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Abstract—This paper introduces a novel method of generating
mobility traces based on Probabilistic Context Free Grammars
(PCFGs). A PCFG is a generalization of a context free grammar
in which each production rule is augmented with a probability
with which this production is applied during sentence generation.
A concise PCFG can be inferred from the given real world trace
collected from the actual mobile node behaviors. The resulting
grammar can be used to generate sequences of arbitrary length
mimicking the mobile node behavior. This is important when new
protocol designs for mobile networks are tested by simulation.

In the paper, we describe the methods developed to construct
such grammars from training data (mobility history). We also
discuss how to generate the synthetic data with an already
constructed grammar. We present the experimental results on
two real data sets, measuring similarity of the actual traces with
the synthetic ones. We compare our grammar based method to
a 2-level Markov Model based trace generation method. The
results demonstrate that the grammar based approach works as
an excellent compression method for the actual data. On many
metrics, the synthetic data generated from the PCFG match the
training data much better than the one generated by the Markov
Model.

I. I NTRODUCTION

Mobility of nodes is one of the key attributes of today’s
networks. It most often implies that nodes use wireless com-
munications. Mobile ad hoc networks, delay tolerant networks,
robotic networks and mobile sensor networks are all examples
of such networks.

New protocols and algorithms for wireless mobile networks
benefit from their verification via simulation in their earlyde-
sign stages. However, such simulations require large amount of
realistic mobility behavior data, which are difficult to collect.
Therefore, development of methods which can generate long
synthetic mobility data from sample traces is crucial for proper
evaluation of protocols and applications via simulation.

In this paper, we propose a novel trace generation method
based on Probabilistic Context Free Grammars (PCFGs). Our
method takes a real world trace as input, and automatically
constructs a PCFG which concisely represents movement
sequences of mobile nodes. Once a PCFG is constructed from
a real world trace, a large set of sentences can be produced
from it creating a synthetic mobility trace.

The rest of the paper is organized as follows. In the
next section, we discuss the previous work on mobility trace
generation. Later in Section III, we give the definition for
PCFGs and the features that we added to them to capture
the spatial and temporal aspects of mobile node movements.

We also give the trace generation method, which is basically
the production of sentences from the mobility PCFG. The
following evaluation section compares our method with a 2-
level Markov model based synthetic trace generation method
on two separate datasets. The last section contains conclusions
and an outline of future work on this topic.

II. PREVIOUS WORK

There were many attempts at creating synthetic mobility
patterns, ranging from methods based on connectivity graph
[3], action profiles [2] to combining terrain and vehicle prop-
erties separately [4], to capturing group behavior [5], event-
driven [9], [10], [11], and finally to extraction of information
from real world traces [6], [7].

Another approach based on a time-variant community mo-
bility model is proposed in [8]. Communities are defined based
on popular locations, most often visited by nodes. The model
collects two characteristics, skewed location visiting prefer-
ences and periodical re-appearance at the same location from
real world WLAN traces, in order to produce mobility traces.
Urban pedestrian flows (UPF) mobility scenarios are discussed
in [12]. The system uses a set of pedestrian densities on
streets as well as a set of likely paths that the pedestrians may
follow and creates mobility information based on them. The
trace generator aims at also keeping the observed pedestrian
densities and the ones in the synthetic data as close as possible.

The works closest to ours utilize Markov Models. In [17],
transitions between areas are modeled by their probabilities.
Markov Model based mobility predictors are compared to LZ-
based mobility predictors in [18] and the results show that
Markov Models perform better. Interestingly, the paper also
demonstrates that in practice, a 2-level Markov Model predic-
tor performs better than a 3-level or 4-level predictor, hence
increasing the depth does not necessarily increase prediction
accuracy. Markov Models were extended by adding time
information through cumulative time distribution of transitions
in [19]. A 2-level Markov Model is used to predict connectivity
and quality of connection to access points in a mobile network
in [20].

III. M ETHODOLOGY

A. Mobility PCFGs

A Probabilistic Context Free Grammar [1] consists of a five-
tuple <Snt,St,Rg,Prob,Start> where:

• Start is the initial nonterminal symbol of the grammar,
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• Snt is a list of nonterminal symbols defined by production
rules,

• St is a list of terminal symbols which are the symbols
actually seen in the sentences,

• Rg is a list of production rules that map a string of
terminal and nonterminal symbols onto a nonterminal
symbol,

• Prob is a list of probabilities, each assigned to a rule to
define the probability that this rule (as opposed to the
other rules forming the same nonterminal) is chosen in
parsing or string generation.

To put it simply, a PCFG is an extension of the ordinary
context free grammar in which the rules of each nonterminal
are assigned probabilities of use (these probabilities sumup to
1.0 for each nonterminal). Probability of generating a string
given a grammarG is the product of the probabilities at each
branch of its parsing tree (if there is more than a single parsing
tree, a summation over all parsing tree probabilities must be
performed). A simple grammar that generates strings of the
form an is given below.

Start → a (0.6) | a Start (0.4)

For the above grammar, the stringa a has the probability
0.4 x 0.6 = 0.24 which can also be seen as P(Start →
a Start | Start,G) x P(Start → a | Start,G).

To capture spatial patterns of node movements, a PCFG
can be built when mobility trace consists of terminal symbols
representing the locations at which a mobile node can reside.
The probabilities provided in the PCFG give us the likelihood
for movement patterns. Another mobility information that can
be represented by a PCFG is the meeting sequences for mobile
nodes. In this case however, the terminals represent mobile
nodes in the network.

To represent temporal information of node movements
within a PCFG, we utilize a special time terminal symbol,t.
It represents a preset time interval specific to the application
domain. Hence, a mobility sequence of a node contains both
location terminals as well as time terminals to represent the
time interval between two consecutive location terminals.For
example, the following trace of movements of a node:

lA 40 lB 25 lC

states that once the node arrived at locationlA, it has taken
40 time units to move to the next location,lB , and another
25 units to reachlC . If the time token was chosen with
time interval of 25 units, the above trace will be represented
(approximately) by a sentence:

lA t t lB t lC .

It should be noted that there is a trade-off between the time
interval of the time token (resolution) and the complexity of
the grammar, which is related to the length of the sentences in
the training data. By introducing the notion of time terminals
to PCFGs, we can store the temporal and spatial aspects of
mobility patterns in a single sentence.

B. Automatic PCFG Construction

In our previous work [1], we have described in detail how
a PCFG can be constructed given a set of sentences (hence
strictly from the positive data). This algorithm was an exten-
sion of the works done in [14] and [15] with improvements on
the time complexity. Although we will not go into details of the
grammar inference algorithm in this paper, we will summarize
its methodology.

Inference algorithm consists of two stages: (i) data incorpo-
ration, and (ii) application of operators. In the first stage, all
sentences are introduced to the initial grammar as rules of the
START nonterminal and probabilities are assigned according
to the sentence frequencies. Each terminal symbol (token) is
introduced to the PCFG by a nonterminal symbol which has
a single rule (that terminal symbol) with probability 1.

In the second state, the grammar is generalized and made
more compact using two operators:

• Chunking that creates a new nonterminal which is as-
signed a string of nonterminals and which replaces all the
occurrences of this string in other productions with that
new nonterminal. Frequency of this nonterminal (hence
its single rule) is set to the number of replacements made.

• Merging that creates a new nonterminal defined as a
combination of two nonterminals. The right hand sides
of productions of both nonterminals form the productions
of this new nonterminal and probabilities are assigned
according to their respective frequencies. The merged two
nonterminals are removed and occurrences of any of these
nonterminals are replaced by this new nonterminal.

Since grammar inference is a search for operands for two pos-
sible operations, an evaluation method is needed to measure
the goodness of a grammar which results from an application
of each possible operation. A Bayesian posterior probability
of the grammarG given the dataD is used for this purpose
and it is defined as:

P (G|D) =
P (G)P (D|G)

P (D)
. (1)

For maximization purposes,P (D) can be omitted from the
formula above.P (G) is calculated by usingl(G) which is the
length of grammar description. The simple description method
proposed in [1] allows for restricting the search space for
operand of a possible chunk operation to strings of length
at most 5.P (D|G) is calculated as the product of separate
sentence probabilities (di) in the training data:

P (G) = 2−l(G) and P (D|G) =

|D|
∏

i=1

P (di|G).

Formulation ofP (D|G) as above helps the algorithm to
avoid re-parsing after merging operation and also reduces
the search space for the operands of merging operation. [1]
establishes the time complexity ofO(D2log(D)) for the
algorithm whereD is the size of the training data.



C. Synthetic Mobility Trace Generation with PCFGs

As aforementioned, synthetic trace generation is basically
creating a sentence from the constructed grammar. This sen-
tence gives both the temporal and spatial information for
the single mobile node. Furthermore, once the generated
sequence is completed (all the nonterminals in the sentence
are replaced with terminals), a new sentence can be generated
for the corresponding mobile node. Hence, we present a single
algorithm here, which gets as input the mobility grammar and
initial location of the mobile node (can benull for a node
that has just begun its journey), and creates a new sequence
beginning in the initial location. Of course, the probabilities
of the production rules are taken into account when deciding
which rule to apply next in sentence generation process. The
silent assumption here is that the input data contain traces
starting at each location that is the ending location of some
trace.

Algorithm 1 Method for creating a random route for a mobile
node from the mobility PCFG given an initial location of this
mobile node

init loc =initial location
g =mobility grammar
for each ruler in g.START do

string = r

for each expansionstringi of string with terminal at
position 0do

if stringi[0] == init loc then
list.add(stringi)

else
delete(stringi)

end if
end for

end for
normalize probabilities inlist
random = rand()
progressive = 0
for all expansionsei of every string inlist do

progressive+ = prob(ei)
if progressive ≥ random then

returnei

end if
end for

In Algorithm 1, the initial stage checks for all possible
movement sequences (hence all possible sentences produced
by the PCFG), and keeps only the ones in which the first
terminal is the same as the initial location of the mobile
node. In the case of modeling meetings of mobile nodes, the
symbols are the mobile nodes met, hence although the algo-
rithm stays the same, the meanings of the symbols produced
or matched are different. After the initial elimination, the
remaining productions are chosen according to a probability
distribution. Please note that the sum of all productions before
elimination (but not after it) is1.0, so a normalization is done

by multiplying accordingly all the branches of parsing treeof
selected sentences.

IV. EVALUATION OF THE TRACE GENERATION METHOD

In this section, we are measuring similarity between real
world traces and the synthetic mobility traces generated by
the proposed method. We compared our PCFG based system
to a 2-level Markov Model based generator presented in [19].
This is not a memoryless approach and it has been shown
to work better than other methods for mobility prediction
(see Previous Worksection). Hence, intuitively, it is also
a good model for capturing properties of the actual traces.
Both PCFG and Markov Models hold more information than
classical statistics based approaches. A PCFG holds a set of
routes with probabilities assigned to them according to how
frequently they are used. The main difference between a PCFG
and a Markov Model is the fact that while a Markov Model
keeps transitions at a preset length, a PCFG has the ability
to extend the pattern lengths according to the training data.
Furthermore, the automatic construction method given [1]
provides generalization, hence unseen, but probable patterns
are also added into mobility grammars of nodes which can
not be achieved by Markov Models.

For the evaluations, we have used two datasets, the first one
[16] contains bus-to-bus meeting data collected in Amherst,
MA (DieselNet - Spring 2006). To train the PCFG for this
dataset, we have taken sentences to be the set of buses met
during one round of a bus on the route. Each bus type in this
dataset has a set route, therefore we can artificially set a start
and end point (we chose those as the busiest grids in terms of
the number of meetings). Hence we created the synthetic data
as a set of rounds. The second dataset we have experimented
on is the cab mobility data collected in San Francisco, CA
[13]. This data basically contains the taxi routes defined by
latitude and longitude of taxi positions. Furthermore, we have
also information if a customer is in the taxi or not. To account
for this information, we split traces into two subsets: one with
traces with a customer in the taxi and another without the
customer. Furthermore, we divided the area into a grid of
25x25, for discretization purposes.

We used the following metrics in the comparison. For
DieselNet Dataset, we have collected what buses are met by a
bus on a given route right after a certain sequence of meetings.
For example, the error rateCons 2gives the difference of a
given model from the actual trace in terms of the distributions
of which buses are met after a certain single bus is met.
Hence it can be taken as the distribution difference of meeting
sequences of length 2. To calculate the difference, we used
the euclidean distance between the sequence distributions. In
other words, given that generated data havegi percentage of
meeting with busbi and the real world data haveri percentage
of meeting with busbi after a certain single bus, we calculate

∆Cons =
√

∑k

i=1(gi − ri)2 (wherek is the number of buses).
Another metric is based on the inter-meeting times, in which

we calculate the time it takes for a bus to meet another bus
given it has met a certain sequence of buses.Intern 2means the



TABLE I: Difference of Meeting Distributions between Actual Traces and PCFG vs Markov Model in DieselNet Dataset.
Cons 2 Cons 3 Cons 4 Cons 5 Cons 6

PCFG 0.149 0.213 0.410 0.238 0.344
Markov Model 1.145 0.440 0.974 1.947 2.172
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Fig. 1: Difference of Meeting Distributions between Actual
Traces and PCFG vs Markov Model for Route 31 in DieselNet
Dataset.

time it takes to meet a second bus after a sequence of length
one is met (the length is two forIntern 3, three forIntern 4
etc.). Here, we used theweighted euclidean distance between
the average intermeeting times for calculating errors. In other
words, given that generated data have an average intermeeting
time tgi for bus bi and the real world data have an average
intermeeting timetri for bus bi after meeting a certain bus,

we calculate∆Intern =
√

∑k

i=1(wi × (tgi − tri))2 (where
k is the number of buses andwi is the weight of busbi,
calculated according to the frequency of meeting). For the
taxi mobility dataset, we use the same metrics, however the
buses are replaced with the location grids, henceCons 3for
the location distributions means the error on the distribution of
three sequences of locations that a mobile node goes through.

Tables I and II give the overall results on DieselNet Dataset.
They are averaged over eight routes (30,31,34,35,37,38,39,45)
listed, and it can be seen that in all error categories, PCFG
generates better traces than a 2-level Markov Model. We
have already described how the generation with PCFG works,
whereas a Markov Model creates third meeting given the
previous two meetings of a given bus while generating the
trace. We also provide the detailed results of an example route
31 in Figures 1 and 2 for illustration.

In Figures 3 and 4, we present the results on taxi mobility
dataset. It can be seen that on all error categories, the synthetic
data generated by the PCFG is closer to the actual trace than
the synthetic data generated by the Markov Model.

The results demonstrate that real world traces are well
mimicked by the sentences generated by the corresponding
PCFG.
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Fig. 2: Difference of Inter-meeting Time Distributions between
Actual Traces and PCFG vs Markov Model for Route 31 in
DieselNet Dataset.
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Fig. 3: Difference of Location Distributions between Actual
Traces and PCFG vs Markov Model in Taxi Mobility Dataset.

V. CONCLUSION

In this paper, we address the problem of synthetic mo-
bility trace generation. We propose the use of probabilistic
context free grammars (PCFGs) which can represent a set of
routes/patterns in a compact manner, and then generate similar
routes/patterns of arbitrary length. We have shown how tempo-
ral information can be integrated into grammars through time
tokens. After the description of mobility generation method,
we have evaluated our model over two datasets (DieselNet and
San Francisco Taxi Mobility Datasets), using metrics basedon
similarity to actual traces. We have shown that PCFGs generate
synthetic traces that are much closer to the original ones than



TABLE II: Difference of Inter-meeting Time Distributions between Actual Traces and PCFG vs Markov Model in DieselNet
Dataset.

Cons 2 Cons 3 Cons 4 Cons 5 Cons 6
PCFG 693415.025 346170.555 178383.428 91175.888 57988.681

Markov Model 842365.695 496940.369 303851.526 174315.950 110041.562
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Fig. 4: Difference of Location Transition Time Distributions
between Actual Traces and PCFG vs Markov Model in Taxi
Mobility Dataset.

those produced by Markov Models, which are used as the state
of the art mobility prediction method.

Our future work includes applying PCFG method to mo-
bility prediction. In this paper, we have shown the capability
of PCFGs to represent the mobility patterns of nodes in a
mobile network. Such information can be utilized to predict
the movements of mobile nodes, assuming efficient methods
of processing PCFGs can be devised. We will work on these
methods as well as other application domains where PCFGs
can be utilized in a beneficial manner.
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