned earlier, this has possible implications for
the case of airline transportation network where a simi-
lar hub-biased flow is empirically observed. Furthermore,
flows on the links of metabolic networks have also been ob-
served to be hub-biased, although a complete analogy to
our distributed flow model there is unclear. Although sim-
ilar trends favoring hub-avoiding flows and weakly hub-
biased flows for node and edge-limited cases, respectively,
are found for shortest path flows, for large systems, per-
haps not surprisingly, distributed flows are more efficient
at minimizing the maximal load on the network, and thus
providing greater throughput. Finally, we studied how the
robustness of a network to cascading failures could be op-
timized within the parameters of our model. Our results
indicate that for small amounts of excess capacity, net-
works with heterogeneous degree distributions are max-
imally robust in the regime of hub-avoiding flows. The
result that a balanced load profile can prevent or mini-
mize the damage caused by cascading failures emphasizes
the significant role that vertex load distribution plays in
the propagation of failures. Furthermore, as a preventa-
tive strategy, it constitutes an important addition to the
literature of control and defense strategies against such
failures [64–68].
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