
 1

Abstract: There is a significant challenge in designing,

optimizing, deploying and managing complex sensor networks
over heterogeneous communications infrastructures. The ITA
Sensor Fabric addresses these challenges in the areas of sensor
identification and discovery, sensor access and control, and
sensor data consumability, by extending the message bus
model commonly found in commercial IT infrastructures out
to the edge of the network. In this paper we take the message
bus model further into a semantically rich, model-based
design and analysis approach that considers the sensor
network and its contained services as a Service Oriented
Architecture. We present an application of a hierarchic
schema for nested service definitions together with an initial
ontology that describes the assets and services deployed in a
sensor network infrastructure.

Index Terms: Sensor networks, Ontology, Service
composition, Service modeling

I. INTRODUCTION

The diversity of sensors, actuators and networking
technologies used in intelligent environments provides
significant challenges in the areas of identification and
discovery, access and control, data consumability and
trusted policy-based interoperability. The ITA Sensor
Fabric [1,3], developed as part of the International
Technology Alliance in Network and Information Science
[2], has addressed these challenges to provide an extensible
middleware layer to interconnect sensors with users (human
or software agents) that need to consume the data generated
by them. The Sensor Fabric (or Fabric) extends the message
bus architectural model to the edge of the network. It spans
between the reliable communications infrastructures found
in data centers and the intermittent connectivity of deployed
sensors and mobile personnel connected using ad hoc
wireless network technology. The Fabric provides universal
access to sensor data from any point on the network. It
maximizes the availability and utility of the data to users,
whilst hiding the complexity of the underlying network
infrastructure.

Research was sponsored by US Army Research laboratory and the UK
Ministry of Defence and was accomplished under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this
document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the US
Army Research Laboratory, the U.S. Government, the UK Ministry of
Defense, or the UK Government. The US and UK Governments are
authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

The Fabric is an extensible middleware platform with each
participating node interconnecting with neighbours to form
a lightweight service bus. Its plug-in architecture allows
new functions such as filters, transformations, policy
enforcement, security, data fusion and event detection
algorithms to be easily deployed within the network and
selectively applied to sensor messages as they flow through
the network.

In addition to its use with deployed sensors, the Fabric is
also used as a research and development tool. New
algorithms can be tested using the Fabric’s record and
playback, sensor simulation, and performance measurement
support. New sensors can trialed in an environment that
bridges between simulation and fielded systems.

Central to the functioning and management of the message
bus is a distributed Registry, an evolution of the Service
Registry commonly used with a Service Oriented
Architecture (SOA). Built using the ITA Gaian dynamic
distributed federated database technology [4], the Fabric
Registry is used to track all aspects of the message bus’
operation including assets, users, topology, and plug-in
functions. The Fabric Registry also tracks tasks being
performed using the Fabric. These are groupings of sensors
and users that are assigned to some activity, for example
the users and assets associated with water level monitoring
in a flood detection system. Tasks may be used to prioritise
resources interconnected using the Fabric; for example,
data from one geographical area may be given priority over
another in the case of extreme weather conditions leading
to flooding. The Fabric does not establish task priorities
itself; this is left to external applications that consume the
data provided through the Fabric.

The Fabric has been developed as a lightweight service bus
for sensors, which is intended to augment existing
Enterprise Service Bus technologies. Sensing environments
provide different challenges to those in highly reliable
business infrastructures and the Fabric has been designed
with these in mind. However, there are advantages in
thinking of the sensor assets and the plug-in algorithms
deployed onto the bus as services in the context of a
Service Oriented Architecture (SOA). This has previously
been discussed in [5], but this paper focuses on extending
the message bus at the edge model to a service bus at the

Sensors as a Service Oriented Architecture:
Middleware for Sensor Networks

John Ibbotson, Christopher Gibson, Joel Wright, Peter Waggett, IBM U.K Ltd, Petros Zerfos, IBM Research, Boleslaw K.
Szymanski, Rensselaer Polytechnic Institute, David J. Thornley, Imperial College London

{john_ibbotson, gibsoncr, joel.wright, peter_waggett }@uk.ibm.com, pzerfos@us.ibm.com, szymab@rpi.edu,
djt@doc.ic.ac.uk

admin
Text Box
The 6th International Conference on Intelligent Environments - IE'10 Kuala Lumpur, Malayasia July 19-21, 2010, pp. 209 - 214.

 2

edge. We describe a semantically rich, model-driven
approach to a practical SOA for sensor networks.

In the remainder of this paper, we first present a motivating
use case for an SOA on a sensor network middleware in
section 2. In section 3 we describe an approach to modeling
services on the sensor network using annotated UML
Activity diagrams, which is expanded to include service
composition in section 4. In section 5 we describe a draft
ontology for modeling the assets and services contained
within the network. Finally we end with some conclusions
and outline further work to develop an environment for
describing, modeling, analysing and deploying services
onto the sensor network SOA infrastructure.

II. A MOTIVATING SCENARIO
There is a trend in healthcare that encourages the long-term
treatment of patients in their own homes for both clinical
and economic reasons, particularly for elderly patients who
value their independence. Sensor technology can aid this by
monitoring both the patient’s vital signs (blood pressure,
temperature, pulse rate etc.) and activities (movements,
utterances, noise) using mobile sensors attached to the
patient or fixed sensors located around the home. In
addition, sensors can monitor a patient’s living environment
and daily activity patterns. For example, smart software
agents may use motion sensors within the home to learn
about the patient’s normal behavior patterns and detect any
deviation from that behavior; if there is no movement
within the home by 8:00am, then issue an alert. This could
be augmented by personal alarm systems activated by the
patient in case of distress. In the same way that home
automation and personal computers are linked by wireless
technology, similar networking techniques may be used to
create a home medical hub node (MediHub) that integrates
home sensors for medical monitoring. These sensors may
communicate with the hub by different network protocols
such as Zigbee [6] or Bluetooth [7]. Using a message bus
model, such as that provide by the Fabric, this
infrastructure can be connected with emergency services
and other relevant patient support to provide effective
patient care.

We illustrate this with a use case within this scenario that
shows the response to an emergency patient alert generated
by the MediHub node within a patient’s home. Note that the
emergency response described in this use case is a specific
task within the context of a longer running patient
healthcare management process.

In response to the detection of an emergency in the
patient’s home the MediHub node publishes an alert
(MedAlert), which is received by the ambulance dispatch
service (which will have subscribed to all alerts from all
MediHub nodes in its locality) and the local hospital (which
will have subscribed to alerts from all patients under its
care). The alert triggers the dispatch of an ambulance to the
patient’s address. Whilst the ambulance is in transit,
paramedics in the ambulance and medical teams in the

hospital’s accident and emergency (A&E) department
automatically receive the patient’s sensor medical data
(MedData). This allows the hospital team to provide
predictive diagnosis to the paramedics before their arrival at
the patient’s home.

Ambulance
to patient

Ambulance
to Hospital

Ambulance
Dispatch

A&E

Intensive
Care

NextOfKin

MedAlert

A
m

bD
at

a

Fabric Bus

Di
ag

no
si

s

MedData

M
ed

Da
ta

M
ed

A
le

rt

A
le

rt

Hospital

Home:MediHub

S1

S2

S3

S4

Patient

Patient’s Home

Fig 1: A Medical use case for the Sensor Fabric

Once the patient has been transferred to the ambulance, the
patient vital signs monitored within the ambulance provide
data feeds via the Ambulance node AmbData to the hospital
that in turn can continue to provide diagnostic information.
The patient monitoring data is also used to prepare other
resources in the hospital, such as intensive care, for the
reception of the patient. The medical data transferred via
the sensor network message bus will include other data
such as GPS location from the ambulance so that the
dispatcher and medical teams can monitor its progress en
route to the hospital. Policy-driven transformations can
transcode the data to different formats and resolutions that
are appropriate for display and consumption by various
devices (e.g. smart-phones, screens on board ambulances,
hospital medical record systems, etc.) with heterogeneous
display and processing capabilities.

In addition to the medical staff, members of the patient’s
family (NextOfKin) can subscribe to MedAlert events and
information about the patient (such as the name of the
hospital to which the patient is taken) using, for example, a
Smartphone application or a message bus/SMS bridge.
Policies for access control and encryption within the
message bus ensure that privacy regulations are met as
messages flow across the bus between the patient’s
MediHub, the ambulance dispatch service, the hospital, the
ambulance and the patient’s family members. Such policies
are applied at organizational, user role, and individual user
identity levels.

III. SERVICES ON THE SENSOR NETWORK
Services on the sensor network do not follow the
conventional view of a service requestor invoking a service
provider that responds to the invocation. This
request/response service model is widely used in Web
service-oriented SOA applications but is not appropriate for
the stream-based services found in an event based
messaging environment such as a sensor network. Whilst
the Fabric does provide a message bus that is comparable to

 3

those used in mainstream SOA architectures,
interconnecting the sensor network’s assets and users, the
service composition model that is required to efficiently
deliver composite services built from these individual
functions is very different to the process choreography [8]
that is commonly used. In constrained stream-oriented
environments such as this it is necessary to revert to first
principles and discuss how a user could describe a set of
services that provides a particular processing function.

For modeling services on the sensor network, we use the
UML activity diagram as a starting point. Activities match
the semantics of sensors and services in the network, with
them being synonymous with services having zero or more
inputs and zero or more outputs. This is illustrated in Fig 2,
which shows the UML model of part of the sensor network
deployed within a patient’s home.

MotionSensor
MS2

MotionSensor
MS1

PersonAlarm
PA1

AudioSensor
AS1

MotionAlarm
MA1

AudioAlarm
AA1

Alarm
A1 MedAlert

Fig 2: Sensors and services generating an alarm within a patient’s home

In this model, there are 4 sensors deployed in the home to
monitor the environment. Two motion sensors (MS1 and
MS2), positioned so as to detect the patient’s normal
activities (such as getting up from bed), feed a
MotionAlarm activity MA1 which generates an alarm event
if a variance from normal activity is detected. The
PersonAlarm sensor PA1 is carried by the patient and
activated in case of emergency. Finally, an audio sensor
AS1 can trigger an alarm via an AudioAlarm activity AA1.
Any of these three alarms can cause a MedAlert alarm to be
published by the Alarm activity A1 from the patient’s home
onto the Fabric bus which will trigger a response by the
hospital emergency services. The UML merge activity may
be implemented either as a separate service or as a function
of the input port to the Alarm service.

The example illustrates several components of the core
model: activities, inputs, outputs and connections. UML
allows each of these design model components to be
annotated with additional information and we propose the
exclusive use of semantic annotations to enrich the model.

The UML semantic annotations are made according to a
flexible, extensible ontology. This combination (i.e. UML
model plus semantic annotation) provides a flexible basis
for both transformation and analysis of the model.

Annotations may reflect both abstract and concrete
properties of the design required for transformation into a

variety of formal models for verifying quantitative and
qualitative properties of a model. These opportunities
include evaluation of the performance characteristics of
services deployed on a sensor network by translating them
into, for example, Performance Evaluation Process Algebra
(PEPA) for integration into the MARS framework that
explains information quality and effectiveness and will
serve to quantify the related medical demands on time and
resource consumption in a manner that supports decision
making [9]. Further annotations will allow transformation
of the model into other representations including
transformation of the model to generate a deployment
descriptor describing the deployment of an implementation
of the model on the Fabric, or indeed code generation
where the model describes new or incomplete components.

We expect transformations into formal models to be used as
part of an initial design process prior to deployment in the
sensor network. Results from the analysis of the formal
model may then be used to enhance or modify the
annotations on the design model. The flexibility of
semantically annotating the model gives us a technique to
easily integrate the results back into the original UML
model as feedback to the designer/developer. We describe
this as round-tripping (Fig 3).

ResultsResults

DeploymentDeployment

ResultsResultsOther Formal
Model

Other Formal
Model

UML Meta‐Model +
Semantic Annotations
UML Meta‐Model +
Semantic Annotations

Process AlgebraProcess Algebra

ImplementationImplementation

ResultsResults

ResultsResults

Model TransformationsModel Transformations Annotation ImportAnnotation Import

Model Analysis

Run‐time Metrics

Type Checking

Other Model Analysis

Transformed
Models

Generated
Annotations

Abstract

Concrete

Model Round‐Tripping

Model and Tools

Fig 3: Round-Tripping from the Core Design Model

Semantic annotations can also be used to capture physical
properties of a deployed sensor network. This supports the
second, concrete, round-tripping route shown in Fig 3
between the design model and the services deployed on an
active sensor network. The Fabric provides instrumentation
on the sensor network message bus allowing real-time
metrics to be gathered and a profile of the performance of
the deployed services to be generated. This profile can be
used to provide further annotations within the design model
to allow subsequent refinements of the formal
representation that will be more suitable for the deployment
environment. We expect the UML design model to undergo
multiple round-trips between the formal and deployed
states during its lifecycle.

 4

IV. SERVICE COMPOSITION
Services may themselves be composed of other services
which results in a requirement for a hierarchic composition
schema that describes their interconnection. Hierarchic
interconnection of components is a generic requirement in
silicon CAD tools, which has led to a schema known as the
five-box schema. A description of the schema can be found
in the Silicon Integration Initiative physical design
language specification [10].

The five-box schema relates the definition of a component
and the ports (input and output interfaces) it exposes to
instances of the component. The concept of a component in
the silicon CAD domain relates exactly to a service in the
sensor network domain. The schema, labeled to describe
sensor network services, is shown in the following figure.

ServiceDefn PortDefn

ServiceInst PortInst

Connection

1 Contains m

1 Presents m

1

m 1

1

m

m

Contains Connects

Connects

Contains

1

m

1

1

DefinedBy

m

1

DefinedBy

Fig 4: The Five-Box Schema for Hierarchic Services

In the schema, a service definition (ServiceDefn) contains
multiple port definitions (PortDefn), which may be
specialised as either an input or output. Service definitions
may also contain instances of services (ServiceInst) which
creates the hierarchic service description. Service
definitions also contain the connections (Connection) that
interconnect the service port definitions. Services and ports
can be instantiated (PortInst) and interconnected with the
instances linked by the DefinedBy relationship to their
definitions. We have used the five schema elements, service
and port definitions and instances together with
connections, to provide the anchor points for semantic
annotations supporting the UML activity model for sensor
network service designs. These classes map directly to the
activities, typed ports and connections of the UML as
shown in Fig 2.

Applying this schema to the example in Fig 2, the service
MotionSensor is used twice as instances MS1 and MS2.
Such a dual use of MotionSensor would be represented in
the schema as a single instance of the ServiceDefn class for
the MotionSensor and two instances of the ServiceInst
class; one for MS1 and one for MS2. The port definition for
the service will be annotated with the type of the message
generated by the MotionSensor service. Similarly, service
definitions will be provided for the PersonAlarm,
AudioSensor, MotionAlarm, AudioAlarm and Alarm
sensors. The instances of these services PA1, AS1, MA1,

AA1 and A1 and their associated ports will be included in
the model. Connections between the instantiated ports also
form part of the model. Type enforcement will ensure that
the connection matches the types of the output and input
ports it is interconnecting. Additional annotations on a
connection (such as its latency or rate) are included as
required by the target model transformations (for example a
PEPA transformation).

MotionSensor
MS2

MotionSensor
MS1

PersonAlarm
PA1

AudioSensor
AS1

MotionAlarm
MA1

AudioAlarm
AA1

Alarm
A1 MedAlert

MediAlarm
Med1

Fig 5: Composing Services

Services may form part of other services as illustrated in
Fig 5. In this example, the MotionAlarm, AudioAlarm and
Alarm services together with the output of the PersonAlarm
have been identified as a useful, reusable service. The five-
box schema allows this collection of interconnected
services to become a service definition (MediAlarm), which
can be added to a design tool’s palette of available services
for future use. The instantiation of this composite service as
Med1 in a design tool would allow users to expand the
composite service to inspect the atomic or other composite
services that make up the MediAlarm service description.
The five-box schema supports the hierarchic definition of
composed services to any level but in practice, the depth of
the hierarchy will be limited.

In addition to the benefits of composition in a service
design environment, providing a rich annotation capability
for the core model creates further opportunities for
automating the composition of services. This may not
necessarily involve the hierarchical composition described
earlier, but automated composition is important in
environments that must be adaptive and self-managing; this
is particularly true for the stream-based services in a sensor
network.

We have identified four possible scenarios where the
automated composition of services is advantageous:
1. Information typing. Users may require information of

a type that is available from a particular service output.
Automated composition will allow the tree of services
to be constructed to provide the correctly typed
information for a user.

2. Service optimisation. When transforming the core
model into a deployment model, there may be multiple
compositions of services that meet the same functional
requirements. Round-tripping of the core model
through formal or deployed models may identify which

 5

of the alternative compositions are optimal (based on
network resource utilization or some other metric) for a
given network configuration.

3. Functional redundancy and substitution. In sensor
networks where there is an unreliable network and
system layer, services may become inaccessible due to
communication breakdown or energy depletion of
sensor nodes. Functional resilience may be achieved by
re-composing services within the remaining accessible
network to provide the same functionality. In case no
exact equivalent functionality can be provided through
re-composition due to unavailability of appropriate
service instances, a substitute service that implements
only a subset of the required functions can be
alternatively suggested. This assumes a sensor network
environment that is regularly monitored and in which
services can be re-composed and deployed
autonomically.

4. Run-time optimization. During a services execution
the network conditions can drastically change, for
example the deployment of new services on to a shared
node could cause it to become overloaded. Hence,
periodic load balancing and/or redistribution of long
term running services may improve their performance.
This is particularly important for composite services
which can allocate their component services to nodes
in such a way as to balance both the communication
and computational load in the network.

V. AN ONTOLOGY FOR SOA ON A SENSOR NETWORK
Various ontologies and vocabularies have been proposed
for sensor networks in the literature with SensorML [11]
and OntoSensor [12] being probably the best known.
Others within the ITA research programme have addressed
semantic techniques in the allocation of resources in sensor
networks [13, 14]. The ontology presented in this paper is
not intended to replace those presented elsewhere. Instead,
it is used to describe the core sensor network design model,
the hierarchic five-box schema for services and the artifacts
represented in the existing Fabric registry relational
database schema. Its purpose is to provide a flexible,
extensible representation of the core model and the
annotations needed for transformation of the core model for
analysis, implementation, and deployment.

Fig 6 shows the initial set of classes within the ontology.
For clarity, the relationships between the classes are not
shown. Each Owl file describes the classes within a
different namespace. The SemanticFabric namespace acts
as a top level entry point whose role is simply to import
other namespaces into the ontology. Instance ontologies
such as one to describe the earlier medical example will
then import the SemanticFabric namespace to access
definitions of the available classes.

Annotation.owl
AssetType.owl

GeoSpatial.owl

SemanticFabric.owl

AssetAttribute.owl

SimplePlugin

NodePlugin
SystemPlugin
FabletPlugin
ComplexPlugin ActorPlugin

TaskPlugin

Actor.owl

Feed.owl

Platform.owl

Node.owl

Plugin.owl

Sensor.owl

Service.owl

Task.owl

Connection
PortDefinition
PortInstance
ServiceDefinition
ServiceInstance

InputPortDefinition
OutputPortDefinition

Task

Actor

Node

Platform

Sensor

Feed
imports

Fig 6: A draft ontology for sensor networks

There are four major groups of classes in the ontology:
Assets, Tasks, Plugins, and Services. Assets include Nodes,
Platforms, Sensors and their data feeds (that generate the
event streams subscribed to by sensor network users). The
users are represented in the ontology as Actors and are
either end (i.e. human) users or software processes. Assets
can have Types and Annotations associated with them in
the form of their affiliation, the asset’s readiness, their
roles, security credentials and availability. Assets can also
have geographical information associated with them via the
GeoSpatial class which may include information such as
the asset’s latitude, longitude and altitude. Mobile assets
may have information on their velocity and current bearing.

A set of classes support the Fabric notion of Tasks. These
are groupings of sensor network assets that have been
allocated to a particular activity. The concept of a Task is
provided to enable external planning and resource
applications to track and prioritize the allocation of assets
within the Fabric.

Classes are also provided within the Service namespace to
support the five-box schema representation of hierarchic
services with the PortDefinition class having sub-classes to
specialise input and output ports for a service.

Fig 7 expands the classes for representing hierarchic
services to show the OWL predicates that link the classes.
In the ontology, Connections have a “from” and “to”
qualification linking them to PortDefinition and
PortInstance classes to represent the source and sink port
classes they interconnect.

Finally, there are a set of classes to support the Fabric plug-
in architecture. When deployed, services will be
implemented as plug-in modules that process messages as
they flow through Fabric nodes. Node plug-ins process all
messages that flow through a node. Actor and Task plug-ins
are applied to messages destined to a particular actor or
flowing as part of a defined Task. Fablets have the
additional flexibility of being able to interact with other
non-Fabric applications and resources. Finally, Service
plug-ins extend the capability of the core Fabric
functionality.

 6

PortInstance

PortDefinition

InputPortDefinition

OutputPortDefinition

ServiceDefinition

Connection

ServiceInstance

containsPortInstance

connectsFromPortDefinition

connectsToPortDefinition

connectsFromPortInstance

connectsToPortInstance

containsConnection

containsPortDefinition

containsServiceInstance

se
rv

ic
eD

ef
in

ed
B

y

po
rt

D
ef

in
ed

B
y

Fig 7: The Five Box Schema represented as an Ontology

VI. CONCLUSIONS AND FURTHER WORK
In this paper we have described a model-based approach for
the design, analysis and deployment of services within a
sensor network based on previously reported work on the
development of sensor network middleware: the ITA
Sensor Fabric. Using a motivating example scenario, we
base our core design model on UML Activity diagrams and
their associated semantics, with an underlying
representation using the five-box schema realized as an
ontology. The model may be transformed into alternative
models (including formal models such as process algebras)
for analysis with the results providing additional
annotations to the core design model via a round-tripping
mechanism. The core model may also be transformed into a
form that can be deployed onto a real sensor network using
the ITA Sensor Fabric.

Further work is continuing under the ITA research
programme to develop a tooling infrastructure to support
the creation, transformation, analysis and deployment of
sensor network service models. User tools based on the
Eclipse framework are being developed which will
integrate with a semantic wiki provides an interactive
representation of the knowledge it contains. This will
provide a flexible environment where different
applications, each using the core sensor network model, can
be developed. Other applications that are based on semantic
technologies such as mission and resource planning will
benefit from the flexibility of the tools framework which
will permit application specific ontologies to be imported in
the form of RDF files and integrated with the core sensor
network model.

A version of the ITA Sensor Fabric can be downloaded for
evaluation and experimentation from the IBM Alphaworks
website at
http://www.alphaworks.ibm.com/tech/fabric4sensors.

REFERENCES
[1] J. Wright, C Gibson, F. Bergamaschi, K. Marcus, R. Pressley, G.

Verma, G Whipps, “A Dynamic Infrastructure for Interconnecting
Disparate ISR/ISTAR Assets (The ITA Sensor Fabric),” IEEE/ISIF
Fusion 2009 Conference, July 2009.

[2] G. Cirincione and J. Gowens, “The International Technology
Alliance in Network and Information Science a U.S.-U.K.
Collaborative Venture,” IEEE Comms. Mag., vol 45, pp 14-18,
March 2007.

[3] Fabric for Sensor Network Management and Data Transfer,
http://www.alphaworks.ibm.com/tech/fabric4sensors

[4] G. Bent, P. Dantressangle, A. M. D. Vyvyan and V. Mitsou, “A
Dynamic Distributed Federated Database,” in Second Annual
Conference of ITA, September 2008.

[5] J. Ibbotson, S. Chapman, B. K. Szymanski, “The Case for an Agile
SOA”, Annual Conference of ITA, 2007, September, 2007.

[6] The Zigbee Alliance,
http://www.zigbee.org/Home/tabid/188/Default.aspx

[7] The Bluetooth Special Interest Group,
http://www.bluetooth.com/bluetooth/

[8] Web Services Business Process Execution Language Version 2.0,
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[9] D. Thornley, R. Young, J. Richardson, “Development of a Mission
Abstraction Requirements Structure (MARS) and Stochastic
Modelling for Sensing Service-Driven Mission Performance
Prediction”, Imperial College Dept of Comp Tech Report 2009 #10,
http://www.doc.ic.ac.uk/research/technicalreports/2009/DTR09-
10.pdf

[10] Silicon Integration Initiative, “CHDStd Reference Specification
Physical Design Language (PDL) Description”,
http://ftp.si2.org/si2_publications/CHDStd/PDF/04_pdl_desc.pdf

[11] A. Robin, S. Havens, S. Cox, J. Ricker, R. Lake and H. Niedzwiadek.
“OpenGIS Sensor Model Language (SensorML) Implementation
Specification”. Technical Report, Open Geospatial Consortium Inc,
2006.

[12] D.J. Russomanno, C.R. Kothari and O.A Thomas. “Building a sensor
ontology: A practical approach leveraging ISO and OGC models”. In
Proceedings of the 2005 International Conference on Artificial
Intelligence (ICAI), pp 637-643, 2005.

[13] M. Sensoy, T. Le, W. W. Vasconcelos, T. J. Norman, A. D. Preece,
“Resource Determination and Allocation in Sensor Networks: A
Hybrid Approach”, The Computer Journal, January, 2010.

[14] M Gomez, A Preece, M P Johnson, G de Mel, W Vasconcelos, C
Gibson, A Bar-Noy, K Borowiecki, T La Porta, D Pizzocaro, H
Rowaihy, G Pearson, & T Pham, An Ontology-Centric Approach to
Sensor-Mission Assignment, Proc 16th International Conference on
Knowledge Engineering and Knowledge Management (EKAW
2008), in press, 2008.

