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Abstract

To address the problem of unsupervised outlier detection
in wireless sensor networks, we develop an algorithm that
(1) is flexible with respect to the outlier definition, (2) works
in-network with a communication load proportional to the
outcome, and (3) reveals its outcome to all sensors. We ex-
amine the algorithm’s performance using simulation with
real sensor data streams. Our results demonstrate that the
algorithm is accurate and imposes a reasonable communi-
cation load and level of power consumption.

1. Introduction

Outlier detection, an essential step preceding most any
data analysis routine, is used either to suppress or amplify
outliers. The first usage (also known as data cleansing) im-
proves robustness of data analysis. The second usage helps
in searching for rare patterns in such domains as fraud anal-
ysis, intrusion detection, and web purchase analysis (among
others).

Several factors make wireless sensor networks (WSNs)
especially prone to outliers. First, they collect their data
from the real world using imperfect sensing devices. Sec-
ond, they are battery powered and thus their performance
tends to deteriorate as power is exhausted. Third, since
these networks may include a large number of sensors, the
chance of error accumulates. Finally, in their usage for se-
curity and military purposes, sensors are especially prone to
manipulation by adversaries. Hence, it is clear that outlier
detection should be an inseparable part of any data process-
ing routine that takes place in WSNs.

Simply put, outliers are events with extremely small
probabilities of occurrence. Since the actual generating dis-
tribution of the data is usually unknown, direct computa-
tion of probabilities is difficult. Hence, outlier detection

methods are, by and large, heuristics. Because the problem
is fundamental, a huge variety of outlier detection meth-
ods have been developed. In this paper we focus on non-
parametric, unsupervised methods.

We develop a technique for the computation of outliers in
WSNs. The typical WSN environment poses several restric-
tions on computation: (1) it must be done ”in-network” to
reduce both bandwidth and energy usage [18], (2) it must be
resilient to sensor failure, (3) it must accommodate stream-
ing, or dynamically updated, data. In addition to the above
requirements, the algorithm presented here has also the fol-
lowing properties: (1) it is generic – suitable for many out-
liers detection heuristics, (2) it works in-network with a
communication load proportional to the outcome (i.e. the
number of outliers reported), (3) it is robust with respect to
data and network change, (4) the outcome is revealed to all
of the sensors.

We exemplify the benefits of our algorithm by imple-
menting it using two different outlier detection heuristics
and simulating 53 sensors using the SENSE sensor network
simulator [13] with real sensor data streams. Our results
show that the algorithm converges to an accurate result with
reasonable communication load and power consumption. In
most tested cases, our algorithm’s performance bests that of
a centralized approach.

2. Related work

2.1. Outlier detection

Outlier detection is a long studied problem in data anal-
ysis; hence, we provide only a brief sampling of the field.

Hodge and Austin [19] present a survey focusing on out-
lier detection methodologies based on machine learning and
data mining. These include distance and density-based un-
supervised methods, feed-forward neural networks and de-
cision tree-based supervised methods, and auto-associative
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neural network and Hopfield network-based methods. Bar-
nett and Lewis [6] provide a survey of outlier detection
methodologies in the statistics community.

Our algorithm is flexible in that it accommodates a whole
class of unsupervised outlier detection techniques such as
(1) distance to kth nearest neighbor [26], (2) average dis-
tance to the k nearest neighbors [4], and (3) the inverse of
the number of neighbors within a distance α [22] (see Sec-
tion 3 for details).

2.2. Wireless sensor networks

WSNs combine the capability to sense, compute, and co-
ordinate their activities with the ability to communicate re-
sults to the outside world. They are revolutionizing data
collection in all kinds of environments. At the same time,
the design and deployment of these networks creates unique
research and engineering challenges due to their expected
massive size (up to thousands of sensor nodes), their of-
ten random and hazardous deployments, obstacles to their
communication, their limited power supply, and their high
failure rate.

The software for WSNs needs to be aware of their lim-
itations and features. The most important among these are
limited power, high communication cost, and limited direct
communication range. In [17], Estrin et al. introduce scal-
able coordination as an important component of the needed
software. A survey of the state-of-the-art in WSNs is given
in in [3]. Another survey [2] focuses on challenges aris-
ing from specific applications such as military, health care,
ecology, and security.

Energy-efficiency, a cardinal WSN requirement, is often
achieved by minimizing communication using topology-
control algorithms that dictate the active/sleep cycles of sen-
sor nodes. Examples include Geographic Adaptive Fidelity
(GAF) [31], ASCENT [11], STEM [27], and ESCORT [9].
While the focus of this paper is on WSN outlier detection,
the challenge is the same as in the above mentioned works.
Hence, while we do not propose a topology-control algo-
rithm, we aim to design an energy-efficient algorithm by
minimizing the required communication overhead.

In [25], Palpanas et al. also propose a distributed WSN
outlier detection framework. However, in addition to nor-
mal sensor nodes, their algorithm assumes the availability
of high capacity nodes necessary for finding all global out-
liers. Furthermore, only the high capacity nodes will know
all global outliers at the algoritm’s completion. Our algo-
rthm is non-hierarchical and all sensors know all global out-
liers when the current epoch converges.

2.3. Data mining in large-scale dynamic
networks

Very recently, researchers have started to consider data
analysis in large-scale dynamic networks. The goal is to
develop techniques that are highly asynchronous, scalable,
and robust to network changes. Efficient data analysis algo-
rithms often rely on efficient primitives, so researchers have
developed several different approaches to computing basic
operations (e.g. average, sum, max, or random sampling)
on dynamic networks. Kempe et al. [21] and Boyd et al.
[8] investigate gossip based randomized algorithms. Jela-
sity and Eiben [23] develop the “newscast model” as part
of the DREAM project [28]. Both of the above approaches
use an epidemic model of computation. Bawa et al. [7] have
developed an approach in which similar primitives are eval-
uated to within an error margin. Wolff et al. [30] develop
a local algorithm for majority voting. Finally, some work
has gone into more complex data mining tasks: association
rule mining [30], facility location [24] (both based on lo-
cal majority voting), genetic algorithms [14], and k-means
clustering [16, 29].

3. Preliminaries

In this section, we provide necessary background defini-
tions and notations.

A distributed system architecture is a system of peers, pi,
each holding a set Si composed of mi points from D. Each
peer knows A, an outlier detection algorithm, and R, an
outlier ranking function. Peers communicate by exchanging
messages over a connected graph. We assume the graph
is undirected, messages are reliable, and each peer pi can
accurately maintain the list of its immediate neighbors, Ni,
in the graph. In other words, our algorithm works as long
as there exists, possibly unknown, a reliable path from each
peer to every other peer.

An outlier detection algorithm A takes a finite set of
points P ⊆ D and an outlier ranking function R : D×2D →
R+ and returns the top n outliers, denoted A[P ] (n is a
user-defined parameter). If n > |P |, then A[P ] returns
P . We make no assumptions about R except that it satis-
fies the following two axioms. Given x ∈ D, for all finite
P1 ⊆ P2 ⊆ D:

• (Anti-monotonicity) R(x, P1) ≥ R(x, P2);

• (Smoothness) if R(x, P1) > R(x, P2), then there ex-
ists z ∈ P2 \P1, such that R(x, P1) > R(x, P1∪{z}).

The first axiom is similar to the Apriori rule in frequent
itemset mining [1]. The second axiom, intuitively, states
that R changes gradually. As more points are added to P1,
the rating function changes gradually to R(x, P2). Some



example outlier rating functions which satisfy these axioms
include: the distance to the kth nearest neighbor, the aver-
age distance to the k nearest neighbors, and the inverse of
the population of an α neighborhood of x. However, some
previously proposed rating functions do not satisfy these ax-
ioms (e.g. LOF [10]).

To break ties, we assume there exists a fixed but arbitrary
total ordering, ≺, on D. Hence D is totally ordered with
respect to R and P as follows, x ≺R,P y if (i) R(x, P ) <
R(y, P ) or (ii) R(x, P ) = R(y, P ) and x ≺ y. Formally,
A, given P , returns

A[P ] = {x1, . . . , xn ∈ P : ∀1 ≤ i ≤ n

and y ∈ P \ {x1, . . . , xn}, y ≺R,P xi}.
Given R, a set P0 ⊆ P is called a support set of x ∈ D

over P if R(x, P ) = R(x, P0). Note, a unique smallest
support set need not exist. To break ties, we use ≺ to de-
fine a total ordering on the finite subsets of D as follows.
Given P1, P2 finite subsets of D, we define P1 ≺fin P2 if
(i) |P1| < |P2| or (ii) |P1| = |P2| and P1 is strictly lex-
icographically smaller than P2 with respect to ≺ (denoted
P1 ≺ P2). Since P is finite, then there exists a unique≺fin-
smallest support set of x over P – let [P |x] denote this set.

Finally, given Q ⊆ P , we write [P |Q] to denote
⋃

x∈Q

[P |x].

4. Distributed outlier detection

In this section, we describe a distributed algorithm by

which peers compute A
[⋃

i

Si

]
. The algorithm finds the

outliers among the global dataset (the union of all peers’
local datasets).

4.1 The algorithm

The peers will communicate by sending messages which
include a set of data points describing sensor samplings.
Each peer pi will maintain for every neighbor pj ∈ Ni the
set of points it has sent to pj , Si,j , and the set of points it
received from pj , Sj,i. We define the knowledge of pi as

S̄i = Si ∪
⋃

pj∈Ni

Sj,i. The algorithm is event based and em-

ploys the same logic once upon initialization and then again
whenever S̄i changes as a result of receiving a message, of
a change to Si, or of changes in Ni.

Whenever the algorithm is called, pi invokesA and com-
putes A = A [

S̄i

]
, SA = [S̄i|A[S̄i]]. Now, for each neigh-

bor pj ∈ Ni, pi must check if it has new information that
pj may not have but need. First of all, any of pi’s current
outliers and their supports (A, SA) may be needed by pj
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Figure 1. Two peers’ datasets. p1 holds the
circles and p2 holds the squares and each
data item defines Cartesian coordinate of the
center of the object.

since they could cause pj to update its own outliers. If, for
any of these points x, pi cannot be certain that pj has x (i.e.
x /∈ Sj,i), then x must be added to Si,j .

Second, pi may have points which would effect outliers
previously sent by pj , but these may not be accounted for in
the first part (i.e. may not be in A or SA). It suffices for pi

to send the support of all of the outliers in Si,j ∪ Sj,i. Any
of these points not in Sj,i must be added to Si,j . Therefore
Si,j must be a minimal fixed-point of the following equation
with S initially containing (A ∪ SA ∪ Si,j) \ Sj,i:

S = S ∪ ([S̄i|A[S ∪ Sj,i]] \ Sj,i). (1)

If the fixed-point is not contained in Si,j (i.e. there are
potentially points pj has not yet seen), then these extra
points are sent to pj via a packet broadcast.

Example: Assume R(x, S) is defined as the distance
to x′s nearest neighbor in S (k = 1) and A[S] is the top
rated outlier in S (n = 1). Consider the two peer datasets
in Figure 1 (p1 has circles, p2 has boxes). Observe that
the global outlier is (5, 0) since the distance to its nearest
neighbor is larger than that of every other point. In this
example, we assume the peers carry out the algorithm in
alternating order (of course, in real use, the peers operate
asynchronously). Initially S1,2 and S2,1 are empty.

p1 will compute A = A[S̄1] = {(0, 0)} and SA =
[S̄1|A] = {(0, 2)}. Then it computes the fixed-point. S is
set to A ∪ SA. Observe that [S̄1|A[S ∪ S2,1]] = [S̄1|A[S]]
= [S̄1|(0, 0)] = {(0, 2)}. Since this is already in S, then the
fixed-point computation is complete, S = {(0, 0), (0, 2)}.
S1,2 is set to S \ S2,1 = S and sent to p2.

Observe, at this point, p1 mistakenly assumes the global
outlier to be A = {(0, 0)}.

p2 receives S1,2, thus, S̄2={(0,0),(0,1.1),(0,2),(5,0),
(5,1.5),(5,2)}. It computes A=A[S̄2]={(5,0)} and
SA=[S̄2|A]={(5, 1.5)}. Note, if p2 were to send only
these points, p1 would not change its mistaken belief that
the global outlier is (0, 0). The fixed-point computation is



needed.
So, S is set to (A ∪ SA) \ S1,2 = {(5, 0), (5, 1.5)}. Ob-

serve that [S̄2|A[S∪S1,2]] = [S̄2|(0, 0)] = {(0, 1.1)}. Thus,
S becomes {(0, 1.1), (5, 0), (5, 1.5)}. It can be seen that
this is the fixed-point, so, S2,1 is set to S \ S1,2 = S which
is sent to p1.

p1 receives S2,1, thus S̄1 becomes
{(0,0),(0,1.1),(0,2),(0,3),(5,0),(5,1.5)}. Now p1 will
change its global outlier belief (because of the presence
of point (0, 1.1)) to A = {(5, 0)}. It can be seen that the
fixed-point will be contained in S1,2, so, p1 sends nothing
to p2.

Both p1 and p2 have the same (correct) global outlier
belief, (5, 0). This example illustrates the role of both types
of information described above.

�
It is easy to modify the algorithm to work in a streaming

setting: when a new point is sampled, Si, and consequently,
S̄i change. This requires that the same calculation is made
as in the case of a change in S̄i due to receiving a message.
If the algorithm needs to only consider points which were
sampled recently (i.e. employ a sliding window), this can be
implemented by adding a time-stamp to each point when it
is sampled. Under the assumption that the clocks of differ-
ent nodes are synchronized to a degree satisfying the needs
of the application, each node can retire old points regardless
of where they were sampled and at no communication cost
at all.

The pseudo-code of the algorithm is given in Algorithm
1 – the “do-until” loop is responsible for computing the
fixed-point of Equation (1). The algorithm assumes a slid-
ing window mode of work. The algorithm also assumes that
the addition of sensors during system operation is possible.
However, if sensors are removed (e.g. when their battery is
depleted) then their contribution to the computation is not
explicitly annulled until those points are retired with time. It
is easy to bypass the sliding window mechanism by setting
τ to infinity. Yet, in that case, it is reasonable to dictate that
points contributed by nodes which were removed should be
explicitly removed, at a messaging cost. Note that in the
“for” loop, the algorithm stores a list of all neighbors that
should receive an update, appends the list to the packet M ,
and then broadcasts M afterwards. All of pi’s immediate
neighbors will receive M and only those whose IDs are in
the included neighbor list will process the packet. This dras-
tically reduces the number of packet transmissions, making
the algorithm more energy-efficient.

4.2. Correctness

The correctness of the algorithm can be proven in the
following sense: if the data and network remain static,
then communication will eventually stop at which point all

Algorithm 1 Global Outliers Detection
Input of pi: Si, Ni, A, τ
Output of pi: A

[
S̄i

]
and

[
S̄i|A

[
S̄i

]]
Upon receiving ADD M such that M =
{(k1, Qk1) , . . .} from pj:
if some k� = i set Sj,i ← Sj,i ∪Qk�

Upon addition of pj to Ni:
set Si,j and Sj,i to ∅
Upon any change in S̄i, Ni:
retire points older than τ from S̄i and Si,j and Sj,i for all
pj ∈ Ni

set A← A [
S̄i

]
and SA← [

S̄i|A
[
S̄i

]]
let M be an empty message.
for all pj ∈ Ni

– set S ← (A ∪ SA ∪ Si,j) \ Sj,i

– do
– – set S ← S ∪ ([

S̄i|A [S ∪ Sj,i]
] \ Sj,i

)
– until no change in S
– if S � Si,j

– – append (pj , S \ Si,j) to M
– – set Si,j ← Si,j ∪ S
if M is not empty broadcast ADD M

peers’ outlier belief will equal A[
⋃

i Si] (the correct global
set of outliers). Note that the algorithm does not require
that the data be static. It can handle dynamic or streaming
data. Naturally, the correctness proof only holds if the data
remains static long enough for convergence to occur.

The proof proceeds in two steps. First, barring data or
network change, it can be shown that the algorithm does
terminate, and, at this point, all nodes have the same outlier
beliefs and support (Theorem 4.1). Next, it can be proven
that the consistent outlier belief shared by all peers is indeed
the correct one (Theorem 4.2).

Theorem 4.1. If for all sites pi, Si and Ni do not change,
then the algorithm will terminate and all sites will agree on
their outliers and supports in the sense that: for all pi, pj ,
A[S̄i] = A[S̄j ] and [S̄i|A[S̄i]] = [S̄j |A[S̄j ]].

The proof, omitted here for lack of space, first shows that
A[S̄i] = A[Si,j ∪ Sj,i] = A[S̄j ]. Then, it demonstrates that
[S̄i|A[S̄i]] = [S̄j |A[S̄j ]] from which the theorem follows.

Theorem 4.2. If for all sites pi, Si and Ni does not change,
then the algorithm will terminate and all sites will pro-
duce the globally correct outliers, i.e. for all pi, A[S̄i] =
A[

⋃
k Sk].

The proof, again omitted for the lack of space, shows by
contradiction thatA[S̄1] = A[

⋃
k Sk].

Comments: (1) The proof of Theorem 4.1 does not use
the smoothness axiom. Hence, for any anti-monotonic R,
Theorem 4.1 holds, i.e. the algorithm converges and, at that



point, all peers will agree on their outlier belief and their
support. However, without the smoothness axiom, Theorem
4.2 does not hold, i.e. the consistent outlier belief might not
be the correct one. There are counter-examples which show
how an anti-monotonic, but not smooth R cause the algo-
rithm to terminate with all peers agreeing upon an incorrect
set of outliers.

(2) In general, it is not clear how to efficiently compute
the minimum support set of a point x over a set P . We do
not address the issue in this paper. However, efficient com-
putation is straight-forward for the following rating func-
tions that we consider in experiments, distance to nearest
neighbor and average distance to the kth nearest neighbor.

5. Evaluation

5.1 Experimentation setup

We used simulation to measure the average total values
of the following metrics: (1) energy consumed per node
for transmitting and receiving network packets (measured
in Joules), and (2) number of data points transmitted by the
algorithm per node. We also collected data on the num-
ber of packets transmitted, but did not report it because
the number of transmitted data points is a more dominant
factor affecting energy consumption. Recall that using our
scheme, one packet broadcast may replace that of many.

We compared the algorithm’s results against two sepa-
rate performance baselines. One, we implemented a purely
centralized global outlier detection algorithm, in which all
nodes periodically sent their sliding window contents to a
designated fusion node, which then calculated the global
outliers and flooded the results out to all nodes in the net-
work. This occurred at the same frequency at which the dis-
tributed algorithm was executed. Two, we measured the en-
ergy consumption of the network in a strictly idle state. The
comparisons (where applicable) are shown in the graphs in
this section.

For experimentation, we used real-world sensor data
streams from [20], in which distributed data points share
spatial and temporal properties. The data we used was com-
prised of sensor readings (e.g. heat, light, temperature)
from 53 sensors which were periodically transmitted to a
base station. Missing data points were filled by the aver-
age values of the data points within a sliding window be-
fore the missing point as we believe that the majority of
these points resulted from packets dropped in transit to the
base station and not by faulty sensor components. The data
points include the following features: (1) ID of the sensor
that produced the point, (2) epoch (sequential number de-
noting the data points position in the entire stream), (3) data
value (temperature), (4) location coordinates of the sensor.
The energy model was based on the Crossbow mote speci-

fications [15] and used a transmit/receive/idle power setting
of 0.0159mW/0.021mW/3e-6mW, respectively (assuming a
3V power source).

We tested our algorithm using outliers defined by both
distance to nearest neighbor and average distance to k near-
est neighbors using the SENSE wireless sensor network
simulator [13]. We simulated a 53-node network with sen-
sor node placed according to specification in [20]. This
resulted in a network testbed size of about 50m by 50m.
We used the free-space signal propagation model and the
fault-tolerant Self-Selective Routing (SSR) protocol [12] in
the networking layer. The nodes were configured to have a
transmission radius of 6.77m, to evaluate the algorithm in
a true distributed setting. However, for the centralized ver-
sion of the algorithm, we used radius of 16.23m for the fol-
lowing reason. Wireless routing protocols, including SSR,
experience extensive collisions and delays in a multi-hop
setting when the network density is high. In our applica-
tion, the distributed version uses one-hop communications
(i.e. nodes communicate only with neighbors) whereas the
centralized version relies on multi-hop communication for
nodes to reach the fusion node. Hence, with equal transmis-
sion ranges, routing difficulties prevented the centralized al-
gorithm from matching the accuracy of the distributed al-
gorithm. Therefore, we measured the results for centralized
algorithm using larger transmission range that required at
most a few hops from every node to the fusion node.

All experiments were run for 1000 seconds of simulated
time. As shown in the following graphs, we collected per-
formance results for different algorithm parameter values
of (1) the length of the node’s sliding window, w, (2) the
number of outliers to be reported, n, and (3) the number of
neighbors used in the distance-based outlier detection rou-
tines, k. The labeling of the data in the graphs is as follows:
(1) NN for results using distance to nearest neighbor out-
lier detection with the distributed algorithm, (2) KNN for
results using average distance to k nearest neighbors outlier
detection with the distributed algorithm, (3) Centralized for
results with the centralized algorithm, (4) Idling for energy
use with the network idling.

The energy consumption at reception was by far the
dominant term in energy use, so we did not include total
energy graphs as they are nearly identical to receiving en-
ergy graphs.

Only one set of the centralized results is presented in
each graph, as distance to nearest neighbor and average
distance to k nearest neighbors outlier detection yielded the
same results for the centralized approach. It should also
be noted that the results generated by our algorithm were
highly accurate. Node’s reported the correct outliers 99%
of the time. We believe that packet losses were the cause of
any incorrect results.
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Figure 2. Transmitting and receiving energy
consumed per node vs. w (n=4, k=4)

5.2 Experimentation results

The sliding window size: As Figure 2 shows, NN is
the most energy-efficient for large window sizes. When the
window size grows, the number of new outliers communi-
cated from from round to round decreases in NN because of
larger number of redundant values amongst the data points.
The opposite is true for KNN because multiple supporting
points per reported outlier are transmitted by the algorithm.
Under the centralized version of the algorithm, as w grows,
nodes must send the entire contents of their sliding win-
dows to a fusion node for outlier detection, so the energy
use grows.

Our algorithm’s decreasing energy use with larger win-
dow sizes promotes running the outlier detection with large
sliding window. Such runs uncover the level of ”outlier-
ness” of a data point within a varying scope of other data
points in the network. A centralized approach clearly does
not support such runs.

It is interesting to see in Figure 3 that the centralized ver-
sion performs better than the distributed versions in terms
of transmitted points, even though the distributed versions
conserve more energy. This is because the difference in
transmission radii between the two algorithms. With the
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larger transmission radius required by the centralized ver-
sion, over-listening by each node to messages addressed to
other nodes also increased. We also note that the receiv-
ing energy is directly proportional to the number of points
sent by each node (with different proportionality factor for
each algorithm), so we omit the graphs showing the average
number of points per node from further discussion.

The number of reported outliers: Network perfor-
mance under our algorithm is largely affected by the num-
ber of outliers to be reported which define the number of
points transmitted per node. This is true for both NN and
KNN. In Figure 4, both NN and KNN yield better re-
sults than the centralized algorithm up to certain thresholds,
above which NN starts to drain the most energy from the
network. At this point, the effect of the degree of data point
transmissions in NN is greater than that of over-listening in
centralized algorithm.

What is interesting is that as n increases, KNN starts to
yield better network performance than NN. There are no
clear explanations for this particular behavior. One might
expect that since NN uses only one supporting point per
outlier, while KNN uses four supporting points, NN should
be more efficient. However, we must remember that it is
possible for NN and KNN to yield different sets of out-
liers. For the examples illustrated in Figure 4, it is highly
likely that KNN calculated groups of outliers such that a
significant number of the supporting points for those out-
liers (within a given round) overlapped. The effect of this
behavior, regarding data point transmission overhead, was
probably much softer than the behavior that occurred in NN,
where a significant number of redundant points were most
likely not encountered.

From this test, we conclude that KNN yielded the most
efficient results for the given range of n so the performance
may not strictly rely on the values of the algorithmic param-
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Figure 4. Transmission and receiving energy
consumed per node vs. n (w=20, k=4)

eters, but on the nature of the data itself as well.

The number of nearest neighbors used for outlier de-
tection: Amongst all of the parameters discussed in these
experiments, k impacts the average node’s behavior the
least (all other parameters being equal). This is expected
for NN and centralized versions of the algorithm, since k
does not affect the number of transmitted points for these
versions. As previously mentioned, for NN, only one sup-
porting point per outlier is used at all times and for the cen-
tralized algorithm, supporting points are not transmitted at
all. Hence, the network’s energy use is practically unef-
fected by changes in k for NN and centralized versions.
Over-listening in the centralized versions still results in the
largest energy use among all three versions, as shown in
Figure 5. While KNN is more efficient than the centralized
versions of the algorithm, it falls behind NN as k increases.

To further qualify these results, using KNN is benefi-
cial because it allows flexibility in determining the confi-
dence of an outlier by using more points to determine an
outlier. For the range of k values shown in the graphs, our
algorithm bests the performance of the centralized version,
especially for higher k values. Depending on the applica-
tion and available hardware resources, the small reduction
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in performance of KNN over NN might be worth the bur-
den.

6 Conclusions

We addressed the problem of unsupervised outlier detec-
tion in WSNs. We developed a solution that (1) allows flex-
ibility in the heuristic used to define outliers, (2) works in-
network with communication load proportional to the out-
come, (3) is robust with respect to data and network change,
and (4) reveals its output to all of the sensors.

We evaluated the outlier detection algorithm’s behavior
on real-world sensor data using a simulated wireless sensor
network. These initial results show promise for our algo-
rithm in that it outperforms a strictly centralized approach
under some very important circumstances. Our algorithm is
well suited for applications in which the confidence of an
outlier rating may be calculated by either an adjustment of
sliding window size or the number of neighbors used in a
distance-based outlier detection technique. We assert that
these applications are critical for resource-constrained sen-
sor networks for various reasons. One reason is that com-
munication is a costly activity motivating the need for only



the most accurate data to be transmitted to a client applica-
tion. Another reason is that emerging safety-critical appli-
cations that utilize wireless sensor networks will require the
most accurate data, including outliers. This work represents
our contribution towards enabling efficient data cleaning so-
lutions for these types of applications.
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