
Expressing Object-Oriented Concepts in Fortran90

Viktor K. Decyk

Department of Physics and Astronomy
University of California, Los Angeles

Los Angeles, CA 90095-1547
&

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109-8099

email: decyk@physics.ucla.edu

Charles D. Norton

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109-8099

email: nortonc@olympic.jpl.nasa.gov

Boleslaw K. Szymanski

Department of Computer Science
and

Scientific Computation Research Center (SCOREC)
Rensselaer Polytechnic Institute

Troy, NY 12180-3590

email: szymansk@cs.rpi.edu

Abstract
Fortran90 is a modern, powerful language with features that support important new
programming concepts, including those used in object-oriented programming. This
paper briefly summarizes how to express the concepts of data encapsulation,
function overloading, classes, objects, inheritance, and dynamic dispatching.

1

Bolek
Text Box
ACM Fortran Forum, vol. 16, no. 1, April 1997, pp. 13-18

I. Introduction

Fortran, still the most widely used scientific programming language, has evolved
every 10 years or so to incorporate the most recent, proven, ideas which have
emerged from computer science and software engineering. The latest version,
Fortran90, has incorporated a great many new ideas, including some of those used in
object-oriented programming, but scientific programmers generally are aware of only
one of them: array syntax. In this paper, we will summarize the concepts of data
encapsulation, function overloading, classes and objects, inheritance, and dynamic
dispatching and how they can be expressed in Fortran90. Specific details can be
found in our other publications [1-3].

Since Fortran90 is backward compatible with Fortran77, it is possible to
incorporate these new ideas into old programs in an incremental fashion, enabling the
scientist to continue his or her scientific activities. Some of these ideas are useful for
the typical kinds of programs written by individual authors now. The usefulness of
other ideas only becomes apparent for more ambitious programs written by multiple
authors. These are programs that might never have been written in Fortran77
because the complexity involved would have been unmanageable. These new ideas
enable more productive program development, encourage software collaboration and
allow the scientist to use the same abstract concepts in a program that have been
used so successfully in scientific theory. Scientific productivity will then improve.
Additionally, there is also a migration path to parallel computers, since High
Performance Fortran (HPF) is also based on Fortran90.

II. Data Encapsulation, Information Hiding, and Function Overloading

A fundamental idea behind object-oriented programming is that users of one
program unit should know as little as possible about what is inside other program units
that they use. This idea is called information hiding. Not only does it make program
units easier to use, but it allows internal details of program units to change without
impacting the users. A related idea is data encapsulation, which means that data
which is needed in only one program unit will not be accessible and cannot be
changed by another. This leads to enhanced program safety. Although such
techniques were possible in Fortran77, they were error prone. Fortran90 has features
to make it much easier and safer. As an example, consider a call to an FFT library
routine in Fortran77:

subroutine fft1r(f,t,isign,mixup,sct,indx,nx,nxh)
integer isign, indx, nx, nxh, mixup(nxh)
real f(nx)
complex sct(nxh), t(nxh)

c rest of procedure goes here
return
end

2

Here f is the array to be transformed (and the output), t is a temporary work array,
mixup is a bit-reverse table, sct is a sine/cosine table, indx is the power of 2 defining
the length of the transform, and nx (>=2**indx) is the size of the f array, and nxh
(=nx/2) is the size of the remaining arrays. The variable isign determines the
direction of the transform.

The goal of data encapsulation is make the FFT call look like:

call fft1r(f,isign)

where all the auxiliary arrays and constants which are needed only by the FFT are
hidden inside the FFT, and the rest of the program does not have to be concerned
about them. Such encapsulation and information hiding can be achieved by means of
automatic, allocatable, and assumed-shape arrays. Since t is a scratch array needed
only during the call, it is best treated as an automatic array. The tables needed by the
FFT should remain between calls, so they are best treated as saved, allocatable
arrays. The input array f is best treated as an assumed-shape array because such
arrays know their own size.

With such encapsulation, the author of the FFT can make changes to the algorithm
or the internal data structure and the user of the subroutine would not be impacted.
Another benefit is that one can hide old Fortran77 procedures behind a modern
Fortran90 interface. For example, the Fortran90 FFT can actually call the original
Fortran77 FFT inside. Then, the original FFT can be replaced (perhaps with a more
optimized version) without the users of the FFT having to modify anything. With these
language features, it is easier to develop software collaboratively, since individual
authors responsible for individual procedures can make internal changes without
affecting the other collaborators.

One powerful new feature of Fortran90 is the ability to check whether the number of
types of arguments to called procedures are consistent with their declarations. This
means that if one accidentally called the FFT procedure as follows:

call fft1r(f)

the compiler would complain that the argument isign was missing. Argument
checking is automatically provided for functions defined in a new program unit called a
module.

This ability to check arguments allows function overloading, which refers to using
the same function name or operator symbol but performing different operations based
on argument type. In Fortran77, this has always been available for intrinsic
operations. For example, the ‘/ ’ symbol gives different results depending on whether
its arguments are real, integer, or complex. Fortran90 extends this ability to user
defined functions and operators by means of the generic function mechanism. Note
that function overloading is done at compile time and does not incur any performance
penalty during execution.

For example, if we have another FFT procedure called fft2r which works on 2
dimensional data:

3

subroutine fft2r(f,isign)
real, dimension(:,:), intent(inout) :: f
integer, intent(in) :: isign

then both FFT procedures can be given the same name fft (which is now
overloaded) because the arguments f are of different types: in one case f is a 1d
array, and in the other it is a 2d array. If the both procedures are in one module, this
overloading is done with the following declaration:

interface fft
module procedure fft1r, fft2r

end interface

III. Derived Types, Classes, and Objects

Fortran90 allows users to define their own data types, built from intrinsic types such
as real and integer, as well as other previously defined types. These are known as
abstract data types or derived types. Derived types are structures or records (common
in other languages) which can store items of different types together. For example,
one can define a private_complex type to consist of two real components as follows:

type private_complex
real :: real, imaginary

end type private_complex

To create variables a, b, and c of this new type, one makes the following declaration:

type (private_complex) :: a, b, c

The components of this new type are accessed with the ‘%’ symbol, and one can
assign values as follows:

a%real = 1.0
a%imaginary = 2.0

If we write a procedure for multiplication of the private_complex types, it makes
sense to place the new derived type together with the procedures which operate on
that type into the same module, as follows:

module private_complex_module
! define private_complex type

type private_complex
private
real :: real, imaginary

end type private_complex
contains

4

function pc_mult(a,b) result(c)
! multiply private_complex variables

type (private_complex), intent(in) :: a, b
type (private_complex) :: c
c%real = a%real*b%real - a%imaginary*b%imaginary
c%imaginary = a%real*b%imaginary + a%imaginary*b%real
end function pc_mult

end module private_complex_module

What we have created here is a simple class. It consists of a single derived type
definition (whose components are the class data members) along with the procedures
which operate only on that type (called the class member functions or methods). The
actual variable of type private_complex is called the object. Multiplication of two
objects is performed by calling the procedure:

c = pc_mult(a,b)

In this example we have made the components of private_complex type PRIVATE
so that they are directly accessible only to the class member functions. In other words,
the object a is available in the main program, but the components a%real and
a%imaginary are not. Then any changes made to the internal representation of the
private_complex type (for example, switching to polar coordinates from Cartesian)
would be confined to this module and would not impact program units in other
modules (assuming the public subroutine arguments remain the same).

The example of private_complex is perhaps academic, since the complex type
already exists in Fortran. However, similar techniques can be used to create more
powerful and interesting classes to represent others kinds of algebras and thereby
program at the same high level with which one can do mathematics, with all the power
and safety such abstractions give.

IV. Inheritance

Inheritance, in the most general sense, can be defined as the ability to construct
more complex (derived) classes from simpler (base) classes in a hierarchical fashion.
Generally, the base class contains the properties (meaning data and procedures)
which are common to a group of derived classes. Each derived class can then modify
or extend each of these for its own needs if necessary.

As an example, suppose we want to extend the private_complex class so that it
keeps track of the last operation performed. Such a feature could be useful in
debugging, for example. Except for the additional feature of monitoring operations, we
would like this extended class to behave exactly like the private_complex class. We
can accomplish this by creating a new class called the monitor_complex_class that
“uses” the types and procedures defined in the private_complex_class . In this
new class, we define a new derived type, as follows:

5

type monitor_complex
type (private_complex) :: pc
character*8 :: last_op

end type monitor_complex

which contains one instance of a private_complex type plus an additional character
component to be used for monitoring. Then we extend all the procedures defined in
the private_complex class so that they work in the monitor_complex class. For
multiplication, we create a mc_mult procedure which calls pc_mult on the
private_complex part of monitor_complex as follows:

module monitor_complex_class
use private_complex_class
type monitor_complex

private
type (private_complex) :: pc
character*8 :: last_op

end type monitor_complex
contains

function mc_mult(a,b) result(c)
type (monitor_complex), intent(in) :: a, b
type (monitor_complex) :: c
c%pc = pc_mult(a%pc,b%pc)
c%last_op = 'MULTIPLY'
end function mc_mult

end module monitor_complex_class

If we overload the ‘* ’ operator to refer to pc_mult and mc_mult with INTERFACE
statement:

interface operator(*)
module procedure pc_mult, mc_mult

end interface

then the multiplication of each type looks the same

type (private_complex) :: a, b, c
type (monitor_complex) :: x, y, z
c = a*b ! multiplication with private_complex types
z = x*y ! multiplication with monitor_complex types

but multiplication in the derived monitor_complex behaves differently than
multiplication in the base class private_complex because it stores the last_op
component.

V. Dynamic Dispatching

The purpose of dynamic dispatching (or run-time polymorphism) is to allow one to
6

write generic or abstract procedures which work on all classes in an inheritance
hierarchy, yet produce results that depend on which object was actually used at run-
time. To illustrate this, suppose we had written a subroutine called work which made
use of the functions in the private_complex class hierarchy to square a number and
then print out the result:

subroutine work(a)
type (private_complex), intent(inout) :: a
a = a*a
call display(a,’work:’)
end subroutine work

where some appropriate display procedure had been defined. Since object a has
been declared of type private_complex , this work subroutine will not function if a
monitor_complex type was passed, even though multiplication and display are
defined for that type. One could, of course, write another work procedure which is
identical to this one except that object a is declared of type monitor_complex . This
can be tedious and error prone, however. Dynamic dispatching allows one to write a
single procedure that would work with both types. In object-oriented languages, such
capabilities are normally available automatically. In Fortran90, one must write a
special subtype class to provide this functionality. Details of how this class is
constructed are beyond the scope of this article, but the interested reader can refer to
our other publications.

References:

[1] V. K. Decyk, C. D. Norton, and B. K. Szymanski, “Introduction to Object-Oriented
Concepts using Fortran90,” submitted for publication.

[2] V. K. Decyk, C. D. Norton, and B. K. Szymanski, “How to Express C++ Concepts in
Fortran90,” submitted for publication.

[3] See also the web site: http://www.cs.rpi.edu/~szymansk/oof90.html

Acknowledgments:

The research of Viktor K. Decyk was carried out in part at UCLA and was sponsored
by USDOE and NSF. It was also carried out in part at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and
Space Administration. The research of Charles D. Norton was supported by a
National Research Council Associateship, and that of Boleslaw K. Szymanski was
sponsored under grants CCR-9216053 and CCR-9527151.

7

