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Abstract. This paper proposes a novel approach for directly tuning
the gaussian kernel matrix for one class learning. The popular gaussian
kernel includes a free parameter, σ, that requires tuning typically per-
formed through validation. The value of this parameter impacts model
performance significantly. This paper explores an automated method for
tuning this kernel based upon a hill climbing optimization of statistics
obtained from the kernel matrix.

1 Introduction

Kernel based pattern recognition has gained much popularity in the machine
learning and data mining communities, largely based upon proven performance
and broad applicability. Clustering, anomaly detection, classification, regression,
and kernel based principal component analysis are just a few of the techniques
that use kernels for some type of pattern recognition. The kernel is a critical
component of these algorithms - arguably the most important component.

The gaussian kernel is a popular and powerful kernel used in pattern recogni-
tion. Theoretical statistical properties of this kernel provide potential approaches
for the tuning of this kernel and potential directions for future research. Several
heuristics which have been employed with this kernel will be introduced and
discussed.

Assume a given data set X ∈ R
N×m. X contains N instances or observations,

x1,x2, ...,xN , where xi ∈ R
1×m. There are m variables to represent each instance

i. For every instance there is a label or class, yi ∈ {−1, +1}. Equation 1 illustrates
the formula to calculate a gaussian kernel.

κ(i, j) = e
−‖xi−xj‖2

2σ2 (1)

This kernel requires tuning for the proper value of σ. Manual tuning or brute
force search are alternative approaches. An brute force technique could involve
stepping through a range of values for σ, perhaps in a gradient ascent optimiza-
tion, seeking optimal performance of a model with training data. Regardless of
the method utilized to find a proper value for σ, this type of model validation is
common and necessary when using the gaussian kernel. Although this approach
is feasible with supervised learning, it is much more difficult to tune σ for unsu-
pervised learning methods. The one-class SVM, originally proposed by Tax and
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Duin [16] and also detailed by Scholkopf et. al. [12], is a good example of an
unsupervised learning algorithm where training validation is difficult due to the
lack of positive instances. The one-class SVM trains with all negative instances
or observations, and based upon the estimated support of the negative instances,
new observations are classified as either inside the support (predicted negative
instance) or outside of the support (predicted positive instance). It is quite pos-
sible, however, that there are very few or no positive instances available. This
poses a validation problem. Both Tax and Duin [16] and Scholkopf et. al. [12]
state that tuning the gaussian kernel for the one-class SVM is an open problem.

2 Recent Work

Tax and Duin [16] and Scholkopf et. al. [12] performed the groundbreaking work
with the one-class SVM. Stolfo and Wang [15] successfully apply the one-class
SVM to the intrusion data set that we use in this paper. Chen et. al. [3] uses
the one-class SVM for image retrieval. Shawe-Taylor and Cristianini [14] provide
the theoretical background for this method.

Tax and Duin [17] discuss selection of the σ parameter for the one-class SVM,
selecting σ based upon a predefined error rate and desired fraction of support
vectors. This requires solving the one-class SVM for various values of σ and the
parameter C, referred to in this paper as 1/νN = C. This method relies on
the fraction of support vectors as an indicator of future generalization. Tuning
of the parameter C does not significantly impact the ordering of the decision
values created by the one-class SVM; tuning of σ influences the shape of the
decision function and profoundly impacts the ordering of the decision values.
When seeking to maximize the area under the ROC curve (AUC), the ordering
of the decision values is all that matters. The technique in this paper is very
different from the one which is mentioned in [17]. We use the kernel matrix
directly, therefore the one-class SVM does not need to be solved for each change
in value of σ. Furthermore, tuning the kernel matrix directly requires the tuning
of only one parameter.

3 The One-Class SVM

The one-class SVM is an anomaly detection model solved by the following opti-
mization problem:

min
R∈R,ζ∈RN ,c∈F

R2 +
1

vN

∑
i

ζi (2)

subject to ‖ Φ(xi) − c ‖2≤ R2 + ζi and ζi ≥ 0 for i = 1, ..., N

The lagrangian dual is shown below in equation 3.



max
α

∑
i

αiκ(xi,xi) −
∑
i,j

αiαjκ(xi,xj) (3)

subject to 0 ≤ αi ≤ 1
vN

and
∑

i

αi = 1

Scholkopf et. al. point out the following reduction of the dual formulation
when modeling with gaussian kernels:

min
α

∑
i,j

αiαjκ(xi,xj) (4)

subject to 0 ≤ αi ≤ 1
vN

and
∑

i

αi = 1

This reduction occurs since we know that κ(xi,xi) = 1 and
∑

i αi = 1.
Equation 4 can also be written as minα′Kα. Shawe-Taylor and Cristianini [14]
explain that α′Kα is the weight vector norm, and controlling the size of this
value improves the statistical stability, or regularization of the model.

All training examples with αi > 0 are support vectors, and the examples
which also have a strict inequality of αi < 1

vN are considered non-bounded
support vectors.

In order to classify a new test instance, v, we would evaluate the following
decision function:

f(v) = κ(v,v) − 2
∑

j

αjκ(v,xj) +
∑
j,k

αkαjκ(xk,xj) − R2

Before evaluating for a new point, R2 must be found. This is done by finding
a non-bounded support vector training example and setting the decision function
equal to 0 as detailed by Bennett and Campbell [1]. If the decision function is
negative for a new test instance, this indicates a negative or healthy prediction. A
positive evaluation is an unhealthy or positive prediction, and the magnitude of
the decision function in either direction is an indication of the model’s confidence.
It is useful to visualize the decision function of the one class SVM with a small
two dimensional dataset, shown in figure 1. The plots corresponding to a small σ
value clearly illustrate that overtraining is occurring, with the decision function
wrapped tightly around the data points. Large values of sigma simply draw an
oval around the points without defining the shape or pattern.

4 Method

The behavior of the gaussian kernel is apparent when examined in detail. The
values lie within the (0,1) interval. A gaussian kernel matrix will have ones along
the diagonal (because ‖ xi − xi ‖= 0). Additionally, a value too small for σ will
force the matrix entries towards 0, and a value too large for σ will force matrix



Fig. 1. Visualization of one class SVM for three different values for σ. The source data,
named the cross data due to its pattern, is shown in the top left.

entries towards 1. There is also a property of all kernels, which we will refer to
as the fundamental premise of pattern recognition, which simply indicates that
for good models, the following relationship consistently holds true:

(κ(i, j)|(yi = yj)) > (κ(i, j)|(yi �= yj)) (5)

Consistent performance and generalization of the fundamental premise of
pattern recognition is the goal of all kernel based learning. Given a supervised
dataset, a training and validation split of the data is often used to tune a model
which seems to consistently observe the fundamental premise. However, in an
unsupervised learning scenario positive labeled data is limited or non-existent,
and furthermore, models such as the one-class SVM have no use for positive
labeled data in the training data.

A first approach towards tuning a kernel matrix for the one-class SVM might
lead one to believe that the matrix should take on very high values, indicating
that all of the kernel entries for the training data is of one class and there-
fore should take on high values. Although this approach would first seem to be
consistent with the fundamental premise in equation 5, this approach would be
misguided. The magnitude of the values within the kernel matrix is not an im-
portant attribute. The important attribute is actually the spread or the variance



of the entries in the kernel matrix. At first this may seem to be anomalous with
equation 5, however a closer examination of the statistics of a kernel matrix
illustrates why the variance of the kernel matrix is such a critical element in
model performance.

Shawe-Taylor and Cristianini point out that small values of σ allow classi-
fiers to fit any set of labels, and therefore overfitting occurs [14]. They also state
that large values for σ impede a classifiers ability to detect non-trivial patterns
because the kernel gradually reduces to a constant function. The following math-
ematical discussion supports these comments for the one-class SVM. Considering
again the one-class SVM optimization problem, posed as min α′Kα assuming
the a gaussian kernel, if the sigma parameter is too small and κ(i, j) → 0, the op-
timal solution is αi = 1/N . Equation 4, the objective function, will equate to 1/N
(since

∑
i(1/N)2 = 1/N). If the sigma parameter is too large and κ(i, j) → 1,

the optimal solution is the entire feasible set for α. Given these values for the
variables and parameters, the objective function will now equate to 1. The brief
derivation for the case when κ(i, j) → 1 follows:

α′Kα =
N∑

i=1

α2
i +

N∑
i=1

N∑
j=i+1

2αiαjκ(i, j)

=
N∑

i=1

α2
i +

N∑
i=1

αi

∑
j=1...i−1,i+1...N

αj

=
N∑

i=1

α2
i +

N∑
i=1

αi(1 − αi) =
N∑

i=1

α2
i +

N∑
i=1

αi −
N∑

i=1

α2
i =

N∑
i=1

αi = 1

The objective function bounds are (1/N, 1), and the choice of σ greatly in-
fluences where in this bound the solution lies.

4.1 The Coefficient of Variance

In order to find the best value for σ, a heuristic is employed. This heuristic takes
advantage of the behavior of the one-class SVM when using the gaussian kernel.
The mean and the variance of the non-diagonal kernel entries, κ(i, j)|i �= j, play
a crucial role in this heuristic. We will refer to the mean as κ̄ and the variance as
s2. For any kernel matrix where i, j ∈ {1, ..., N}, there are N2 − N off diagonal
kernel entries. Furthermore, since all kernel matrices are symmetrical, either the
upper or lower diagonal entries only need to be stored in memory, of which there
are l = (N2−N)/2. From here forward, the number of unique off diagonal kernel
entries will be referred to as l.

It is first necessary to understand the statistic used in this heuristic, the
coefficient of variance. The coefficient of variance is commonly referred to as
100 times the sample standard deviation divided by its mean, or 100s

x̄ . This
statistic describes the relative spread of a distribution, regardless of the unit
of scale. Due to the scale and behavior of κ̄ and s, this coefficient of variance



monotonically increases for gaussian kernels as σ ranges from 0 to ∞. Using the
sample variance rather than the standard deviation, different behavior occurs.
The monotonic increase of the coefficient of variance occurs because when σ
is small, s > κ̄; however, as σ increases, there is a cross-over point and then
s < κ̄. However, the variance of κ(i, j)|i �= j is always smaller than the mean of
κ(i, j)|i �= j. This property is what makes the variance of a kernel matrix such
a critical component for the direct tuning method. The proof follows. For the
sake of notation simplicity, xk ∈ (0, 1), k ∈ [l], will represent off diagonal kernel
entries, that is entries κ(i, j)|i �= j.

V AR(xk) ≤ x̄ =⇒
∑

k x2
k − 2x̄

∑
k xk + lx̄2

l − 1
≤ (l − 1)x̄

l − 1

=⇒ lx̄2 − 2lx̄2 − (l − 1)x̄ +
∑

k xk
2

l − 1
≤ 0

=⇒
∑

k

x2
k − lx̄2 − (l − 1)x̄ ≤ 0 =⇒

∑
k

x2
k −

∑
k

xk +
∑

k xk

l
(1 −

∑
k

xk) ≤ 0

=⇒ l
∑

k

x2
k −

∑
k

xk(l − 1) − (
∑

k

xk)2 ≤ 0

=⇒
∑

k

x2
k − (

∑
k

xk)2 + (l − 1)
∑

k

x2
k − (l − 1)

∑
k

xk ≤ 0

=⇒
∑

k

x2
k − (

∑
k

xk)2

︸ ︷︷ ︸
always ≤0

+(l − 1)
(∑

k

x2
k −

∑
k

xk

)
︸ ︷︷ ︸

always ≤0 for 0≤xk≤1

≤ 0

The fact that the variance of κ(i, j)|i �= j is always smaller than the mean of
κ(i, j)|i �= j indicates that s2/κ̄ is a fraction. Furthermore, as σ ranges from 0 to
∞, this fraction ascends to a global max. In order to protect against division by
zero and roundoff error, a small value, ε, can be added to the denominator. The
results in the following objective function for optimization which can be solved
quickly with a gradient ascent algorithm. Solving the optimization problem in
equation 6 leads to the best choice for σ.

max
σ

s2

κ̄ + ε
∀(i �= j) (6)

such that

κ(i, j) = e
−‖xi−xj‖2

2σ2 , κ̄ =

∑N
i=1

∑N
j=i+1 κ(i, j)
l

, s2 =

∑N
i=1

∑N
j=i+1(κ(i, j) − κ̄)2

l − 1



Figure 2 illustrates the impact of sigma on the kernel matrix. The dataset
used to create figure 2 was the ionosphere data which is available from the
UCI repository. These data are all of the negative class, and it is evident that
both the kernel element values and the dispersion of these values changes as σ
changes. The optimal value for σ for this dataset is 1, and the color visualization
of the kernel matrix when σ = 1 clearly indicates that there is dispersion in the
kernel matrix. However, it is also noticeable that the central tendency of the
kernel entries for this optimal σ is a small value, closer to zero than one. This
is consistent for all of the datasets. This is why it is important to use a metric
that detects relative dispersion and is not biased by the magnitude of the kernel
entries.

Fig. 2. Color visualization of a kernel matrix with various values for σ. This visualiza-
tion involves 100 observations where kernel entries close to 0 are light; darker entries
represent values closer to unity.

4.2 Why Direct Tuning of the Kernel Matrix Works

As mentioned previously, it is desirable to minimize α′Kα. α is sparse when
there are few support vectors, and this sparseness is typically desirable to mini-
mize complexity and improve regularization. However, meaningless sparse solu-
tions for α can occur as all κ(i, j) → 0. Meaningful sparse solutions for α occur
when the kernel matrix entries are not concentrated either towards 0 or 1, but
are showing good dispersion and there is payoff in the optimization to select the



few instances which clearly define the margin of the density approximated by the
one-class SVM. Although the variance, s2, is a good indicator of the dispersion
in the kernel matrix, it is biased towards a larger σ since variance is affected by
unit of scale or magnitude. s2/(κ̄+ε) is robust against unit of scale. This statistic
illustrates the dispersion of a distribution regardless of scale. For the one class
SVM, the optimal value for σ and maximum value for s2/(κ̄+ε) typically occurs
as σ increases from 0 and the kernel entries first begin to illustrate dispersion.
When there is maximal dispersion in the kernel matrix, the values assigned to α
will reflect the behavior and relationships of observations, which is the purpose
of the statistical learning. Maximal dispersion of the kernel matrix also supports
the fundamental premise of pattern recognition. When σ is not properly tuned,
the values assigned to α will be erroneously based upon the behavior of the
optimization problem or the optimization algorithm used to solve the problem.

5 Experimental Results

In order to evaluate the performance of the direct tuning heuristic, several ex-
periments were conducted. The data included three benchmark sets: banana,
chessboard, and ionosphere (from UCI repository). Additionally, two computer
intrusion datasets named Schonlau and Sick, after their respective creators, are
also examined. The Schonlau data involves determining authenticity of a user
based on UNIX commands. This data was originally discussed in ([4, 5, 13]) and
the actual data used in this paper was also discussed in ([6–8]). The Sick data was
originally examined in [11]. The parameter ν is set to .5 for every experiment.

Dataset dimensions positive negative comment

Banana 2 50 50 see ([9])

Chessboard 2 50 50 www.cs.wisc.edu/
∼olvi/data/check1.txt

Ionosphere 34 126 225 UCI Repository

Schonlau 26 231 4769 www.schonlau.net

Sick 137 250 5143 see ([11])

For each dataset, one half of the negative class was used for training the
one-class SVM and the test data comprised of the other half of the negative
class and all members of the positive class. The same split remained consistent
for all experiments for the purposes of control and consistency. The performance
measure utilized is the area under the receiver operating characteristic curve
(AUC).

The three benchmark datasets clearly illustrated optimal performance when
s2/(κ̄ + ε) is optimal. For each of the benchmark solutions, a gradient ascent
algorithm was tested and converged on the optimal σ within 4-6 iterations de-



Fig. 3. Experimental results for three benchmark datasets.

pending on the initial values and dataset. An initial value of 1 for σ seemed to
work well since most of the optimal values for σ ranged between .1 and 10.

Fig. 4. Experimental results for two computer intrusion datasets.

The two computer intrusion datasets did not clearly indicate this same type
of ideal performance. The Schonlau dataset performed the worst by far, and the
Sick dataset did indicate a region of good performance. The value of σ seemed
indifferent for the Sick data.

6 Conclusions

Direct tuning of the gaussian kernel matrix is a novel and promising approach
for the necessary tuning of the powerful gaussian kernel. The heuristic proposed
is grounded and supported with underlying theory. The significance of tuning
the gaussian kernel for unsupervised learning applies directly to ensemble meth-
ods. Techniques such as bagging [2], random subspace selection [10], and fuzzy
aggregation techniques [6, 7] can be employed for unsupervised learning with the
gaussian kernel.

Future research could involve automated tuning approaches for supervised
learning, however this approach will clearly have to outperform the traditional
technique of validation. Direct tuning for supervised learning would be faster,
but first it needs to be shown that it is also just as accurate as validation.
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