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Abstract—This paper introduces a novel method of generating We also give the trace generation method, which is basically
mobility traces based on Probabilistic Context Free Grammars the production of sentences from the mobility PCFG. The
(PCFGs). A PCFG is a generalization of a context free grammar ¢ 5ing evaluation section compares our method with a 2-
in which each production rule is augmented with a probability . .
with which this production is applied during sentence generation. level Markov model based synthetic tre.lce generatlon method
A concise PCFG can be inferred from the given real world trace ON two separate datasets. The last section contains canus

collected from the actual mobile node behaviors. The resulting and an outline of future work on this topic.
grammar can be used to generate sequences of arbitrary length
mimicking the mobile node behavior. This is important when new Il. PREVIOUS WORK

protocol designs for mobile networks are tested by simulation. There were many attempts at creating synthetic mobility

In the paper, we describe the methods developed to construct : .
such grammars from training data (mobility history). We also patterns, ranging from methods based on connectivity graph

discuss how to generate the synthetic data with an already [3], action profiles [2] to combining terrain and vehicle pro
constructed grammar. We present the experimental results on erties separately [4], to capturing group behavior [5],néve
two real data sets, measuring similarity of the actual traces with driven [9], [10], [11], and finally to extraction of informian
the synthetic ones. We compare our grammar based method to from real world traces [6], [7].

a 2-level Markov Model based trace generation method. The . . .
results demonstrate that the grammar based approach works as Another approach based on a time-variant community mo

an excellent compression method for the actual data. On many Pility model is proposed in [8]. Communities are defined base
metrics, the synthetic data generated from the PCFG match the on popular locations, most often visited by nodes. The model
training data much better than the one generated by the Markov collects two characteristics, skewed location visitingfer-
Model. ences and periodical re-appearance at the same location fro
real world WLAN traces, in order to produce mobility traces.
Urban pedestrian flows (UPF) mobility scenarios are dismiss
Mobility of nodes is one of the key attributes of today'dn [12]. The system uses a set of pedestrian densities on
networks. It most often implies that nodes use wireless cosireets as well as a set of likely paths that the pedestriays m
munications. Mobile ad hoc networks, delay tolerant neksor follow and creates mobility information based on them. The
robotic networks and mobile sensor networks are all exasnplsace generator aims at also keeping the observed pedestria
of such networks. densities and the ones in the synthetic data as close ablgossi
New protocols and algorithms for wireless mobile networks The works closest to ours utilize Markov Models. In [17],
benefit from their verification via simulation in their eadg- transitions between areas are modeled by their probasiliti
sign stages. However, such simulations require large anwsunMarkov Model based mobility predictors are compared to LZ-
realistic mobility behavior data, which are difficult to tmt. based mobility predictors in [18] and the results show that
Therefore, development of methods which can generate loM@rkov Models perform better. Interestingly, the papeoals
synthetic mobility data from sample traces is crucial fager demonstrates that in practice, a 2-level Markov Model yredi
evaluation of protocols and applications via simulation. ~ tor performs better than a 3-level or 4-level predictor, deen
In this paper, we propose a novel trace generation methipgreasing the depth does not necessarily increase pdict
based on Probabilistic Context Free Grammars (PCFGs). @geuracy. Markov Models were extended by adding time
method takes a real world trace as input, and automaticalfiformation through cumulative time distribution of tratiens
constructs a PCFG which concisely represents movemént19]. A 2-level Markov Model is used to predict connectyvi
sequences of mobile nodes. Once a PCFG is constructed frafd quality of connection to access points in a mobile nétwor
a real world trace, a large set of sentences can be produtied?0].
from it creating a synthetic mobility trace. n
The rest of the paper is organized as follows. In th .
next section, we discuss the previous work on mobility trace Mobility PCFGs
generation. Later in Section Ill, we give the definition for A Probabilistic Context Free Grammar [1] consists of a five-
PCFGs and the features that we added to them to capttile <SS Rg,Prob,Start where:
the spatial and temporal aspects of mobile node movementse Start is the initial nonterminal symbol of the grammar,

I. INTRODUCTION
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o Sy is alist of nonterminal symbols defined by productio. Automatic PCFG Construction

rules, . . . .
. S is a list of terminal symbols which are the symbols In our previous work [1], we have described in detail how

actually seen in the sentences a I_DCFG can be cor_1_structed give_n a set_ of sentences (hence
e Ry is a list of production rulés that map a string oisfmCtly from the posmvc_a data). This algo_nth_m was an exte
tegrminal and nonterminal symbols onto a nonterminsl'on.Of the works.done in [14] and [15] with .|mprover_nents on
symbol Fe time complexity. Although we will not go into details it
o o . rammar inference algorithm in this paper, we will summeariz
. Prqb is a list of pr_o_babllltles,_each assigned to a rule ﬁ)s methodology
other rles forming the Same nontermina s chosen fy Merence algorthm consits of wo stages: () data naorp
parsing or string generation. ration, and (ii) _appllcanon of ope_rg’gors. In the first stagh
e ) _ . sentences are introduced to the initial grammar as ruleiseof t
To put it simply, a PCFG is an extension of the ordinaryp 4 o nonterminal and probabilities are assigned according
context free grammar in which the rules of each nontermm@ the sentence frequencies. Each terminal symbol (token) i

are assigned probabilities of use (these probabilities M0 ,q,ced to the PCFG by a nonterminal symbol which has
1.0 for each nonterminal). Probability of generating a string single rule (that terminal symbol) with probability 1.
given a grammaf is the product of the probabilities at each

branch of its parsing tree (if there is more than a singleipgrs
tree, a summation over all parsing tree probabilities mest i . o
performed). A simple grammar that generates strings of thee Chunking that creates a new nonterminal which is as-

In the second state, the grammar is generalized and made
pore compact using two operators:

form o™ is given below. signed a string of nonterminals and which replaces all the
occurrences of this string in other productions with that
Start — a (0.6) | a Start (0.4) new nonterminal. Frequency of this nonterminal (hence

its single rule) is set to the number of replacements made.
o Merging that creates a new nonterminal defined as a
combination of two nonterminals. The right hand sides
of productions of both nonterminals form the productions
of this new nonterminal and probabilities are assigned
according to their respective frequencies. The merged two
nonterminals are removed and occurrences of any of these
nonterminals are replaced by this new nonterminal.

For the above grammar, the stringa has the probability
0.4 2 0.6 = 0.24 which can also be seen as®¢rt —
a Start | Start,G) x P(Start — a | Start, G).

To capture spatial patterns of node movements, a PCFG
can be built when mobility trace consists of terminal synsbol
representing the locations at which a mobile node can reside
The probabilities provided in the PCFG give us the likelidoo
for movement patterns. Another mobility information thanc
be represented by a PCFG is the meeting sequences for moBilece grammar inference is a search for operands for two pos-
nodes. In this case however, the terminals represent molsilele operations, an evaluation method is needed to measure
nodes in the network. the goodness of a grammar which results from an application

To represent temporal information of node movemen§ €ach possible operation. A Bayesian posterior prokgbili
within a PCFG, we utilize a special time terminal symhol, of the grammaiG given the dataD is used for this purpose
It represents a preset time interval specific to the apptioat and it is defined as:

domain. Hence, a mobility sequence of a node contains both P(G)P(D|G)

location terminals as well as time terminals to represeat th P(G|D) = —PD) 1)
time interval between two consecutive location terminits.

example, the following trace of movements of a node: For maximization purposes?(D) can be omitted from the

formula above P(G) is calculated by using(G) which is the
length of grammar description. The simple description méth
states that once the node arrived at locatignit has taken proposed in [1] allows for restricting the search space for
40 time units to move to the next locatiofi, and another operand of a possible chunk operation to strings of length
25 units to reachlc. If the time token was chosen withat most 5.P(D|G) is calculated as the product of separate
time interval of 25 units, the above trace will be represgntesentence probabilitiesi() in the training data:

(approximately) by a sentence:

la 40 lp 25 ¢

|D|
Ia t tlg tlo . P(G)=27"% and P(D|G) =[] P(diG).
=1

It should be noted that there is a trade-off between the time

interval of the time token (resolution) and the complexify o Formulation of P(D|G) as above helps the algorithm to
the grammar, which is related to the length of the sentencesavoid re-parsing after merging operation and also reduces
the training data. By introducing the notion of time terniina the search space for the operands of merging operation. [1]
to PCFGs, we can store the temporal and spatial aspectsstablishes the time complexity ab(D?log(D)) for the
mobility patterns in a single sentence. algorithm whereD is the size of the training data.



C. Synthetic Mobility Trace Generation with PCFGs by multiplying accordingly all the branches of parsing tode

As aforementioned, synthetic trace generation is bayicaﬁeleded sentences.

creating a sentence from the constructed grammar. This sefV. EVALUATION OF THE TRACE GENERATION METHOD

tence_ gives bot.h the temporal and spatial information for | this section, we are measuring similarity between real
the single mobile node. Furthermore, once the generalggg traces and the synthetic mobility traces generated by
sequence is completed (all the nonterminals in the sentefkg proposed method. We compared our PCFG based system
are replaced with terminals), a new sentence can be gederg{e, 2-level Markov Model based generator presented in [19].
for the corresponding mobile node. Hence, we present asinghs is not a memoryless approach and it has been shown
algorithm here, which gets as input the mobility grammar ang work better than other methods for mobility prediction
initial location of the mobile node (can beull for a node (see Previous Worksection). Hence, intuitively, it is also
that has just begun its journey), and creates a new sequefc§ood model for capturing properties of the actual traces.
beginning in the initial location. Of course, the proba®é Both PCFG and Markov Models hold more information than
of the production rules are taken into account when decidipgassical statistics based approaches. A PCFG holds a set of
which rule to apply next in sentence generation process. Thgites with probabilities assigned to them according to how
silent assumption here is that the input data contain tragesquently they are used. The main difference between a PCFG
starting at each location that is the ending location of som@d 5 Markov Model is the fact that while a Markov Model
trace. keeps transitions at a preset length, a PCFG has the ability
: i _to extend the pattern lengths according to the training.data
Algorithm 1 Method for creating a random route for a mobilgrthermore, the automatic construction method given [1]
node from the mobility PCFG given an initial location of thisprovides generalization, hence unseen, but probablerpsatte

mobile node _ are also added into mobility grammars of nodes which can
init_loc =initial location not be achieved by Markov Models.
g =mobility grammar For the evaluations, we have used two datasets, the first one
for each ruler in g.START do [16] contains bus-to-bus meeting data collected in Amherst
string =1 _ _ _ MA (DieselNet - Spring 2006). To train the PCFG for this
for each expansiontring; of string with terminal at gataset, we have taken sentences to be the set of buses met
position 0Odo during one round of a bus on the route. Each bus type in this
if string;[0] == init_loc then dataset has a set route, therefore we can artificially seira st
list.add(string;) and end point (we chose those as the busiest grids in terms of
else the number of meetings). Hence we created the synthetic data
delete(string;) as a set of rounds. The second dataset we have experimented
end if on is the cab mobility data collected in San Francisco, CA
end for [13]. This data basically contains the taxi routes defined by
end for o latitude and longitude of taxi positions. Furthermore, veeen
normalize probabilities irist also information if a customer is in the taxi or not. To acdoun
random = rand() for this information, we split traces into two subsets: orithw
progressive = o traces with a customer in the taxi and another without the
for all expansions:; of every string inlist do customer. Furthermore, we divided the area into a grid of
PTOQT@SSiU€+ = prob(e;) 25x25, for discretization purposes.
if progressive > random then We used the following metrics in the comparison. For
returne; DieselNet Dataset, we have collected what buses are met by a
end if bus on a given route right after a certain sequence of meseting
end for For example, the error rat8ons 2gives the difference of a

given model from the actual trace in terms of the distritngio

In Algorithm 1, the initial stage checks for all possible®’ Which buses are met after a certain single bus is met.
movement sequences (hence all possible sentences prodiit@#ce it can be taken as the distribution difference of megeti
by the PCFG), and keeps only the ones in which the firggquences of length 2. To calculate the difference, we used
terminal is the same as the initial location of the mobil’® euclidean distance between the sequence distributions
node. In the case of modeling meetings of mobile nodes, tA&e" words, given that generated data hav@ercentage of
symbols are the mobile nodes met, hence although the alf£eting with bus; and the real world data have percentage
rithm stays the same, the meanings of the symbols produ(ggd“neetmg with bug; after a certain single bus, we calculate
or matched are different. After the initial elimination,eth Ac,,s = Zle(gi — ;)% (wherek is the number of buses).
remaining productions are chosen according to a probgbilit Another metric is based on the inter-meeting times, in which
distribution. Please note that the sum of all productiorfelee we calculate the time it takes for a bus to meet another bus
elimination (but not after it) i4.0, so a normalization is done given it has met a certain sequence of bubgsrn 2means the



TABLE I: Difference of Meeting Distributions between ActuBraces and PCFG vs Markov Model in DieselNet Dataset.
Cons 2| Cons3| Cons4| Cons5| Cons 6

PCFG 0.149 | 0.213 | 0.410 | 0.238 | 0.344
Markov Model | 1.145 | 0.440 | 0.974 | 1.947 | 2.172
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Fig. 1: Difference of Meeting Distributions between ActuaFig. 2: Difference of Inter-meeting Time Distributions tveten
Traces and PCFG vs Markov Model for Route 31 in DieselNéictual Traces and PCFG vs Markov Model for Route 31 in
Dataset. DieselNet Dataset.

Comparison of PCFG and Markov Models on Locational Distribution Difference from Actual Trace
T T T T

time it takes to meet a second bus after a sequence of leng
one is met (the length is two fdntern 3 three forintern 4
etc.). Here, we used theeighted euclidean distance between
the average intermeeting times for calculating errors.theo
words, given that generated data have an average intengeeti
time tg; for busb; and the real world data have an average
intermeeting timetr; for bus b; after meeting a certain bus,

we calculateAr,iern = \/Zle(wi x (tg; —tr;))? (where
k is the number of buses and; is the weight of busb;,
calculated according to the frequency of meeting). For the 5,4l
taxi mobility dataset, we use the same metrics, however th J
buses are replaced with the location grids, heGoas 3for Cons 2 Cons 3 Cons 4 Cons s Cons 6
the location distributions means the error on the distidlsuof

three sequences of locations that a mobile node goes throu'gila_ 3: Difference of Location Distributions between Adtua

Tables I and Il give the overall results on DieselNet Dataseg,;ces and PCFG vs Markov Model in Taxi Mobility Dataset.
They are averaged over eight routes (30,31,34,35,37,3%89

listed, and it can be seen that in all error categories, PCFG
generates better traces than a 2-level Markov Model. We
have already described how the generation with PCFG works,

whereas a Markov Model creates third meeting given the | this paper, we address the problem of synthetic mo-
previous two meetings of a given bus while generating thgiity trace generation. We propose the use of proballisti
trace. We a|SO prOVide the deta”ed reSUItS Of an examplte ro%ontext free grammars (PCFGs) Wh|Ch can represent a set Of
31 in Figures 1 and 2 for illustration. routes/patterns in a compact manner, and then generatarsimi
In Figures 3 and 4, we present the results on taxi mobilipputes/patterns of arbitrary length. We have shown how temp
dataset. It can be seen that on all error categories, theetymt ral information can be integrated into grammars throughetim
data generated by the PCFG is closer to the actual trace thekens. After the description of mobility generation metho
the synthetic data generated by the Markov Model. we have evaluated our model over two datasets (DieselNet and
The results demonstrate that real world traces are w8é&n Francisco Taxi Mobility Datasets), using metrics based
mimicked by the sentences generated by the correspondamgilarity to actual traces. We have shown that PCFGs gémera
PCFG. synthetic traces that are much closer to the original onas th
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TABLE II: Difference of Inter-meeting Time Distributionsebwveen Actual Traces and PCFG vs Markov Model in DieselNet
Dataset.

Cons 2 Cons 3 Cons 4 Cons 5 Cons 6
PCFG 693415.025| 346170.555| 178383.428| 91175.888 | 57988.681
Markov Model | 842365.695| 496940.369| 303851.526| 174315.950| 110041.562
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