
Random Forests Feature Selection with Kernel
Partial Least Squares: Detecting Ischemia from

MagnetoCardiograms

Long Han1, Mark J. Embrechts1, Boleslaw Szymanski2,
Karsten Sternickel3 and Alexander Ross3

1- Rensselaer Polytechnic Institute - Dept of Decision Sciences &
Engineering Systems, Troy, NY - USA

2- Rensselaer Polytechnic Institute - Dept of Computer Science
Troy, NY - USA

3- Cardiomag Imaging, Inc. Schenectady, NY - USA

Abstract. Random Forests were introduced by Breiman for feature
(variable) selection and improved predictions for decision tree models. The
resulting model is often superior to Adaboost and bagging approaches. In
this paper the random forest approach is extended for variable selection
with other learning models, in this case partial least squares (PLS) and
kernel partial least squares (K-PLS) to estimate the importance of vari-
ables. This variable selection method is demonstrated on two benchmark
datasets (Boston Housing and South African heart disease data). Finally,
this methodology is applied to magnetocardiogram data for the detection
of ischemic heart disease.

1 Introduction

1.1 Brief Review of Partial Least Squares

Partial Least Squares Regression (PLS) [1] was conceived by the Swedish sta-
tistician Herman Wold for econometrics modeling of multi-variate time series.
His son, Svante Wold, applied PLS to chemometrics in the early eighties [2]
and currently PLS has become one of the most popular and powerful tools in
chemometrics and drug design. PLS can be viewed as a “better” principal com-
ponents analysis method, where the data are first transformed into a different
and non-orthogonal basis, similar to Principal Component Analysis (PCA), and
only the most important PLS components (or latent variables) are considered for
building a regression model (just as in PCA). In this context, S. Wold suggests
in hindsight that projection to latent structures would be a more meaningful
description for the PLS acronym. The difference between PLS and PCA is that
the new set of basis vectors in PLS is not a set of successive orthogonal directions
that explain the largest variance in the data, but are actually a set of conjugant
gradient vectors to the correlation matrix. PLS regression is one of the most
powerful data mining tools for large data sets with many variables with high
collinearity. The NIPALS implementation of PLS [3] is elegant and fast.
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1.2 Kernel Partial Least Squares(K-PLS)

K-PLS was first described in [4] and applied to spectral analysis in the late
nineties. In this paper only linear kernels were considered as a means to speed
up the calculation procedure for simple cases with relatively few training sam-
ples and a larger number of spectral frequencies. Rosipal introduced K-PLS in
2001 [5] as a nonlinear extension to the linear PLS method.

This nonlinear extension of PLS makes K-PLS a powerful machine learning
tool for classification as well as regression. Powerful variable selection meth-
ods have been implemented for PLS and K-PLS, and unlike SVMs, multi-
ple output models are easy to implement. K-PLS can also be formulated as
a paradigm closely related (and almost identical) [6] to Support Vector Ma-
chines(SVM) [7, 8]. K-PLS uses the same kernel trick as is commonly used in
SVMs. K-PLS also provides a natural nonlinear extension to the PLS method, a
purely statistical method, that has been widely used in chemometrics during the
past decade. In addition, the idea of using of K-PLS rather than SVMs can be
motivated on several levels: (i)Unlike SVMs, there is no patent on K-PLS; (ii)
A powerful feature selection procedure has been implemented with K-PLS that
is fully benchmarked and ranked well in the 2003 NIPS feature selection chal-
lenge [9]; (iii)K-PLS can be considered as a traditional neural network paradigm
that can handle multiple output nodes.

2 Variable Selection with Random Forests

Dimensionality reduction is a challenging problem for supervised and unsuper-
vised machine learning for classification, regression, and time series prediction.
In this paper we focus on variable selection for supervised classification and re-
gression models. The taxonomy of variable selection can be divided into two
branches: variable ranking and subset selection [10, 11]. In variable ranking,
each variable is ranked using a metric based on classification or prediction per-
formance for a given outcome. Variable subset selection can be further divided
into (i)wrappers, (ii) filters and (iii) embedded methods. Wrappers use learn-
ing machines as a black box to score different subsets according to their predic-
tion performance. Filters are based on a separate preprocessing step to select
variables based on rational criteria, which are independent from prediction per-
formance (i.e., the response variables in the learning tasks are not considered).
Embedded methods are model dependent approaches, which integrate the sub-
set selection approach with the machine learning paradigm. It is therefore spe-
cific to the learning algorithm. The majority of examples for this approach are
related to a direct object optimization methodology. The pros and cons of differ-
ent variable selection methods vary depending on the specific domain problem,
computational expense, complexity, and robustness [10].

Evangelista et al. recently introduced the concept of fuzzy ROC curves and
extended this technique to a novel random forests K-PLS modeling technique for
variable selection [12]. Random Forests (RF) were introduced by Breiman [13]
as a combination of decision tree predictors. RF consist of several hundred



models with randomly selected variable subsets (i.e., there is a different subset
of training and validation data for each individual model). In [13], Random
Forests were used with decision tree models by aggregating many tree predictors
to obtain an improved predictor. The main idea is that after generating a vast
number of trees, they vote for the most popular variables based on performance.
In [13], bagging is used in tandem with RF variable selection in order to reduce
the variance. In this paper we extend this random forests idea to estimate the
importance of variables with PLS and K-PLS models.

RF feature selection is a combination of the above introduced (i) variable
subset selection and (ii) bootstrapping and variable ranking. The Random Forest
technique is applied to evaluate each randomly selected subset of variables based
on prediction performance. For each variable subset a PLS or K-PLS model is
used for training and validation. The validation performance is expressed by the
q2 and Q2 metrics as described in Section 3.

For each variable we will add a voting score based on the (1−Q2)p metric for
the model in which this variable participated as illustrated in Figure 1. In the
formula above, p is a parameter (usually set to 1.3, based on empirical robustness
experiments).

Fig. 1: Model building and validation.

Lower ranked variables are eliminated based on empirical performance heuris-
tics. This approach can either be done in a greedy way, where variables are
selected after applying several bootstraps as illustrated in Fig. 1, or can proceed
iteratively, where a few variables are eliminated at a time, and then the entire
process is repeated again. Because the procedure as outlined above might lead to
discarding significant variables, we introduce a uniform or normally distributed
random gauge variable [14, 15], which can either be gaussian or uniform (mean



0 and variance 1), and has no relation to the given outcome. A criterion for
selecting the relevant variables can now be established by eliminating variables
with voting scores below the gauge variable.

After the variable selection stage a new PLS or K-PLS model is built based on
different bootstraps with bagging. Predictive models are compared for different
variable selection methods based on a sensitivity analysis [15] and simple linear
PLS models with Z-scores [16] for both Boston housing data and South African
Heart disease data.

3 Metrics

Two error measures for the training set can be defined. The correlation coeffi-
cient squared between target values and predictions for the response, r2, is given
by:

r2 =
(
∑ntrain

i=1 (ŷi − ¯̂y)(yi − ȳ))2∑ntrain

i=1 (ŷi − ¯̂y)2
∑ntrain

i=1 (yi − ȳ)2

A second and more powerful measure is the so-called “Press r squared” or R2.

R2 = 1−
∑ntrain

i=1 (yi − ŷi)2∑ntrain

i=1 (yi − ȳ)2

Both metrics are less dependent on the scaling and magnitude of the response
value than the Root Mean Square error. For similar purposes, q2 and Q2, defined
as 1−r2 and 1−R2 respectively, are used to assess the performance of validation
or test data. The smaller the q2 and Q2 the better; ideally, both values should
be close to each other. Detailed information about these metrics is given in [17].

4 Experimental Results

4.1 Benchmark Data

Random Forest variable selection with K-PLS was benchmarked with two data
sets: South African Heart Data (SAHD) and the Boston housing market data.

The SAHD are a subset from a larger dataset [18] which defines an almost
linear classification problem. It describes a retrospective sample of males in a
high-risk heart-disease region of the Western Cape in South Africa. There are
roughly two controls per case of CHD. It consists of one response and 9 vari-
ables: systolic blood pressure (sbp), cumulative tobacco (tobacco), low density
lipoprotein cholesterol (ldl), adiposity, family history of heart disease (famhist),
type-A behavior (typea), obesity, alcohol, and age. A total of 462 samples are
included in this data set. The Boston housing data is a standard benchmark re-
gression dataset from the UCI data Repository for Machine Learning [19]. These
benchmark data have 506 samples with 12 continuous, one binary variables and
one response variable.

In each data set, 350 data are randomly chosen as training data with the
remaining data are considered test. We use normalization scaling to pre-process



the data for both data sets. Random Forest approach is used variable selection
with K-PLS models. After variable selection, the training model is built with
a leave-one-out model, and the validation results are based on a bagged model
prediction.

In order to validate the experimental results, only training data are used
for RF feature selection. In each iteration, we divide the training data into two
parts. One part is used for training on the randomly selected variables, the other
is used for validation. There are therefore two main parametric choices in the
model: the number of random variables and the number of training data. For
the Boston housing data, 35, 70, and 105 data are chosen for the validation set
over 3, 000 iterations. The number of random variables is set at 4, 6, 8, and 10
respectively. For the South African Heart Data, the same number of validation
data are used, but only 1000 iterations are applied due to the smaller number
of selected variables. The number of random variables is set to 4, 6, 7 and 8.

The final selection of ranked variables is relatively insensitive to the selection
of the number of variables in the validation data, and to the number of variables
used in the individual model selection. Based on the relative variable importance
metric for the SAHD data and the variables “alcohol” and “sbp” are dropped
for the SAHD data. For the Boston housing data, the proportion of residential
land zoned (ZN) and age (AGE) are discarded from the original variables.

RF variable selection for both benchmark datasets was based on the linear
K-PLS model as shown in Table 1. There is no significant difference between
the q2 and Q2 metrics.

4.2 Binary Classification of Magnetocardiograms (MCG)

The aim of this application is the automated detection of ischemic heart disease
for MCG data in order to separate and classify abnormal from normal data sets.
The data are from 325 patients consisting of 74 features each.

10, 000 Random Forest models are used for 40, 50, 60, and 70 variables re-
spectively. The variable ranking is relatively robust with the number of selected
variables in the RF as shown in Table 1. In the final model, the 7 variables with
the lowest scores are discarded, maintaining a similar Q2/q2 performance as for
the original 74 variable model.

In addition, Z-scores variable ranking and SA are used as well for each data
set. We eliminate the same number of variables obtained through Z-scores on
linear models and compare the two prediction results based on the different
variable selection methods. For the Boston Housing, South African Heart disease
and MCG data, 12, 5 and 5 latent variables (LVs) are used respectively. Deleted
variables are listed on “Comments” column in Table 1. Table 1 shows that
Random Forests results outperform Z-scores ranking. Especially, when a large
number of variables is discarded, RF variable selection seems to be superior.



Datasets q2 Q2 ROC RMSE % Correct Comments
Boston (Orig) 0.129 0.135 0.967 3.904 - LVs =12, σ = 4

Boston (RF) 0.134 0.142 0.950 4.008 - “ZN”,“AGE”

Boston (Z-scores) 0.138 0.146 0.954 4.071 - “AGE”,“INDUS”

Boston (SA) 0.127 0.134 0.965 3.900 - “ZN”,“INDUS”

Heart (Orig) 0.760 0.766 0.790 0.426 68.8 LVs = 5, σ = 30

Heart (RF) 0.762 0.768 0.793 0.426 69.6 “sbp”,“alcohol”

Heart (Z-scores) 0.762 0.768 0.793 0.426 69.6 “sbp”,“alcohol”

Heart (SA) 0.785 0.793 0.770 0.433 68.8 “sbp”,“ldl”

MCG (Orig) 0.595 0.611 0.855 0.776 82.5 LVs = 5, σ = 4

MCG (RF) 0.611 0.621 0.852 0.782 81.7 7 vars

MCG (Z-scores) 0.627 0.637 0.848 0.793 78.3 7 vars

MCG (SA) 0.592 0.604 0.859 0.772 83.3 7 vars

Table 1: Experimental results for three datasets

5 Conclusion and Future Work

Benchmark data sets were used to examine a novel variable selection method
based on Random Forests and K-PLS and this technique was subsequently ap-
plied to magnetocardiogram data with good performance results. Currently, we
use random gauge variables to determine which variables to discard. Future
research will aim to automate the RF variable selection procedure with more
robust and less empirical procedures.
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