
Simulation of Dynamic Data Replication Strategies in Data Grids
�

Houda Lamehamedi, Zujun Shentu, and Boleslaw Szymanski
Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180

lamehh, shentu, szymansk@cs.rpi.edu

Ewa Deelman
Information Sciences Institute, University of Southern California, Marina Del Rey, CA 90292

deelman@isi.edu

Abstract

Data Grids provide geographically distributed resources
for large-scale data-intensive applications that generate
large data sets. However, ensuring efficient access to such
huge and widely distributed data is hindered by the high
latencies of the Internet. We address these challenges by
employing intelligent replication and caching of objects at
strategic locations. In our approach, replication decisions
are based on a cost-estimation model and driven by the es-
timation of the data access gains and the replica’s creation
and maintenance costs. These costs are in turn based on
factors such as runtime accumulated read/write statistics,
network latency, bandwidth, and replica size. To support
large numbers of users who continuously change their data
and processing needs, we introduce scalable replica dis-
tribution topologies that adapt replica placement to meet
these needs. In this paper we present the design of our dy-
namic memory middleware and replication algorithm. To
evaluate the performance of our approach, we developed a
Data Grid simulator, called the GridNet. Simulation results
demonstrate that replication improves dramatically the data
access performance in Data Grids, and that the gain in-
creases with the size of the datasets involved.

1. Introduction

A Data Grid connects a collection of hundreds of geo-
graphically distributed computers and storage resources lo-
cated in different parts of the world to facilitate sharing of

�

This research was supported in part by the IBM Fellowship Program,
by a joint study fund from the IBM Almaden Research Center and by
the National Science Foundation under Contract ITR-0086044 (GriPhyN).
The content of this paper does not necessarily reflect the position or policy
of the U.S. Government or IBM Corp.—no official endorsement should be
inferred or implied.

data and resources [2, 11, 10, 18]. Data Grids enable sci-
entists from different universities and research laboratories
to collaborate with one another to solve large-scale com-
putational problems. The size of the data that needs to be
accessed on the Data Grid is on the order of Terabytes today
and will reach Petabytes in the near future.

The major barrier to supporting fast data access on a Grid
are the high latencies of Wide Area Networks and the Inter-
net. This barrier impacts the scalability of Grid systems.
To overcome this barrier, large amounts of data need to
be replicated in multiple copies at several world-wide dis-
tributed sites.

Replication is a well-established field in the distributed
computing, Internet, and database communities. The Grid
environment, however, introduces new and different chal-
lenges, such as high latencies and dynamic resource avail-
ability. Given the size of the data sets, it is impossible for
a human to make decisions about where the data needs to
be placed. Clearly, a good replication strategy is needed
to anticipate and/or analyze user data requests and to place
subsets of the data (replicas) accordingly.

Current technologies and initiatives use only static or
user-driven replication services, to manually replicate data
files. The Grid environment however, is highly dynamic.
The resources availability and network performance change
constantly and data access requests also vary with each ap-
plication and each user. Two key challenges that need to be
addressed are:

1. scalability, and

2. adaptability.

We address these challenges by employing intelligent
replication and caching of objects at strategic locations. To
this end, we have designed a dynamic memory middleware
that allows Grid nodes to automatically replicate data when
needed. To support large numbers of users that continuously
change their data and processing requirements, we plan

Bolek
Text Box
Proc. 12th Heterogeneous Computing Workshop (HCW2003) Nice, France, April 2003, IEEE Computer Science Press, Los Alamitos, CA, 2003

to use dynamic techniques to adapt replica placement to
changing users needs and requests. As a result, the replica
management service must have a runtime component to dy-
namically monitor and evaluate the applicationss and userss
needs and adapt the replica placement to meet these needs.
Accordingly, new replicas may be added at different loca-
tions and deleted from locations where they are no longer
needed.

In our approach, the replication runtime component eval-
uates the data access gains and compares them with the cre-
ation and maintenance costs of replicas, before moving or
copying any data. The gains and costs of the replication
decisions are calculated based on many factors, such as ac-
cumulated read/write statistics, network latency and band-
width, replica size and system reliability. Our replication
cost model is formulated as an optimization problem that
minimizes the sum of the total access costs of data in a Grid
and the replica creation and maintenance costs.

To address the scalability, we propose to overlay the
replicated data in two alternative logical configurations or
topologies: a ring and a tree. Both configurations can be or-
ganized on top of each other. The replica distribution span-
ning graph is chosen depending on the application’s design
and sharing patterns. The ring topology is used in a peer-to-
peer replication approach in the presence of multiple mas-
ter replicas. The tree topology on the other hand, exploits
geographical locality and high bandwidth availability and
provides a scalable expansion of the overall replica distri-
bution topology. The collected Grid access patterns suggest
that although data updates are infrequent in the Data Grid,
they occasionally happen. It is thus necessary to guarantee
that the updates are eventually propagated and that the users
have access to consistent copies of the data. Our distribu-
tion topologies provide a scalable infrastructure to maintain
replica consistency. In this work however, we only consider
read only data.

To evaluate the benefits and applicability of our ap-
proach, we use a cost based analytical model and simula-
tions. For that purpose, we developed a Data Grid simula-
tion tool: GridNet [13]. This simulator provides a mod-
ular simulation framework through which we can model
different Data Grid configurations and resource specifica-
tions. The simulations allow us to perform initial verifi-
cations of the design and evaluate the performance of our
strategies. Our preliminary simulation results were pre-
sented first in [13], and were based on a trace file using
static data replication. The contributions made in this paper
are twofold: we present results for large network config-
urations and data files, and we introduce and use adaptive
dynamic cost-driven replication.

The remainder of the paper is organized as follows. In
Section 2, we overview existing work on modeling Data
Grids and simulating difference data replication techniques.

Section 3 describes our approach to deploying dynamic
replication in Data Grids. In Section 4, we present the
design concepts of the simulator GridNet. Section 5 de-
scribes our analytical model of the replication costs and
benefits and its use in our dynamic replication system. In
Section 6, we present the results of simulated dynamic
replication techniques for the typical Data Grid architec-
ture proposed at CERN (the European Organization for
Nuclear Research) and implemented by the Grid Physics
Network (GriPhyN) [12]. In Section 7 we provide the
conclusions and argue that the replica management sys-
tem that we propose offers better performance than exist-
ing approaches [3, 2, 4, 15, 16, 17, 19, 20] because it of-
fers a highly dynamic and optimized solution using scalable
replica distribution mechanisms.

2. Related Work

Recently, there has been a rise in interest in modeling
Data Grid environments and simulating different data repli-
cation techniques as well as basic file replication proto-
cols [19]. With the increase of the data production and
data sharing needs of a widening global scientific commu-
nity, there is growing need for improving data access per-
formance and data availability.

Different studies were conducted to model scientific ex-
periments settings and configurations, such as the CMS
and ATLAS experiments at the Large Hadron Collider,
the Laser Interferometer Gravitational Observatory and the
Sloan Digital Sky Survey [19, 12]. These studies led to
the initiation of many projects such as the GriPhyN [12]
and the EU DataGrid [6]. Currently, these projects use
static, or user-driven replication services provided by the
Globus Toolkit [8, 10], such as Globus Replica Location
Service [5].

A simulation framework OptorSim was introduced
in [4], where data replication is combined with job schedul-
ing. In contrast to our approach, introduced first in [13],
OptorSim uses a prediction function based on spatial and
time locality regardless of the overall data access cost on
the Data Grid.

In [17], an approach is proposed for automatically creat-
ing replicas in a typical decentralized Peer-to-Peer network.
The goal is to create a certain number of replicas on a given
site to guarantee a minimal availability requirements. Dif-
ferent replication and caching strategies within simulated
Grid environments are discussed in [15] and their combi-
nation with scheduling algorithms is studied in [16]. The
replication algorithms proposed were based on the assump-
tion that popular files in one site are also popular at other
sites. We take a different approach by evaluating replica
creation and placement using the network attributes as well
as data popularity along with its spatial and time locality.

3. Replication Algorithm

3.1. Replica Distribution topologies

Given the sizes of data entities on the Data Grid, scal-
ability is an important issue. To offer scalability, we use
both hierarchical and flat topologies to organize replicas
on the Data Grid. These topologies reflect the use of the
client-server and the peer-to-peer approaches to exploit lo-
cality and higher bandwidth availability in search for faster
data access time. In the client-server approach, the cost of
maintaining replica consistency is lower than in the peer-
to-peer approach. In the former model, there is one central
location with a single replica server to which all updates
must be posted. This solution substantially simplifies repli-
cation consistency maintenance. However, such a solution
has poor reliability because a failure of the server makes it
impossible for any other replicas to receive new updates or
to disseminate their own updates to others. In our approach,
we intend to use multiple replica servers to enhance data
availability and to avoid single points of failures. Moreover,
the particular communication patterns among the replicas
form the replica distribution topologies. These topologies
are the basis for the replica synchronization and reconcilia-
tion paths. The replica placement service uses these distri-
bution topologies to overlay replicas on the Data Grid; thus
improving data access and replica synchronization costs. In
this work however, we only consider read-only data. We
plan to investigate the performance of our approach with
different consistency algorithms in future work.

Figure 1. Hybrid Replica Distribution Topol-
ogy

To take advantage of the hierarchical and flat topologies,
we allow both topologies to be combined in multi-level hier-
archies. Figure 1 shows a hybrid replica connection graph,
that combines both the ring and tree topologies. This dis-
tribution model could be used in cases where the replica
distribution spans over different partitions and be part of a
hierarchical structure as well as part of a flat distribution.
This approach improves both the data availability and the

reliability of the flat topology and allows for a scalable ex-
pansion of the hierarchical distribution.

3.2. Replica Placement Algorithm

The topologies described earlier are adaptive. When new
nodes join or leave the system the nodes connections are dy-
namically adjusted to reflect the new changes. The replica
sites location within the topology is defined by the organi-
zational domains these sites belong to, and by the replica
placement algorithm. Initially, additional replica sites are
connected to the main storage site as child nodes and to each
other in a ring topology. Depending on the number of orga-
nizational domains that the Data Grid spans through, more
levels of the topology and nodes could be added the same
way. When an access request is generated from a grid node,
that request is forwarded to the closest main data storage.
Further requests are subsequently forwarded to that same
server site. When the replica placement algorithm decides
to create a new replica at the request-originating node, that
node is attached to the existing topology as a child of the
server site. If the server site has other children, the under-
lying sibling topology is adaptively adjusted to include the
joining node. This process is enumerated in two steps:

1. add edge to parent,

2. add edges to parent’s children (siblings in a ring),

Each newly added replica is registered in a local replica
catalog, by adding a new entry in the catalog reflecting
the physical-logical name mapping of the replicated object
name to its new replica location. These changes are made
visible to the entire grid through the propagation of the new
entry in the local replica catalog and its synchronization
with other remote replica catalogs. The catalogs are syn-
chronized by forwarding new entries to the parent node and
subsequently all the way to the root. To facilitate replica
look up in a hybrid topology, the replica catalogs main-
tained at parent nodes contain all the entries in their child
nodes catalogs.

In some cases adding a new replica might not necessarily
mean adding an additional hierarchy level. An important
criterion in deciding whether to attach a new replica site as
sibling or as child, is the connection quality of the replica
sites. Ideally, a decision about grouping should be based on:

� geographic location: replica nodes that are physically
near each other should be grouped together. Since
communication with a nearby site is more efficient that
communication with a distant one, nearby neighbors
are a good synchronization choice.

� expected bandwidth: nodes that are connected by high
bandwidth links should be grouped together.

� connection latency: nodes with low latency connec-
tions should be grouped together. Those connected by
high latency connections should not be linked together.

The replica catalogs are used to locate the closest replica
site when receiving a data access request. When a replica
site receives a data access request, it first checks its local
replica catalog to see if it has an entry for the requested
data. In case there is no entry, the replica look up request
is forwarded to the parent node, and up the hierarchy until
a replica entry is found. The data access request is then
forward to the closest replica site.

4 Simulation

In order to evaluate our approach, we developed a Data
Grid simulator GridNet [13]. This simulator provides
a modular simulation framework through which we can
model different Data Grid configurations and resource spec-
ifications. In this section we present our simulation study
along with its results. Throughout the simulation, we as-
sumed read-only data and did not include the consistency
or write and update propagations costs in the study.

4.1. Simulation Design

GridNet is a modular simulator, written in C++, and built
on top of the network simulator ns [14], which provides
us with basic Grid network specification: nodes, links, and
messages. GridNet introduces application level services im-
plemented on top of the existing ns protocols. It allows us to
specify different network configurations, different types of
nodes, different node resources, a replication strategy, and
a cost function and its parameters.

The GridNet simulator modules are composed of objects
that are mapped into application level object classes in ns.
Data exchanged between the GridNet nodes is defined as
application level data that is passed down to the ns node
as a stream of packets. In addition, there are also packets
representing grid user requests as well as the packets indi-
cating the start and the end of grid data transmission in ns
that transfer control of the simulation to GridNet. The Grid-
Net code simulates the replication decision at each node and
generates new ns traffic (forwarding requests other nodes or
sending the requested data to the client). This separation of
the network simulation strata, the Grid nodes and the repli-
cation algorithm enables us to use the existing package, ns,
and add only the grid specific elements to the simulation.

One of the main considerations in designing our simu-
lator was to model a Data Grid architecture and the inter-
actions of the individual Grid components as realistically
as possible. Therefore, the simulation is based on the ar-
chitecture proposed for CERN experiments. We assume a
multi-tier Grid topology throughout this study.

�����
�����
�����
�����

���
���
���
���

���
���
���
��� �����

�����
�����
�����

	�	
	�	

�

�

���
���
���
���

��
�
������
���

������
���
������
���

���
���
���
��� Main Storage Site

Intermediate Nodes

Client Nodes

Figure 2. Simulation Model

4.2. Architecture

The simulation was constructed assuming that the Grid
consists of several sites, each of which may provide compu-
tational and data-storage resources. In our study we adopt
the typical Data Grid architecture used at CERN (the Euro-
pean Organization for Nuclear Research) and implemented
by the Grid Physics Network GriPhyN [12].

To specify Data Grid nodes, the simulator extends the
original semantics of a node object in ns. Each node is able
to specify its storage capacity, organization of its local data
files, its relative processor performance, and to maintain a
list of its neighbors and peer replica nodes.

Figure 2 shows the simulation model and topology used
in our experiments. Given the configuration of the adopted
model, the simulator allows us to specify different types of
nodes, namely client, server and cache nodes that are de-
scribed below.

� Server node: represents a main storage site, where all
or part of the data within the Data Grid is stored. This
site represents the root of the grid hierarchy.

� Cache Node: represents an intermediate storage site,
for example a regional storage site. Such sites would
have high storage capacity and would replicate part of
the data stored on the main storage site.

� Client node: represents a site where data access re-
quests originate and are generated. The client nodes
are always placed at the leaf level of the Grid hierar-
chy.

The network interface model is specified in the link ob-
ject that is provided in ns. The link object is used to model

Table Table

Storage
Element

Storage
Element

NS Node NS NodeReplica
Optimizer

Data
Monitor

Replica Routing Replica Routing

Replica Manager
Replica
Optimizer

GridNet Node

NS Link

GridNet Node

Replica Manager
Data
Monitor

Figure 3. The GridNet Simulator Architecture

the parameters of physical interconnections in the simulated
network, such as link bandwidth and latency.

As shown in Figure 3, each GridNet node consists of the
following three elements:

1. a basic ns node,

2. a storage element,

3. a replica manager or a monitoring agent.

Each GridNet node also maintains a replica routing table.
The replica manager makes the decision about when to

create and delete replicas. This decision is made using
statistics collected at each site about data access requests
and network characteristics. Such data are access frequen-
cies per data file, connection bandwidth information, and
storage space availability.

To collect the performance data, each replica manager
contains a monitoring module or agent that is responsible
for computing the number of data requests generated at each
node, as well as the number of requests received from other
nodes. To compute bandwidth availability, each node reg-
ularly polls its connections to its neighbors. The data col-
lected is then evaluated by the replica placement algorithm
or optimizer using the cost function formulated in Section 5
(equations (3) and (4)).

The simulation is constructed assuming that each node
on the Data Grid has some computational power and may
provide data-storage resources. The GridNet defines the
simulation through a sequence of commands. Currently the
following five commands are generated by GridNet nodes:

GPT READ REQUEST used by the client to initiate
reading the data,

GPT WRITE REQUEST used when a client needs to
write a file to the server,

GPT WRITE UPDATE used by a server or cache node to
inform the cache nodes that the newer version of data
is available,

GPT READ ACK used when the server or cache node
confirms the read request, and

GPT WRITE ACK used by the server or cache node to
confirm the write request.

Their implementation is quite simple. For example,
GPT READ REQUEST is sent from the client node to a
cache node and generates the following sequence of com-
mands at the cache:

log-traffic;
log-count;
if (has a local copy and is valid){

send a READ-ACK
to the original sender directly;

}
else{

forward GPT-READ_REQUEST to parent;
}

Some of the parameters used in the simulation, like the
frequency of bandwidth probing and statistics gathering are
set by ns commands. In our simulation, only client nodes
generate data access requests. Each client runs a set of jobs
that require accessing certain data files. The job running-
time is simulated by associating a processing time with each
file. Clients run concurrently with each other.

Client nodes are assumed to have a limited storage space
that they use for caching. Before generating a request, the
client checks if the data requested is available locally. Each
node maintains a replica routing table that allows it to lo-
cate the closest replica site and the node to which it should
forward its request. Each time new replicas are created or
deleted, replica routing tables are updated accordingly. The
next Section explains further how these tables are updated
and used.

5. Cost Model and Its Use in Replication

Given the hierarchical structure of the Data Grid, we
organized our simulations into multi-layered trees. Nodes
placed in higher levels have higher storage capacity. Client
nodes are placed in the lowest level. At each level, nodes
can be organized into ring topologies to facilitate data ac-
cess among same level nodes (peer-to-peer model). Initially
routing tables contain the address of each node’s parent and
siblings in the hierarchy. When initial requests are gener-
ated, they are forwarded to the higher level.

The replication placement policy is formulated as an op-
timization problem. Each node � in the overall system and a

data object
�

are associated with a nonnegative read rate ����� �
and a nonnegative write rate ����� � that represent the traffic
generated within this node’s local domain related to object�
. If 	�
� ��� is the write cost for a given object

�
and 	��� ��� is

the read cost for the same object, then 	
�� ����� 	���� ������� � is
the ratio of the write cost for node

�
. If there are no replicas

for object
�

in the system, then the total data transfer cost
for this object at node � is:

����� � ��� � � �!�"��� �$# � �%�&��� � � � ��')(� ����* � �,+.- � (1)

where - is the node containing the object
�

and
* � �/+�- � is the

sum of the edge costs along the path from � to - such that

* � �,+.- ��� 0132)4 *�56��* �.7 � �,+.- � +
where

132)4 *856��* �.7 � ��9:+ ��; � is the total available bandwidth
between nodes �)9:+ ��; .

Let < represent the set of all nodes in the system, =>� be
the replica set of object

�
, and � � �/+?=@� � denote the replica of

object
�

closest to node � . So, if node � is to be added to=A� , � � �/+?=A� � would become v’s ancestor in the replica tree
of object

�
. Let B&� be the partition of nodes that would be

serviced by � for future access requests to object
�
, assum-

ing that � is added to = � . Let �"C��� � represent the total read
rate of all nodes at partition B � , and �&C��� � represent the total
write rate of the partition. The incremental data transfer re-
sulting from placing a replica at � can be expressed by the
following formula:

����� � � �D<E+�=F�.+ �
�

� ��'�(� ���.* � �/+ � � �,+�=F� �.� �HG � C��� � # � � �%� C � � � G � C ��� � � (2)

Indeed, adding � to =F� decreases the read cost of each node
in B�� by � ��')(� ����* � �,+ � � �/+?=F� �.� and increases the write cost
of each node in the < G B&� by � ��')(� ����* � �,+ � � �/+?=F� ��� , but
it does not change other costs. Thus, the total cost of data
transfer for object

�
with a replica set =@� is given by:

	 ��� � �%<E+?= � ��� �I���I� �D<E+.- � # J��K8L�M�N�O �QP
����� � � �D<E+�= � + �

�
(3)

where ����� � �%<R+.- � represents the data transfer cost of object�
from the root node - . Given the structure of the data grid

and the associated read/write patterns for object
�
, the first

term in Equation 3 is constant. Hence, we only need to
consider the problem of optimizing the following cost:

	 ��� ��S �%<E+?=A� �T� J��K8L M N�O �3P
����� � � �%<E+?=A��+ �

�
(4)

The above formula expresses the data transfer cost for
object

�
improved thanks to the placement of a set of repli-

cas =F� GVU -�W . The runtime system uses access cost statistics

to compare the replications gains to replication costs (up-
date cost) and then informs the replica management service
whether to place a replica on node � or not.

Other parameters that can also be taken into considera-
tion while creating and placing replicas are: the storage ca-
pacity and availability at a given Grid node, the frequency
of cost estimation, and the replica access patterns. The lat-
ter parameter is estimated based on the history of the data
accesses requested at a given site.

The frequency of cost estimation depends on the load of
the system as well as the number of nodes in the Data Grid.
Each time the replication cost function is evoked, the read
and write count values are annulled and previous collected
values are averaged out. These values are used to predict
future tendencies in access patterns. We plan to use differ-
ent prediction tools to infer data access patterns and to tune
the system parameters, such as: regression methods, mov-
ing average, and exponential smoothing.

The storage cost is computed based on the state of the
data objects, their request frequencies, and their size. The
state of data objects is defined as busy, active, passive, or
obsolete. The first state is assumed when the local data
replica is being accessed. The second state describes lo-
cal replicas that have been accessed recently within a pre-
defined time-frame window. Replicas that have not been
accessed within that time-frame window are categorized as
passive. If a file is found out of date following a consis-
tency check, it is marked as obsolete. Each replica is also
assigned a weight index that indicates how much space it is
occupying.

The storage cost is a linear combination of these param-
eters. Each factor in the combination is assigned a weight
depending on the applications properties and access pat-
terns. When the replica management decides to create a
local replica, it first checks whether storage space is needed
and available. If it is needed but not available, then based on
the ranking of existing replicas, the system decides whether
to delete some of the existing replicas to make space for a
new one or to decline the creation of the new replica. To
compare the cost of storage used by existing replicas to the
cost of storage needed by the new one, the system ranks
the latter as busy and uses the method used for evaluating
costs of new replicas to assign it a storage cost. If there
are enough obsolete, passive or active replicas with lower
improvements in data access time than the new replica can
provide (as evaluated by the cost model), then these existing
replicas are replaced to make space for the new replica.

When a replica is created at a given node, that informa-
tion is propagated to the siblings and children of that node.
Subsequent access requests to these replicas are forwarded
to the closest replica site using the closest path. To deter-
mine that path, the bandwidth of the node’s connections are
evaluated to determine the most efficient routes to access

data. The replica routing tables are then updated accord-
ingly to reflect that information.

The replica routing tables implement some of the func-
tionality of the replica catalogs provided by the Data Man-
agement Component of the Globus toolkit [1, 5]. These ta-
bles provide a mapping between logical file names and their
physical locations on the Data Grid. We are working to ex-
tend further these functionalities, and integrate our model
with the Globus model.

6. Simulation Results

6.1. Simulation Configuration

Our study was carried out using the three-tier Data Grid
topology shown in Figure 2. Table 6.1 defines the parame-
ters used in our study.

Number of sites 28
Total number of Datasets 30
Connectivity bandwidth server-cache 1Gb/s

cache-cache 400Mb/s
cache-client 100Mb/s

Total number of requests 1000

Table 1. Simulation parameters

Initially all files are placed on the Main Storage Site
(root). Data access patterns are based on both temporal and
geographical data locality. Recently accessed files are more
likely to be accessed again and files accessed by a node are
more likely to be accessed by its siblings and children.

Within this model, each site was allocated storage re-
sources proportional to their location on the grid hierarchy.
The main storage site was allocated a Storage Element to
hold all of the master files. Client nodes, however, do not
have any storage space.

6.2. Results

Our experiments consisted of running simulation of the
model described above using three different scenarios. The
topology consists of a 3-tier tree, with one root (tier-0) and
three cache nodes (children) in the first tier (tier-1). Each of
these nodes has two cache nodes as its children in tier-2. In
addition, each cache node in tier-2 has three children client
nodes. In total, we used 18 client nodes, two cache levels
with 9 cache nodes, and one main storage site. The goal
of the simulations was to evaluate our replication approach
against the case where no replication was used. Scenario 1
represents the case where no replication is used, therefore
all data access requests were forwarded and serviced by the

main storage site. In scenario 2, dynamic replication is used
with small storage capacities allocated to cache nodes. In
scenario3, dynamic replication is used with larger storage
capacities at cache nodes. We used 6 datasets for our exper-
iments. Table 6.2 shows the range of data file sizes within
each dataset.

Datasets Used File Size range
Dataset 1 1KByte to 400KByte
Dataset 2 500KByte to 900KByte
Dataset 3 1MByte to 3MByte
Dataset 4 3.5MByte to 5.5MByte
Dataset 5 6MByte to 8MByte
Dataset 6 8.5MByte to 20 MByte

Table 2. Data File Sizes used in the Experi-
ments

Figure 4. Average Response Time of both Dy-
namic Replication and No Replication Policy
for different Dataset Sizes

Figure 4 shows the average response time of read re-
quests for the files used in the simulation. The file sizes
ranged from 100KB to 20GB. The results show that dy-
namic replication yields large improvement (60% on aver-
age) in the overall data transfer and response times within
the Data Grid. The results also show that the use of small

caches at intermediate nodes does not improve the data ac-
cess performance of large datasets on the Grid. With small
storage space available, intermediate nodes spend a lot of
time adding new replicas and deleting older ones. Since
data accesses are based on both temporal and geographical
locality, deleted replicas might be needed at a later time.
The replica manager needs then to free space to add new
replicas when their access cost is higher than that of exist-
ing ones.

The chart also shows that the average response time of
data requests for scenario 1 and scenario 2 are similar when
the size of data files is less than 4GB. In these cases cache
sizes do not affect much the overall data transfer on the Data
Grid. However, for file sizes larger than 4GB cache, sce-
nario 1 and 2 produce the same results while the use of
larger storage spaces at cache nodes yields better perfor-
mance. In this latter case, the frequently requested replicas
do not compete over available space.

Results from our experiments also show that data trans-
fer costs and bandwidth consumption decrease dramatically
with the use of dynamic replication. Our results show that
bandwidth consumption decreases by almost 30% from sce-
nario 2 to scenario 3.

While running the simulation, we also found out that
with higher network bandwidths, the performance of high
workload scenarios increases noticeably. Our replication
technique yields better performance with the use of larger
file sizes and with an appropriate allocation of storage space
at cache nodes. Our results are very promising and show
that dynamic replication improves dramatically the perfor-
mance of the overall Data Grid.

7. Conclusions

In this paper we described the design of our Data Grid
simulator GridNet. We gave a description of our simulation
model and simulated configurations. We presented initial
performance results of replication using a hierarchical grid
topology with various scenarios.

We have begun addressing the problem of replication in
Data Grid environments by investigating the use of a de-
centralized dynamic replication services that can be used to
improve data access time, data availability, bandwidth con-
sumption, and scalability of the overall system. We have
also used a cost function that dynamically evaluates the
replica placement policy by comparing the replica mainte-
nance costs and data access gains of creating a replica at any
given location.

Our results are very promising, and showed that dynamic
replication decrease data transfer costs and improve data ac-
cess performance on the Data Grid . We note that our ap-
proach has significant advantages. First it is based on de-
centralized and distributed computing model, and second it

dynamically adapts to both user and network behavior while
improving the performance of the overall system.

In future work we plan to validate our model on real Data
Grids. We are also interested in exploring different repli-
cation algorithms and cost models. Additionally we plan
on integrating our services with the Replica Location Sys-
tem [5] and the Globus Toolkit [3].

Acknowledgment
The authors express their gratitude to Dr. Carl Kesselman
for his help and discussions of Data Grid architectures.

References

[1] W. Allcock, I. Foster, V. Nefedova, A. Chervenak, E.
Deelman, C. Kesselman, J. Lee, A. Sim, A. Shoshani,
B. Drach, D. Williams. “High-Performance Remote
Access to Climate Simulation Data: A Challenge
Problem for Data Grid Technologies.” Proceedings of
SC 2001, Denver, CO, November 2001.

[2] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak,
I. Foster, C. Kesselman, S. Meder, V. Nefedova, D.
Quesnel, S. Tuecke, “Secure, Efficient Data Trans-
port and Replica Management for High-Performance
Data-Intensive Computing,” IEEE Mass Storage Con-
ference, 2001.

[3] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, C.
Salisbury, S. Tuecke, “The Data Grid: Towards an Ar-
chitecture for the Distributed Management and Anal-
ysis of Large Scientific Datasets,” Journal of Network
and Computer Applications, 23:187-200, 2001.

[4] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar,
K. Stockinger, F. Zini, “Simulation of Dynamic Grid
Replication Startegies in OptorSim,” Proc. Of the 3rd
Int’l IEEE workshop on Grid Computing (Grid 2002),
Baltimore, USA, November 2002.

[5] A. Chervenak, E. Deelman, I. Foster, L. Guy, W.
Hoschek, A. Iamnitchi, C. Kesselman, P. Kunst,
M. Ripneau, B. Schwartzkopf, H. Stockinger, K.
Stockinger, B. Tierney, “Giggle: A Framework
for Constructing Scalable Replica Location Ser-
vices.” Proceedings of Supercomputing 2002 SC2002
November 2002.

[6] The European Data Grid Project. The DataGrid Archi-
tecture 2001. http://www.eu-datagrid.org

[7] I. Foster, C. Kesselman, “Globus: A Metacomputing
Infrastructure Toolkit,” Intl J. Supercomputer Appli-
cations, 11(2):115-128, 1997.

[8] I. Foster, C. Kesselman, S. Tuecke. “The Anatomy of
the Grid: Enabling Scalable Virtual Organizations.”
International J. Supercomputer Applications, 15(3),
2001.

[9] I. Foster, C. Kesselman, “A Data Grid Reference Ar-
chitecture - Draft of February 1, 2001”, GriPhyN tech-
nical report GRIPHYN 2001-12, 2001.

[10] I. Foster and C. Kesselman (eds.), “The Grid:
Blueprint for a New Computing Infrastructure”, Mor-
gan Kaufmann, 1999.

[11] I. Foster, “The Grid: A New Infrastructure for 21st
Century Science”, Physics Today, 54 (2). 2002.

[12] Grid Physics Network (GriPhyN).
http://www.griphyn.org

[13] H. Lamehamedi, B. K. Szymanski, Z. Shentu, E.
Deelman, “Data Replication Strategies in Grid Envi-
ronments,” Proceedings of ICAP’03, Beijing, China
October 2002, IEEE Computer Science Press, Los
Alamitos, CA, 2002, pp. 378-383.

[14] NS network simulator. http://www-
mash.cs.berkeley.edu/ns.

[15] K. Ranganathan and I. Foster, “Identifying Dynamic
Replication Strategies For a High performance Data
Grid,” Proceedings of the International Grid Comput-
ing Workshop, Denver, November 2001.

[16] K. Ranganathan and I. Foster, “Design and Evalua-
tion of Replication Strategies for a High Performance
Data Grid,” International Conference on Computing in
High Energy and Nuclear Physics, Beijing, September
2001.

[17] K. Ranganathan, A. Iamnitchi, and I. Foster, “Im-
proving Data Availability through Dynamic Model-
Driven Replication in Large Peer-to-Peer Communi-
ties,” Global and Peer-to-Peer Computing on Large
Scale Distributed Systems Workshop, Berlin, Ger-
many, May 2002.

[18] R. Stevens, P. Woodward, T. DeFanti, and C. Catlett,
“From the I-WAY to the National Technology Grid”,
Communications of the ACM, 40 (11). 50-61. 1997.

[19] H. Stockinger, A. Samar, B. Allcock, I. Foster, K.
Holtman, B. Tierney , “File and Object Replication in
Data Grids,” Proceedings of the Tenth International
Symposium on High Performance Distributed Com-
puting (HPDC-10), IEEE Press, August 2001.

[20] S. Vazhkudai, S. Tuecke, I. Foster, “Replica Selec-
tion in the Globus Data Grid,” Proceedings of the First
IEEE/ACM International Conference on Cluster Com-
puting and the Grid (CCGRID 2001), pp. 106-113,
IEEE Computer Society Press, May 2001.

Biographies

Houda Lamehamedi is a graduate student pursuing a
Ph.D. degree in Computer Science at Rensselaer Polytech-
nic Institute under the supervision of Prof. B. Szymanski.
She received her MS in computer Science from Al-
Akhawayn University in Ifrane, Morocco in 1998. She is
currently working on developing a Data Grid management
middleware at Rensselaer Polytechnic Institute. She is also
working on a joint research project with IBM Almaden
Research Center to develop an autonomic grid management
middleware. Her interests include distributed and parallel
computing, and Grid computing.

Boleslaw K. Szymanski is a Professor at the Department
of Computer Science and a member of the Scientific
Computation Research Center, Rensselaer Polytechnic
Institute. He received his Ph.D. in Computer Science from
National Academy of Sciences in Warsaw, Poland, in 1976.
He was a post-doctoral fellow at the Aberdeen University,
Aberdeen, U.K. and on the faculty of the Department
of Computer and Information Sciences at University of
Pennsylvania. He is an author and co-author of more
than hundred fifty scientific publications and an editor of
three books. Dr. Szymanski is also an Editor-in-Chief of
Scientific Programming journal and on the editorial boards
of other journals. Dr. Szymanski is an IEEE fellow and a
member of the IEEE Computer Society, and Association
for Computing Machinery. Dr. Boleslaw Szymanski’s
interests include distributed and parallel computing and
system modeling and simulation. His recent work includes
network management, on-line network simulation, network
monitoring and network security.

Zujun Shentu is a graduate student pursuing the Ph.D.
degree in Computer Science at Rensselaer Polytechnic
Institute, working under the supervision of Professor
Szymanski. He obtained his MS and BE degree (both
in Computer Science and Engineering) from Zhejiang
University, P.R. China in 1999. When studying at Zhejiang
University, his research interests included MRPII, Product
Data representation and exchange, Artificial Intelligence
and Engineering Database Systems. After his graduation,
he joined Hangzhou Torren Software Company, where he
led a group to develop a full-function Object Data Manage-
ment System, which has been successfully integrated in a
commercial Geography Information System. His current
research interest include Distributed Computing, Data Grid

management and Network Simulation.

Ewa Deelman is a Computer Scientist at the Center for
Grid Technologies of the Information Sciences Institute at
USC. Dr. Deelman’s research interests include data man-
agement, request planning and performance evaluation in
Grid environments. At ISI, Dr. Deelman is part of the
Globus project, which designs in implements middleware
for the Grid. She received her PhD from the Rensselaer
Polytechnic Institute in Computer Science in 1997 in the
area of parallel discrete event simulation.

