

1

Abstract—Service discovery is an essential step in deploying

many wireless network applications. The design of service

discovery protocols is particularly challenging for mobile wireless

networks because of their dynamic and unstructured nature. Most

of the previously proposed protocols are based on the assumption

that there exists an end-to-end connection from the query source

node to the destination node, the assumption that rarely holds for

mobile wireless networks. In this paper, we propose a novel service

discovery protocol for delay tolerant networks in which all node

connections are intermittent. To describe services through a fixed

size string, we use Bloom filter that leads to efficient service

announcement and search. The service queries are dispatched into

the network and forwarded by random walk search using node

meeting history as hints. Our preliminary simulation results show

that the proposed protocol achieves good performance as

measured by the service discovery success rate, delay and

overhead.

Index Terms—service discovery, Bloom filter, random walk

search, delay tolerant networks

I. INTRODUCTION

HE growth of wireless devices ranging from PDA to mp3

player makes many new applications available on top of the

mobile wireless networks formed by these devices. Due to

limited capabilities of a single device, these applications often

need to utilize services provided by other devices. Hence, the

performance of a service discovery scheme can greatly affect

the performance of the entire application. However, lack of

infrastructure and unpredictability of mobility patterns make

service discovery very difficult in such mobile wireless

networks.

Most of the previous service discovery approaches for mobile

wireless networks can be classified into two categories:

directory-based and directory-less. For the former, service

providers register and update their services in specific service

directories and service requestors send service queries to these

directories to get the services available in the network. In [1], a

Zijian Wang, Eyuphan Bulut and Boleslaw Szymanski. Authors are with the

Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY

12180 USA. (e-mail: {wangz, bulute, szymansk}@cs.rpi.edu).

Research was sponsored by US Army Research Laboratory and the UK

Ministry of Defence and was accomplished under Agreement Number

W911NF-06-3-0001. The views and conclusions contained in this document

are those of the authors and should not be interpreted as representing the

official policies, either expressed or implied, of the US Army Research

Laboratory, the U.S. Government, the UK Ministry of Defence, or the UK

Government. The US and UK Governments are authorized to reproduce and

distribute reprints for Government purposes notwithstanding any copyright

notation hereon.

subset of nodes is selected to constitute a relatively stable virtual

backbone to store service registrations. In [2], the whole

network is divided into hexagon grids, mobile nodes in each

grid are grouped into clusters while a gateway in each cluster is

used as directory for service discovery. Klein et al. [3] used a

service ring to group devices that are both physically close to

each other and offer similar services. Each ring possesses a

service directory which knows a summary of all services offered

within. In these papers, if service queries do not find matches in

local directories, they are forwarded to other directories. Instead

of forwarding them blindly to all directories, Seada et al. [4] use

distributed hash tables along with node position information to

determine a mapping between services and directories. Since

topology changes frequently, service directories need to be

assigned to nodes and maintained there dynamically, which

means that directory-based approaches cause additional

communication overhead.

For the second category of approaches, there is no service

directory in the network and the researches mainly focus on two

problems: service advertisements and service query. In [5], each

node providing services periodically broadcasts service

advertisements to its one-hop neighbors. Those advertisements

contain services provided by the node itself and by the node’s

neighbors. To lower the overhead introduced by such

broadcasting, service advertisements are multicast to a fixed

multicast group in [6]. Chakraborty et al. [7] used an

advertisement range measured in number of hops specifying

when the advertisement will be dropped to restrict the service

advertisement area. In [8], the service query is integrated with

the routing protocol. Such integration can improve

performance, but there is still a need for network wide flooding

searches. Mian et al. [9] used random walk based search to find

the service in the network. The service query packets are

forwarded to the neighbor nodes selected based on hints which

reduce the number of needed hops and limit the area traveled by

the query packet.

All the literature mentioned above targets the wireless

networks in which the node density is high enough to guarantee

the existence of an end-to-end connection from the source to the

destination. Thus, they are not suitable for delay tolerant

networks, where the end-to-end connections are hard to

maintain due to low node density and unpredictable node

mobility. In [10], Maheo et al. proposed a two layered

middleware for service discovery in delay tolerant networks.

Using DoDWAN [10] protocol, the service requestor first sends

a discovery query and waits for a discovery reply. DoDWAN

relies on a gossip-like communication in which nodes exchange

Service Discovery for Delay Tolerant Networks

Zijian Wang, Eyuphan Bulut, and Boleslaw K. Szymanski

T

admin
Text Box
Proc. HeterWMN: Workshop on Heterogeneous, Multi-Hop, Wireless and Mobile Networks,
 Globecom 2010, Miami, FL, December 6-10, 2010, pp. 136-141

2

packets according to their respective interest profiles. Each

node periodically broadcasts its interest profile and a list of

service descriptors of the packets it currently carries and when

any of the receivers of this broadcast is either interested in the

broadcasted interest profile or can provide the service matching

the service description, the data are exchanged. After receiving

a discovery reply, the service requestor sends an invocation

request to the service provider and waits for the real service

data. To the best of our knowledge, this is the only paper that

targets service discovery in delay tolerant networks.

Unfortunately, the paper does not discuss how the interest

profiles are created. With all nodes having interest profiles

covering all services, both query and service packets are using

expensive epidemic spreading, while with all nodes having

interest profiles equal to services they provide, the protocol

enables service discovery when the requestor meets the service

provider. The latter case is termed Proximity-based method,

which has low overhead but also low service discovery rate.

Even in this case, the overhead (periodic broadcasts of service

request) is dependent on frequency of the broadcast and on the

length of the cutoff time for the service discover, none of which

was defined in [10].

In this paper, we proposed a new service discovery protocol

designed for delay tolerant networks. We used a technique

based on Bloom filters [11][12] to describe services. We restrict

the service advertisements to one-hop distance. The spray and

wait routing algorithm [13] and random walk based search

method [9] are combined to forward service query and service

data packets. Like in [14] [15], history of last meetings between

nodes is used as hints to aid the packet forwarding, but we used

this information in a different way. Some of the techniques also

apply to other environments (such as ad hoc networks), but as

far as we know, they are combined to be used in DTN for the

first time.

The remainder of the paper is organized as follows. We

describe the network model and our assumptions in Section II.

In Section III, we introduce our service discovery protocol.

Section IV presents the simulation results. Finally, we provide

conclusions and outline the future work in section V.

II. NETWORK MODEL AND ASSUMPTIONS

The network consists of N nodes initially deployed randomly

with uniform distribution over a finite, two-dimensional planar

region. Each node repeatedly moves to a randomly selected

point in the network with a random speed between 0 and a

maximum speed Vmax. Each node has the same maximum

transmission range R and a unique ID. The buffer space in each

node is assumed large enough so that no messages are ever

dropped because of the buffer overflow. Each node has a local

clock and clocks of all the nodes are not required to be

synchronized. We assume that each node can provide at least

one service and each of the services can be represented by some

key words.

III. SERVICE DISCOVERY PROTOCOL FOR DELAY TOLERANT

NETWORKS

Our service discovery protocol is a directory-less method,

which uses periodical broadcast to announce service

advertisements. To reduce service advertisement packet size

and memory usage, Bloom filter is used to represent services

with a fixed size string. The service query packets are sprayed

into the network and relayed to neighbor nodes that meet the

destination node providing the desired service recently.

A. Service Advertisements

Service description and service match

As mentioned in section II, each service can be represented

by some key words. However, using key words to describe

service makes message exchange and storage utilization

inefficient, especially when a node provides multiple services. It

is also not convenient for service matching during the service

query procedure. We use Bloom filter to compress service key

words into a fixed size string (called the service code) to

represent services.

The Bloom filter consists of a vector v of m bits (used as

service code) and a set of k independent hash functions, h1,

h2, …, hk, each with an output range {1, …, m}, which are

known to all the nodes in the network. Assume a node can

provide a set of n services S={s1, s2,…, sn}, where si is the key

words representing the corresponding service. The construction

of the service code that represents the set of services S using

Bloom filter is done as follows.

For each service is S∈ , the bits at positions h1(si), h2(si), ...,

hk(si) in service code are set to one. Thus a bit at position p in the

service code is one if there is at least one service sx in S such that

()i xh s p= (1 i k≤ ≤). All other bit positions are set to zero.

We show an example of service code generation in Fig. 1, where

one node provides two services: computing and printing. k is set

to 4 and m is set to 16.

To start a search for a service represented by key word st, the

node generates a target service code by setting bits at positions

h1(st), h2(st), ..., hk(st) to one. The target service code is used to

match the service codes at searched nodes. Only if all bits set to

one in the target service code have the corresponding bits in the

service code of the searched node also set to one, the required

service may, but does not have to, be provided by the searched

node. This is not certain because some of the bits may be set by

other services causing a false positive match. However, by

appropriately choosing the number of hash functions k and the

size of service code m, the probability of false positive matches

can be made very small (the technique of doing so is well

known, see [11] or [12] for example, so for the sake of brevity

we omit its details here).

The advantage of this solution is that, each node can describe

a number of services using service code of constant size.

Consequently, the service description overhead increases

linearly with the number of nodes in the network, but only

logarithmically with the number of services per node

(probability of false positives decreases exponentially with the

3

ratio of the size of service code m to the number of services per

node [12]). Such an approach keeps the required storage and the

size of service announcement packet small.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hash(computing)={3,6,14,15} Hash(printing)={4,7,11,14}

Fig.1 Example of service code generation

Service announcement

Each node broadcasts periodically information about its

services through hello messages, which carry node ID and the

service codes of all available services. Each node maintains also

the list of the nodes that it has encountered. Each entry in the list

contains the encountered node ID, service code and also the

time of the meeting (denoted as tm) as measured by the node’s

local clock. The meeting time is updated to the latest time if the

node receives multiple hello messages from the same neighbor

node. The meeting time can also be used to indicate whether the

corresponding node is the currently active neighbor node. This

can be done by comparing the difference between the current

time and tm with the predefined time gap threshold. The

encountered nodes are maintained in the list even if they are no

longer active neighbor nodes.

B. Service Query and Reply

Service query

When an application needs certain service which is not

provided by the current node, it sends a service query using the

service discovery protocol. The application will also authorize

the total number of service query copies (denoted as L) that can

be dispatched during the service discovery procedure. Only

nodes that hold the service query copies can further dispatch or

forward service query to other nodes.

After receiving the service query from the application layer,

the query source node will generate first the target service code

using key words passed from application layer. Then it will start

a service query procedure by broadcasting a service match

packet containing query node ID, target service code, and the

time (denoted as tq) that elapsed since it met the node (referred

to as query destination node) providing the desired service. If

the query node never met the query destination node, tq is set to

a very large number. At the same time, two timers are setup at

the query node. One is called back-off timer which will expire

after a predefined time tb. The other is called time-over timer

which will expire after a predefined time to (to > tb).

The neighbor nodes receiving the service match packet will

search its encountered node list for a match between the target

service code and the service codes in the list (thus, our algorithm

is linear in the number of the encountered nodes). For each

match, the time tn since the corresponding neighbor node met

the query destination node is set to the difference of the current

time and the corresponding tm. If tn>tq, which means that this

neighbor node met the query destination node earlier than the

query node, the neighbor node will remain silent to save energy

and bandwidth. Otherwise, it will send a packet with tn back to

the query node after waiting a back-off time uniformly randomly

chosen between 0 and tb. Since tn is a difference of times

measured by the neighbor node’s local clock, our method does

not require synchronization of the clocks in the network nodes.

The query node stores the received information in a temporary

cache. When back-off timer expires at the query node and there

is at least one qualified information in its cache, the query node

will first cancel the time-over timer and then it will dispatch ni

copies to the responding neighbor node i according to formula

(1):

 ()∑ =
−=

M

j ji

left

i tt
L

n
1

1
2

 (1)

where Lleft is the number of service query copies left at the

current query node, ti is the time elapsed since neighbor node i

met with the query destination node, and M is the number of

responding nodes that are still active neighbor nodes of the

query node.

If there is no qualified information in the cache, it means that

no current active neighbor node has met the query destination

node later than the query node. Thus, there is no advantage to

dispatch service query copies to any of the neighbor nodes.

However, it is not efficient for the query node to hold multiple

service query copies for a long time just waiting to meet some

node that has encountered the query destination node later than

itself. Instead, spraying the service query copies to moving

neighbors is much better, as it increases the chance of

discovering desired service. Thus, in such a situation, the query

node will wait until the time-over timer expires and then will

dispatch one copy of the service query to each of the currently

active neighbor nodes. If there are too many active neighbor

nodes, only Lleft /2 of them will be randomly selected to get the

copies.

The service query dispatch information is organized into a list

of number of service query copies authorized, indexed by the

neighbor node ID. It is broadcasted to all the neighbor nodes at

once. Each neighbor node receiving this query dispatch packet

will check through the list. If its ID is on the list, it will hold the

corresponding number of service query copies. Compared to

sending dispatch information to each neighbor node

individually, this solution reduces the energy costs and

decreases the chance of packet collision.

Each node holding service query copies will repeat the

procedure introduced above (starting with sending service

match packet) whenever it encounters a new neighbor node not

recorded in its list. When there is only one copy left, the query

node will only forward this copy to the currently active neighbor

node that met the query destination node later than itself.

Service reply

Once a node holding service query copies meets the query

destination node, the service discovery procedure is finished

and the service reply procedure starts. The query destination

node will authorize sending L service reply packets, each

containing the source query node ID, service code, and service

data.

4

The dispatch and forward of service reply procedure is

similar to service discovery except that it uses a time hint which

is the time that has elapsed since the forwarding node

encountered the query source node. When dispatching query

and reply copies, query node copies just one query or reply

packet to neighbor node together with the number of copies (e.g.,

l) that this neighbor is authorized to dispatch, instead of copying

l query or reply packets.

When one of the service reply copies finally reaches the

query source node, that node will start a network-wide

broadcast of acknowledgements to stop all the nodes that still

hold the query or reply copies from trying to dispatch or forward

them.

IV. SIMULATION

We used NS-2.33 simulator to evaluate the proposed scheme

in terms of service discovery success ratio, service discovery

delay and average service discovery overhead. We compared

our method with Proximity-based method described in [10] in

terms of the service discovery delay and the ratio of service

discovery success, which is accomplished when the service

match packet encounters the destination node providing desired

service.

The average service discovery overhead is measured by the

number of packets sent during the service discovery procedure.

Most of these packets, sent periodically by each node, advertise

node services to its neighbors. The number of such packets is

proportional to the simulation time and number of nodes (we

assume that both our scheme and the compared method generate

those messages with the same frequency). For our method, we

also computed the additional overhead resulting from specific

service discovery packet sent from the time when the

application starts the service query until the query source node

gets the first query reply (so the packets sent during the

acknowledgement are not included).

The simulated network is composed of 100 nodes initially

deployed uniformly randomly within a 300 m by 300 m area.

We used two-ray-ground propagation model and each node’s

maximum transmission range is 10 m (this is a typical DTN

environment). Each node repeatedly moves to a randomly

selected point in the networks with a random speed ranging

from 0 to Vmax. IEEE 802.11 is used as the MAC and physical

layer protocol. Each node provides one service and we used 4

hash functions to generate the service code with length of 16.

Under this configuration, the probability of false positive match

is only 0.27% [12].

We ran two groups of simulations, in which service discovery

always started after 20 seconds of run. For the first group, we

fixed the simulation time at 400 seconds but varied the

maximum speed Vmax of each node from 5 m/s to 15 m/s with

increment of 5 m/s. For the second group, we fixed Vmax at 5 m/s

but varied the simulation time from 400 seconds to 1160

seconds with increment of 380 seconds. For each Vmax and

simulation time configuration, we generated five moving

scenarios. For each moving scenario, we ran 20 service

discoveries with random query source node and random target

service, thus 100 random service discoveries for each

configuration. The hello message interval was set to 1 second

and the total number of service query copies was set to 12, i.e.

L=12. tb=1 second. Finally, to was set to 3 seconds. All

simulation results are based on the average value of all

simulations.

0 100 200 300 400
0

10

20

30

40

50

60

70

80

90

100

N
um

be
r o

f n
od

es
 th

at
 d

is
co

ve
r t

he
 s

er
vi

ce

Time (seconds)

 compared
 our

(a) t = 400 seconds, Vmax = 5 m/s

0 100 200 300 400
0

10

20

30

40

50

60

70

80

90

100

N
um

be
r o

f n
od

es
 th

at
 d

is
co

ve
r t

he
 s

er
vi

ce

Time (seconds)

 compared
 our

(b) t = 400 seconds, Vmax = 10 m/s

0 100 200 300 400
0

10

20

30

40

50

60

70

80

90

100

N
um

be
r o

f n
od

es
 th

at
 d

is
co

ve
r t

he
 s

er
vi

ce

Time (seconds)

 compared
 our

 (c) t = 400 seconds, Vmax = 15 m/s

Fig.2 Service discovery performance for simulation group one

Fig. 2 shows the number of nodes that discover the service

against time for the first group of simulations. It also shows the

service discovery success ratio which increases with time for

both methods, but the one for our method is much higher than

for the compared one. This is because we used service discovery

procedure to find the desired service instead of just waiting for

the source node to encounter the destination node. We can also

see that the service discovery success ratio also increases as Vmax

grows from 5 m/s to 15 m/s. For our method, the success ratio

raises from 68% to 81%, and is still much higher than the

compared method (for which it raises from around 30% to 50%).

5

This is because as the node speed increases, nodes meet much

more frequently during the constant service discovery time.

Hence, the chance of meeting a new neighbor node that may be

qualified to hold the service query or service reply data

increases. Moreover, the chance that nodes holding service

query will meet the query destination node during the query

procedure as well as the chance that nodes holding service reply

data will meet the query source node during the query reply

procedure increase too.

The service discovery delay for both methods for the first

group of simulations is shown in Table I. For each maximum

node speed, we compare the average delay when certain percent

of the services that are successfully discovered by both methods.

It is clear that the average service discovery delay for our

method is much shorter than the compared one for all situations.

This is because we spray the service discovery packets into

network, which increases the chance that the destination node

will be encountered much earlier. We can also see that the delay

decreases as Vmax increases from 5 m/s to 15 m/s for both

methods. For our method, this is because the nodes holding

service query or service reply data will meet new neighbor

nodes that are qualified to forward packet or meet the service

query destination (or source) node much faster with the

increased node speed. For the compared method, this is because

the source node will meet with the destination node that

provides the desired service faster with the increased node

speed.
TABLE I

THE SERVICE DISCOVERY DELAY FOR SIMULATION GROUP ONE

 10% 20% 30%

Speed Our Compared Our Compared Our Compared

5 95 103 140 160 173 300

10 67 80 110 150 132 227

15 51 51 78 82 98 131

5 10 15
250

300

350

400

450

500

S
er

vi
ce

 D
is

co
ve

ry
 O

ve
rh

ea
d

(p
ac

ke
ts

)

Maximum Node Speed (m/s)
Fig.3 Service discovery additional overhead for simulation group one

Fig. 3 shows the additional service discovery overhead for the

first group of simulations for our method
1
. We can see that the

number of packets sent during the service discovery procedure

decreases from nearly 500 to less than 300 as Vmax grows from 5

1 By definition, the compared method has no additional overhead. However,

the additional overhead is a small percentage of the basic overhead resulting

from periodic advertisement of services, which is the same for both methods.

m/s to 15 m/s. The overhead mainly consists of two parts:

service match and service dispatch. As the node speed increases,

nodes holding service query or service reply data will send more

service match packets because they will meet more new

neighbor nodes. They will send more service dispatch packets

because they will meet more nodes that may be qualified to hold

the service query or service reply data. Moreover, they will also

be likely to meet the query destination (or source) node much

earlier than in case of lower speeds and such a meeting will stop

the growth of the overhead. The simulation results clearly show

that the overhead is decreasing as the node speed increases,

which indicates that the service query discovery is

accomplished earlier cutting the growth of the overhead.

0 200 400 600 800
0

10

20

30

40

50

60

70

80

90

100

N
um

be
r o

f n
od

es
 th

at
 d

is
co

ve
r t

he
 s

er
vi

ce

Time (seconds)

 compared
 our

(a) t = 780 seconds, Vmax = 5 m/s

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

100

N
um

be
r o

f n
od

es
 th

at
 d

is
co

ve
r t

he
 s

er
vi

ce

Time (seconds)

 compared
 our

(b) t = 1160 seconds, Vmax = 5 m/s

Fig.4 Service discovery performance for simulation group two

Fig. 4 together with Fig. 2(a) gives the service discovery

success ratio for the second group of simulations. In this case,

the service discovery success ratio of our method increases from

68% to 93% as the service discovery time varies from 380

seconds to 1160 seconds. The compared method increases its

success ratio from around 30% to 50%. This can be explained as

follows. Increase in the service discovery time allows nodes to

meet many more times even if the speed remains unchanged.

Thus, the same behavior arises as when the node speed increases,

while the service discovery time remains unchanged.

The service discovery delay for both methods for the second

group of simulations is shown in Fig. 5. For each simulation

time, we compare the average delay when certain percent of the

services are successfully discovered for both methods. It is clear

that the average service discovery delay for our method is much

shorter than the compared one for all situations, especially when

6

the simulation time is long. The reason is the same as the first

group of simulations.

20 30 40
0

100

200

300

400

500

600

700

800

900

1000

1200 s800 s400 s

Se
rv

ic
e

D
is

co
ve

ry
 D

el
ay

 (s
)

Percent of Service Discovered for Each Simulation Time

 our
 compared

Fig.5 The service discovery delay for simulation group two

Fig. 6 shows the service discovery additional overhead for the

second group of simulations. The plot shows that the number of

packets sent during the service discovery procedure increases

from less than 500 to nearly 600 as the service discovery time

grows from 380 seconds to 1160 seconds. In this situation,

nodes holding service query or service reply data will meet

many more new neighbor nodes. Hence, the additional overhead

will increase as well, as already mentioned above in the first

group of simulations. The service discovery delay indicates that

the service discovery procedures cannot finish quickly enough

for additional overhead not to grow significantly. Thus, the

additional overhead will increase with the service discovery

time.

400 800 1200

450

500

550

600

S
er

vi
ce

 D
is

co
ve

ry
 O

ve
rh

ea
d

(p
ac

ke
ts

)

Simulation Time (s)

Fig.6 The service discovery additional overhead for simulation group two

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel service discovery

protocol designed for delay tolerant networks. The novel

aspects of the work include the following. 1) Using Bloom filter

technique to describe services through a fixed size code.

Additionally, we restrict the service advertisements to one-hop

distance. Thus, the introduced protocol is very efficient during

service advertisement and search. 2) Keeping records in each

node of nodes encountered and their services. Thus we can

forward service queries and service reply data based on random

walk search using node meeting history as a hint. 3) Using

limited spray-and-wait mechanism for sending service query

and replay packets.

We have studied the performance of our protocol through

simulations under different configurations. We observed that

our protocol achieved good performance in service discovery

success ratio and delay, much better than the one achieved by

the compared method. Moreover, an additional overhead

incurred by our protocol was very modest. The performance of

our protocol is sensitive to maximum node moving speed and

service discovery time.

We plan to further study setting of additional parameters

(such as L, the maximum number of service discovery packets

sent) in our protocol to understand their influence on the

performance. Additionally, we are also interested in the service

reply acknowledgement method and its influence to protocol’s

performance.

REFERENCES

[1] R. A. Mallah and A. Quintero, “A light-weight service discovery protocol

for ad hoc networks,” Journal of Computer Science, vol. 5(4):330-337,

2009.

[2] J. Tyan and Q. H. Mahmoud, “A comprehensive service discovery

solution for mobile ad hoc networks,” Mobile Networks and

Applications, vol. 10(4): 423-434, 2005.

[3] M. Klein, B. Konig-Ries and P. Obreiter, “Service rings - a semantic

overlay for service discovery in ad hoc networks,” Proceedings of the

14th International Workshop on Database and Expert Systems

Applications, pp. 180-185, 2003.

[4] K. Seada and A. Helmy, “Rendezvous regions: a scalable architecture for

service location and data-centric storage in large-scale wireless

networks,” Proceedings of the 18th International Parallel and Distributed

Processing Symposium, pp. 218-226, 2004.

[5] M. Nidd, “Service discovery in DEAPspace,” IEEE Personal

Communications, vol. 8(4): 39-45, 2001.

[6] S. Helal, N. Desai, V. Verma and C. Lee, “Konark - a service discovery

and delivery protocol for ad hoc networks,” Proceedings of the 3rd IEEE

Conference on Wireless Communication Networks (WCNC), pp.

2107-2113, 2003.

[7] D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin, “Toward distributed

service discovery in pervasive computing environments,” IEEE

Transactions on Mobile Computing, vol. 5(2): 97-112, 2006.

[8] A. Obaid, A. Khir and H. Mili, “A routing based service discovery

protocol for ad hoc networks,” Proceedings of the Third International

Conference on Networking and Services, pp. 108-118, 2007.

[9] A. N. Mian, R. Beraldi and R. Baldoni, “Identifying open problems in

random walk based service discovery in mobile ad hoc networks,”

Proceedings of the 6th International Workshop on Innovative Internet

Community Systems, 2006.

[10] Y. Maheo, R. Said and F. Guidec, “Middleware support for delay-tolerant

service provision in disconnected mobile ad hoc networks,” IEEE

International Symposium on Parallel and Distributed Processing, pp. 1-6,

2008.

[11] I. Sheriff, P. A. K. Acharya, A. Sampath, B.Y. Zhao and E. M.

Belding, “Integrated data location in multihop wireless

networks,” Proceedings of the second International Conference on

Communication Systems Software and Middleware, pp. 1-10, 2007

[12] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache: A scalable

wide-area Web cache sharing protocol,” in Proc. of ACM SIGCOMM

Conf., Sept. 1998, pp. 254–265.

[13] T. Spyropoulos, K. Psounis and C. S. Raghavendra, “Spray and wait: an

efficient routing scheme for intermittently connected mobile networks,”

Proceeding of the ACM SIGCOMM workshop on delay tolerant

networking, pp. 252-259, 2005.

[14] D. F. Henri, G. Matthias and V. Martin, “Age matters: efficient route

discovery in mobile ad hoc networks using encounter ages,” Proceedings

of the 4th ACM international symposium on Mobile ad hoc networking &

computing, pp. 257-266, 2003.

[15] T. Spyropoulos, K. Psounis and C. S. Raghavendra, “Spray and focus:

efficient mobility-assisted routing for heterogeneous and correlated

mobility,” Proceedings of the Fifth Annual IEEE International

Conference on Pervasive Computing and Communications Workshops,

pp. 79-85, 2007.

