
Draft Document

 1

Chapter 10: Introduction to Scientific Data Mining:
Direct Kernel Methods & Applications

Mark J. Embrechts

Rensselaer Polytechnic Institute, Troy, New York, USA

Boleslaw Szymanski
Rensselaer Polytechnic Institute, Troy, New York, USA

Karsten Sternickel

 Cardiomag Imaging Inc., Schenectady, New York, USA

10.1 INTRODUCTION

The purpose of this chapter is to give a brief overview of data mining and to introduce direct
kernel methods as a general-purpose and powerful data mining tool for predictive modeling,
feature selection and visualization. Direct kernel methods are a generalized methodology to
convert linear modeling tools into nonlinear regression models by applying the kernel
transformation as a data pre-processing step. We will illustrate direct kernel methods for ridge
regression and the self-organizing map and apply these methods to some challenging scientific
data mining problems. Direct kernel methods are introduced in this chapter because they
transpire the powerful nonlinear modeling power of support vector machines in a straightforward
manner to more traditional regression and classification algorithms. An additional advantage of
direct kernel methods is that only linear algebra is required.

Direct kernel methods will be introduced as a true fusion of soft and hard computing. We will
present such direct kernel methods as simple multi-layered neural networks, where the weights
can actually be determined based on linear algebra, rather than the typical heuristic neural
network approach. Direct kernel methods are inherently nonlinear methods, and can be
represented as a multi-layered neural network that now combines elements of soft and hard
computing. The hard computing takes place in the scientific domain where data are generated, in
a way that often involves elaborate (hard) computing algorithms. Hard computing is also used
here to make up the kernel and to calculate the weights for the underlying neural networks in
direct kernel methods. Soft computing occurs because of the underlying neural network
framework and in estimating the hyper-parameters for direct kernel models. These hyper-
parameters usually deal with the proper choice for the nonlinear kernel, and the selection of a
close to optimal regularization penalty term.

Support Vector Machines or SVMs have proven to be formidable machine learning tools because
of their efficiency, model flexibility, predictive power, and theoretical transparency [1-3]. While
the nonlinear properties of SVMs can be exclusively attributed to the kernel transformation,
other methods such as self-organizing maps or SOMs [4] are inherently nonlinear because they
incorporate various neighborhood-based manipulations. This way of accounting for nonlinearity
effects is similar to the way how K-nearest neighbor algorithms incorporate nonlinearity. Unlike
SVMs, the prime use for SOMs is often as a visualization tool [5] for revealing the underlying
similarity/cluster structure of high-dimensional data on a two-dimensional map, rather than for

Bolek
Text Box
Computationally Intelligent Hybrid Systems: The Fusion of Soft Computing and Hard Computing, Wiley,
 New York, 2005, pp. 317-365

Draft Document

 2

regression or classification predictions. SOMs have the additional advantage that they
incorporate class ordinality in a rather natural way, i.e., via their self-organization properties that
preserve the topology of a high-dimensional space in the two-dimensional SOM. SOMs are
therefore quite powerful for multi -class classification, especially when the classes are not
ordinal: a problem that is far from trivial. They are also very effective for outlier and novelty
detection.

Before explaining direct kernel methods, we will present a brief overview of scientific data
mining. The standard data mining problem will be introduced as the underlying framework for
different data mining tasks. We will t hen build a simple linear regression model, explain the data
mining and machine learning dilemmas, and provide a simple solution to overcome this type of
uncertainty principle. These linear methods will t hen be translated into an equivalent, but still
linear, neural network model, for which the weights can be obtained with hard computing. The
linear regression model or predictive data mining model can be transformed into powerful
nonlinear prediction method by applying the kernel transformation as a data transformation
rather than an inherent ingredient in the mathematical derivation of the modeling algorithm.
Many traditional li near regression models can be elegantly transformed into nonlinear direct
kernel methods that share many desirable characteristics with support vector machines: they can
incorporate regularization and they do not involve the controversial heuristics, common in the
neural network approach. We wil l finally apply this methodology to a challenging scientific data
mining problem and ill ustrate predictive modeling, feature selection and data visualization based
on direct kernel methods for predicting ischemia from magneto-cardiogram data.

10.2 WHAT IS DATA MINING?

10.2.1 Introduction to Data Mining

Data mining is often defined as the automated extraction of novel and interesting information
from large data sets. Data mining, as we currently know it, has its roots in statistics, probabili ty
theory, neural networks, and the experts systems angle of artificial intelli gence (AI). The term
data mining used to have a negative co-notation, meaning the existence of spurious correlations,
indicating that if one looks far enough in a variety of data sets one might find a coincidental rise
in the stock market when there is a peak of two-headed sheep born in New Zealand. This out-of-
date interpretation of data mining can be summarized as “ the torturing the data until they confess
approach.” The current popularity of the term data mining can be attributed largely to the rise of
the Knowledge Discovery and Data Mining (or KDD) Conference. The KDD conference started
in the early nineties as a small workshop, spearheaded by Usuama Fayyad, Gregory Pietatetsky-
Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy. The KDD conference is now an annual
event and has a good attendance. In the book that resulted from the 1995 KDD conference in
Montreal [6], data mining was defined as: “Data mining is the process of automatically
extracting valid, novel, potentially useful, and ultimately comprehensible information from large
databases.” We will adhere to this definition to introduce data mining in this chapter.
Recommended books on data mining are summarized in [7-10]. One of the underlying principles
of knowledge discovery in data is to promote the process of building data-driven expert systems
as an extension of the more traditional AI expert systems approach. The idea is now that experts
learn from new findings in the data as well .

Draft Document

 3

Data mining is not a narrowly focused discipline, but requires a combination of multiple
disciplines and techniques. Data mining distinguishes itself from traditional statistics in the sense
that we now deal with potentially very large datasets that can range from gigabytes, terabytes, to
pentabytes. For a while, a problem was considered a data mining problem only if the data could
not be stored in the working memory of a computer all-at-once. Other definitions of data mining
insisted for a while that the data has to come from a variety of different databases. Of course,
interesting and extremely challenging problems such as gene discovery and protein folding in
bio-informatics, would not qualify as legitimate data mining problems under these restrictive
definitions. Data mining is different from the more traditional methods in the sense that for large
amounts of data, many classical algorithms, such as the K-means algorithm for clustering, do not
scale well with ever-larger datasets. In general, one can summarize that for a typical data mining
case: (i) the data set can be quite large; (ii) the problem is generally challenging and is often not
well defined; (iii) there are missing and faulty data; and, (iv) there are redundancies in the data
fields, but the redundant fields do not all have the same quality.

Data mining distinguishes itself also from statistics and artificial intelligence in the sense that the
expert now exercises a different role. While the goal of AI expert systems was to query the
experts in order to come up with a rule base that captures their expertise, that approach often led
to failure because the experts, even though knowledgeable and mostly right, are not necessarily
in the best position to formulate an explicit set of rules. In data mining, rather than letting the
expert formulate the rules up front, the idea is now to let the rules appear in a more or less
automated and data-driven way. The expert comes in at the end stage of this data-driven rule
discovery/formulation process and applies his domain knowledge to validate the rules.

The first very successful data mining applications were often driven by database marketing and
business applications. Typical applications of database marketing are the use of a database to
decide on a mail-order campaign, or linking a sales campaign in a supermarket with product
positioning and discounting. A classical case here is has been observed that beer sales go up
when the beer is positioned close to the diapers in a supermarket store, because dad is more
likely to puck up a 6-pack of beer when he is sent to the story to by diapers in case of an
emergency. The tongue-in-cheek corollary is here that the reverse is not true. Other early
successful applications of data mining relate to credit card fraud, establishing lending and
refinancing policies, and telephone fraud.

Data mining is an interdisciplinary science ranging from the domain area and statistics to
information processing, database systems, machine learning, artificial intelligence and soft
computing. The emphasis in data mining is not just building predictive models or good
classifiers for out-of-sample real world data, but obtaining a novel or deeper understanding. In
real world problems, data distributions are usually not Gaussian. There also tend to be outliers
and missing data. Often there are faulty and imprecise data to deal with as well. Data mining
emphasizes the use of innovative and effective data visualization techniques, such as self-
organizing maps [4], that can go way beyond the common bar and pie charts. The exact purpose
and outcome of a data mining study should probably not be clearly defined up front. The idea of
data mining is to look at data in a different way, and in a sense, to let the data speak for
themselves.

Draft Document

 4

10.2.2 Scientific Data Mining

Scientific data mining is defined as data mining applied to scientific problems, rather than
database marketing, finance, or business-driven applications. Scientific data mining distinguishes
itself in the sense that the nature of the datasets is often very different from traditional market-
driven data mining applications. The datasets now might involve vast amounts of precise and
continuous data, and accounting for underlying system nonlinearities can be extremely
challenging from a machine learning point of view.

Applications of data mining to astronomy-based data is a clear example of the case where
datasets are vast, and dealing with such vast amounts of data now poses a challenge on it’s own.
On the other hand, for bio-informatics related applications such as gene finding and protein
folding, the datasets are more modest, but the modeling part can be extremely challenging.
Scientific data mining might involve just building an on-the-fly predictive model that mimics a
large computer program that is too slow to be used in real time. Other interesting examples of
scientific data mining can be found in bioengineering, and might present themselves as
challenging pattern recognition problems based on images (e.g., brain scans) or (multi -variate)
time series signals (e.g., electrocardiograms and magneto-cardiograms).

An interesting application relates to in-sili co drug design [11]. The idea is to identify and select
small molecules (ligands) with superior drug qualities from a huge library of potential often not
yet synthesized molecules. The challenge is that the library of molecules with known
pharmaceutical properties is often relatively small (~50 - 2000), but that there is a large number
of descriptive features or attributes (e.g., 500 - 20000). We define such problems where the
number of descriptive features exceeds the number of data by far, as data strip mining problems
[12]. We call them data strip mining problems, because if the data are placed in an Excel sheet
all the data seem to be now on the surface rather than going on and on for thousands and
thousands of rows of cells. There is one additional interesting aspect here: many computer
programs such as editors and the Excel spreadsheet were not design to handle this type of data. A
key challenge for in-sili co drug design problems is now to identify a relatively small subset of
relevant features that explain the pharmaceutical properties of the molecule. One ultimate aim of
in-sili co drug design is real-time invention and synthesis of novel drugs to mitigate natural or
man-made society threatening diseases. A second type of strip mining problems occurs in the use
of gene expression micro-arrays for the identification of relevant genes that are indicative for the
presence of a disease. A typical case is a dataset of 72 micro-array data with 6000 descriptive
features related to the identification of leukemia.

In a data mining context, common techniques such as clustering might now be used in a very
different way. The clustering does not necessarily have to provide a good overall clustering, but
just finding one relatively small and fairly homogeneous cluster might offer a significant pay-off
in database marketing. Kohonen’s self-organizing map has been extensively applied as an
eff icient visualization tool for high-dimensional data on a two-dimensional map while preserving
important aspects of the underlying topology.

Draft Document

 5

10.2.3 The Data Mining Process

Many data mining applications can be represented in a cartoon model that we will call the
standard data mining process. This process involves the gathering of data, data cleansing, data
pre-processing and transforming a subset of data to a flat file, building one or more models that
can be predictive models, clusters or data visualizations that lead to the formulation of rules, and
finally piecing together the larger picture. This process is outlined in Fig. 10.1.

Figure 10.1 Cartoon Illustration of the data mining process.

It is interesting to note here that often a large amount of effort is required before the data can be
presented in a flat file. Data cleansing and data pre-processing often takes up a large part of the
resources committed to a typical data mining project and might involve 80 percent of the effort.
It is often necessary to experiment with different data transformations (e.g., Fourier and wavelet
transforms) in the data pre-processing stage.

Another representation of the data mining process is the data mining wisdom pyramid in Fig.
10.2, where we progress from raw data to information, knowledge and understanding, and
ultimately wisdom. The art of data mining is to charm the data into a confession. An informal
way to define data mining is to say that we are looking for a needle in a haystack without
knowing what a needle looks like and where the haystack is located.

10.2.4 Data Mining Methods and Techniques

A wide variety of techniques and methods are commonly used in data mining applications. Data
mining often involves clustering, the building of predictive regression or classification models,
attribute and/or feature selection, the formation of rules and outlier or novelty detection. These
techniques can be based on statistics, probability theory, Bayesian networks, decision trees,
association rules, neural networks, evolutionary computation, and fuzzy logic.

Draft Document

 6

While the reader may already be familiar with some of these techniques, they often have an
additional flavor to them, when it comes to data mining. It is not the purpose of this introduction
to discuss data mining in wide breadth, but rather to emphasize the proper use of soft computing
techniques for scientific data mining in the context of the fusion of soft computing and hard
computing methodologies.

Rather than exposing a breadth of data mining techniques we will introduce here only direct
kernel methods for predictive data mining, feature detection and visualization. Direct-kernel
based techniques will then be applied to a challenging problem related to the prediction of
ischemia from magneto-cardiogram data.

Figure 10.2. Data mining wisdom pyramid.

10.3 BASIC DEFINITIONS FOR DATA MINING

10.3.1 The MetaNeural Data Format

In this section, the standard data mining problem will be introduced and it will be shown how the
standard data mining problem actually relates to many interesting types of real-world
applications. It is assumed here that the data are already prepared and available in the form of a
single, i.e., flat, data file, rather than a relational database. Note that extracting such flat files
from different databases is often a challenging task on its own. Consider the flat file data from
Table 10.1, provided by Svante Wold [13]. They actually represent a cartoon example for a
QSAR or QSPR (quantitative structural property and quantitative structural activity relationship)
problem [11], where it is often the purpose to predict chemical properties in the case of QSPR
and bio-activities in the case of QSAR from other basic properties (or molecular descriptors)
from a molecular dataset. In this case, the activity of interest (or in data mining lingo, the
response) for which we would like to make a model is in the second column, represented by
DDGTS.

Table 10.1 is a spreadsheet-like table, with 20 horizontal row entries and 9 vertical fields. The
first row contains names MOL, DDGTS, PIE, PIF, DGR, SAC, MR, Lam and Vol that describe

Draft Document

 7

entries in each vertical field. The first column actually contains the abbreviations for 19 amino
acid (AA) names (i.e., all the coded amino acids, except arginine). The second column contains
the free energy for unfolding a protein. This free energy, nicknamed DDGTS, is called the
response. In this case, we want to build a predictive model for the response based on the
remaining seven fields, which contain the chemical properties for the 19 amino-acids listed here.
Data entries that are used in predictive models are called descriptors, attributes, or descriptive
attributes. Sometimes they are also called features. In a machine learning context, a feature,
strictly speaking, is not the same as an attribute, but rather a combination of descriptors, such as
principal components in principal component analysis [19] and latent variables in the case of
partial least-squares or PLS methods [13]. In this case, PIE and PIF are the lipophilicity
constants of the AA side, DGR is the free energy of transfer of an AA side chain from protein
interior to water, SAC is the water-accessible surface area, MR the molecular refractivity, Lam is
a polarity parameter and Vol represents the molecular volume.

Table 10.1 Example of a flat data file.

While this table is definitely informative, we will introduce some conventions and standard
formats here to make it easier for a computer program to automate the data analysis procedure. It
has been our experience that, when looking at the data related to many different industrial
applications, there is no standard way of presenting data. Each applications has its own different
way of presenting data and often a lot of time is spent just trying to read and organize these data
before actually doing an analysis or starting the data mining cycle. We will therefore first
rearrange and format data into a standard shape, so that we can feed them into a computer
program or data mining software. We will be very unforgiving when it comes to adhering to this
standard format, in order to reduce the amount of potential computer problems. There is no
uniform flat file standard in the data mining community, and each data mining program assumes
that the data are organized and presented differently. We will introduce here just one way to
organize data: the MetaNeural format. The MetaNeural format will be assumed as the standard
format for data representation in this chapter.

An intermediate step towards the MetaNeural format is presented in Table 10.2, which contains
almost the same information as Table 10.1, but with a few changes. (i) The column containing
the names for each data entry is now placed last and the names are translated into numerical ID

MOL DDGTS PIE PIF DGR SAC MR Lam Vol
Ala 8.5 0.23 0.31 -0.55 254.2 2.126 -0.02 82.2
Asn 8.2 -0.48 -0.6 0.51 303.6 2.994 -1.24 112.3
Asp 8.5 -0.61 -0.77 1.2 287.9 2.994 -1.08 103.7
Cys 11 0.45 1.54 -1.4 282.9 2.933 -0.11 99.1
Gln 6.3 -0.11 -0.22 0.29 335 3.458 -1.19 127.5
Glu 8.8 -0.51 -0.64 0.76 311.6 3.243 -1.43 120.5
Gly 7.1 0 0 0 224.9 1.662 0.03 65
His 10.1 0.15 0.13 -0.25 337.2 3.856 -1.06 140.6
Ile 16.8 1.2 1.8 -2.1 322.6 3.35 0.04 131.7

Leu 15 1.28 1.7 -2 324 3.518 0.12 131.5
Lys 7.9 -0.77 -0.99 0.78 336.6 2.933 -2.26 144.3
Met 13.3 0.9 1.23 -1.6 336.3 3.86 -0.33 132.3
Phe 11.2 1.56 1.79 -2.6 366.1 4.638 -0.05 155.8
Pro 8.2 0.38 0.49 -1.5 288.5 2.876 -0.32 106.7
Ser 7.4 0 -0.04 0.09 266.7 2.279 -0.4 88.5
Thr 8.8 0.17 0.26 -0.58 283.9 2.743 -0.53 105.3
Trp 9.9 1.85 2.25 -2.7 401.8 5.755 -0.31 185.9
Tyr 8.8 0.89 0.96 -1.7 377.8 4.791 -0.84 162.7
Val 12 0.71 1.22 -1.6 295.1 3.054 -0.13 115.6

Draft Document

 8

numbers 1 – 19. (ii) The response of interest, DDGTS, is now made the next to last column field,
and the descriptive alphanumerical entry is now called Response. (iii) The first row, or header
row, now contains different names, indicating the columns with descriptive features or attributes
(Feature_1 … Feature_7), followed by one or more names for the response, followed by the ID.

Table II. Different representation for the data of Table 10.2.

In order to convert this flat data file to the MetaNeural format, all the alphanumerical
information in the file will be discarted. This is done by just eliminating the first header row in
the file, as shown in Table II I. Basically, the MetaNeural format contains only numerical
information, where the data are ordered as follows: first are the descriptors or attributes, next is
the response (or responses, in the rarer case of multiple responses), and finally some record ID. If
the original data contained symbolic or descriptive attribute entries, they have to be somehow
converted to numbers.

Data sets often contain missing data. It is a standard practice to code missing data as “ -999” .
Before actually processing the data, it is often common to drop columns and/or rows containing
many data entries with –999, or replace the –999 data with the average value for the
corresponding data descriptor.

Table 10.3. The MetaNeural format as a standard format for presenting flat file data.
`

Feature_1 Feature_2 Feature_3 Feature_4 Feature_5 Feature_6 Feature_7 Response ID
0.23 0.31 -0.55 254.2 2.126 -0.02 82.2 8.5 1
-0.48 -0.6 0.51 303.6 2.994 -1.24 112.3 8.2 2
-0.61 -0.77 1.2 287.9 2.994 -1.08 103.7 8.5 3
0.45 1.54 -1.4 282.9 2.933 -0.11 99.1 11 4
-0.11 -0.22 0.29 335 3.458 -1.19 127.5 6.3 5
-0.51 -0.64 0.76 311.6 3.243 -1.43 120.5 8.8 6

0 0 0 224.9 1.662 0.03 65 7.1 7
0.15 0.13 -0.25 337.2 3.856 -1.06 140.6 10.1 8
1.2 1.8 -2.1 322.6 3.35 0.04 131.7 16.8 9
1.28 1.7 -2 324 3.518 0.12 131.5 15 10
-0.77 -0.99 0.78 336.6 2.933 -2.26 144.3 7.9 11
0.9 1.23 -1.6 336.3 3.86 -0.33 132.3 13.3 12
1.56 1.79 -2.6 366.1 4.638 -0.05 155.8 11.2 13
0.38 0.49 -1.5 288.5 2.876 -0.32 106.7 8.2 14

0 -0.04 0.09 266.7 2.279 -0.4 88.5 7.4 15
0.17 0.26 -0.58 283.9 2.743 -0.53 105.3 8.8 16
1.85 2.25 -2.7 401.8 5.755 -0.31 185.9 9.9 17
0.89 0.96 -1.7 377.8 4.791 -0.84 162.7 8.8 18
0.71 1.22 -1.6 295.1 3.054 -0.13 115.6 12 19

0.23 0.31 -0.55 254.2 2.126 -0.02 82.2 8.5 1
-0.48 -0.6 0.51 303.6 2.994 -1.24 112.3 8.2 2
-0.61 -0.77 1.2 287.9 2.994 -1.08 103.7 8.5 3
0.45 1.54 -1.4 282.9 2.933 -0.11 99.1 11 4
-0.11 -0.22 0.29 335 3.458 -1.19 127.5 6.3 5
-0.51 -0.64 0.76 311.6 3.243 -1.43 120.5 8.8 6

0 0 0 224.9 1.662 0.03 65 7.1 7
0.15 0.13 -0.25 337.2 3.856 -1.06 140.6 10.1 8
1.2 1.8 -2.1 322.6 3.35 0.04 131.7 16.8 9
1.28 1.7 -2 324 3.518 0.12 131.5 15 10
-0.77 -0.99 0.78 336.6 2.933 -2.26 144.3 7.9 11
0.9 1.23 -1.6 336.3 3.86 -0.33 132.3 13.3 12
1.56 1.79 -2.6 366.1 4.638 -0.05 155.8 11.2 13
0.38 0.49 -1.5 288.5 2.876 -0.32 106.7 8.2 14

0 -0.04 0.09 266.7 2.279 -0.4 88.5 7.4 15
0.17 0.26 -0.58 283.9 2.743 -0.53 105.3 8.8 16
1.85 2.25 -2.7 401.8 5.755 -0.31 185.9 9.9 17
0.89 0.96 -1.7 377.8 4.791 -0.84 162.7 8.8 18
0.71 1.22 -1.6 295.1 3.054 -0.13 115.6 12 19

Draft Document

 9

10.3.2 The “ Standard Data Mining Problem”

We will define the standard (predictive) data mining problem as a regression problem of
predicting the response from the descriptive features. In order to do so, we will first build a
predictive model based on training data, evaluate the performance of this predictive model based
on validation data, and finally use this predictive model to make actual predictions on a test data
set for which we generally do not know, or pretend not to know, the response value. There are
many different ways to build such predictive regression models. Just to mention a few
possibilities here, such a regression model could be a linear statistical model, a Neural Network
based model (NN), or a Support Vector Machine (SVM) based model. Examples for linear
statistical models are Principal Component Regression models (PCR) and Partial-Least Squares
models (PLS). Popular examples of neural network-based models include feedforward neural
networks (trained with one of the many popular learning methods), Sef-Organizing Maps
(SOMs), and Radial Basis Function Networks (RBFN). Examples of Support Vector Machine
algorithms include the perceptron-like SVM for classification, and Least-Squares Support Vector
Machines (LS-SVM), also known as kernel ridge regression.

It is customary to denote the data matrix as nmX and the response vector as ny

G

. In this case, there

are n data points and m descriptive features in the dataset. We would like to infer ny
G

from nmX by

induction, denoted as nnm yX
G⇒ , in such a way that our inference model works not only for the

training data, but also does a good job on the out-of-sample data (i.e., validation data and test
data). In other words, we aim at building a linear predictive model of the type:

mnmn wXy
GK =ˆ (10.1)

The hat symbol indicates that we are making predictions that are not perfect (especially for the
validation and test data). Equation (10.1) answers to the question “wouldn’ t it be nice if we could
apply wisdom to the data, and pop comes out the answer?” The vector nw

K

is that wisdom vector

and is usually called the weight vector in machine learning. By introducing the standard data
mining problem we are doing a lot of over-simpli fying. In a typical data mining study, the
questions related to what we are trying to find out are not a priori defined. In this context,
precisely formulating the right questions might actually be a more diff icult task than answering
them. A typical data mining case is therefore more complex than the standard data mining
problem. There actually might be many regression models involved and there will be a whole set
of additional constraints as well . For example, a more realistic problem for data mining that is
still close to the standard data mining problem might be picking an a priori unspecified small
subset of the chemically most transparent descriptive features or descriptors from Table 10.3, in
order to make a good model for the protein folding energy. Note that now we are using terms
that are not precisely defined (but “ fuzzy”) such as “small subset,” “chemically most
transparent” , and “pretty good model.” Also, keep in mind that the predictive model that was
proposed so far is strictly linear. It therefore can’ t be expected that the model is going to be very
accurate, but that will change very soon.

It should be pointed out that many problems that are typical for data mining can be posed as a
variation of the standard data mining problem. In the above case, we considered a regression

Draft Document

 10

problem. Note, that a classification problem can be treated as a special case of a regression
problem, e.g., the data entries for the response could be just –1 and 1 in the case of a two-class
classification problem. For a multi -class classification problem, the different classes could be
presented as 1, 2, 3, and so on. However, there is one diff iculty for multi-class classification. If
the multi -class classification problem is posed as a regression problem, the classes should be
ordinal, i.e., class 2 should be indicative for a response that is in between class 1 and class 3. In
practice, that is often the case, e.g., consider the case where we have five alert levels from 1 to 5,
where a higher alert number means a more severe type of alert. On the other hand, when we have
a classification problem where the classes represent five cities, they are usually not fully ordinal.
In that case, it is common to represent the response not as a single response, but encode the
response on orthogonal set of 5 response vectors of the type {0, 0, 0, 0, 1} , {0, 0, 0, 1, 0}, {0, 0,
1, 0, 0}, and so on. Non-orthogonal classification problems are often not-trivial to solve, and we
refer the reader to the literature [3] for a further discussion.

A different and diff icult classification problem is the case with just two classes that have very
unbalanced representation, i.e., cases in which there are much more samples from one class than
from the other. Consider the cartoon problem of a trinket manufacturing case were a product line
produces 1000000 good trinkets that pass the inspection line and 1000 defect trinkets that should
not pass the inspection line before the product is shipped out. It is often diff icult to build good
models for such problems without being aware that we are dealing here with an outlier problem.
Naively applying machine learning models could result in the case where the model now predicts
that all trinkets belong to the majority class. Concluding that now only 1000 out 1001000 cases
are missed, and that the classification is therefore 99.9% correct, does not make sense of course,
because in reali ty 100% of the cases that we are interested in catching are now missed altogether.
It therefore should be a common practice for classification problems to represent the results in
the form of a confusion matrix. In case of a binary classification problem where the
classifications results can be presented as four numbers: the number of true negatives, the
number of false negatives, the number of true positives and the number of false positives. The
false negatives and false positives are called Type I and Type II errors. For medical applications,
it is customary to convert these numbers further into sensitivity and specificity measures.

Note that outlier problems do not only occur in classification problems, but also in regression
problems. Predicting the swing for the stock market is a regression problem, and predicting a
stock market crash is an outlier problem in that context. Predicting rare events such as stock
market crashes, earthquakes, or tornados can also be considered as extreme outlier problems or
rare event problems. Such cases are usually very diff icult i f not impossible to deal with using
data mining techniques.

A special case of an outlier problem is novelty detection, where we often have a dataset
consisting of normal cases and maybe a few instances of abnormal cases. The different
categories for abnormal cases are often not known a priori. The problem is now to devise a
detection model that tags data samples that are very different from what has been seen before.

A diff icult type of data mining problem is a data strip mining problem. Data strip mining is a
special case of predictive data mining, where the data have much more descriptors than there are
data. Such problems are common for in-sili co drug design and the analysis of gene-expression

Draft Document

 11

arrays. The task is now to identify a combination of a subset of the most relevant features and
make a predictive model that works well on external test data.

A whole different class of data mining relates to signal and time series analysis. Time series
analysis problems are of common interest to the finance industry, process control, and medical
diagnostics. Challenging time series analysis problems deal with multi-variate time series,
problems where the time series exhibits complex dynamics (such as nonlinear chaotic time
sequences), or cases with the non-stationary time series.

Note that for a legitimate data mining case, we are not just interested in building predictive
models. What is of real interest is the understanding and explaining of these models (e.g., in the
form of a fuzzy rules system). It is often revealing for such a rule set to identify the most
important descriptors and/or features, and then explain what these descriptors or features do for
the model. Feature detection is a sub-discipline on its own and an important part of the data
mining process. There are many different ways for feature detection, and the most appropriate
method depends on the modeling method, the data characteristics and the application domain. It
is important to point out here that the most interesting features are often not the most correlated
features.

10.3.3 Predictive Data Mining

In this section, a simple statistical regression solution to the standard data mining problem will
be introduced. In this context, the standard data mining problem can be interpreted as a
predictive data mining problem.

Looking back at Eq. (10.1), let us try now whether we can actually make a “pop-comes-out the
answer” model for Svante Wold’s cartoon QSAR data from Table 10.3. In this case, one is
actually trying to predict the free energy for protein folding, or the entry next to last column,
based on the descriptive features in the prior columns. A model will be constructed here by
finding an approximate solution for the weights in (10.1). Note that the data matrix is generally
not symmetric. If that were the case, it would be straightforward to come up with an answer by
using the inverse of the data matrix. We will t herefore apply the pseudo-inverse transformation,
which will generally not lead to precise predictions for y , but will predict y in a way that is
optimal in a least-squares sense. The pseudo-inverse solution for the weight vector is ill ustrated
in equation below:

() () ()
() n

T
mnnm

T
mnm

n
T
mnnm

T
mnmnm

T
mnnm

T
mn

n
T
mnmnm

T
mn

yXXXw

yXXXwXXXX

yXwXX

GG

GG

GG

1

11

−

−−

=

=

=

 (10.2)

Predictions for the training set can now be made for y by substituting (10.2) in (10.1):

() n
T
mnnm

T
mnnmn yXXXXy

GG 1ˆ −
= (10.3)

Draft Document

 12

Before applying this formula for the prediction of the free binding energy of amino acids, we
have to introduce one more important stage of the data mining cycle: data pre-processing. The
seven descriptors for the amino acids have very different underlying metrics and scales, i.e.,
some columns have all very small entries and other columns have relatively large entries. It is a
common procedure in data mining to center all the descriptors and to bring them to a unity
variance. The same process is then applied to the response. This procedure of centering and
variance normalization is known as Mahalanobis scaling [ref]. While Mahalanobis scaling is not
the only way to pre-process the data, it is probably the most general and the most robust way to
do pre-processing that applies well across the board. If we represent a feature vector asz

G

,
Mahalanobis scaling will result in a rescaled feature vector z ′G and can be summarized as:

)(
'

zstd

zz
z

K

K

K −= (10.4)

wherez represents the average value and ()zstd

G

represents the standard deviation for attributez
G

.
After Mahalanobis scaling, the data matrix from Table 10.3 now changes to Table 10.4.

Table 10.4. Amino acid protein folding data after Mahalanobis scaling during preprocessing.

The modeling results obtained from Eq. (10.3) after de-scaling the “predictions” back to the
original distribution are shown in Fig. 10.3. After a first inspection, these “predictions” do not
look bad. However, there is one caveat: these are “predictions” for training data. It is imperative
for predictive data mining to verify how good the model really is on a validation set, i.e., a set of
data that was not used for training. Of course, there is now a problem here: there are only 19 data
points. If we would build a model using 13 data points and test on the remaining 6 data points,
the model is probably not going to be as accurate as it potentially could be, because all the
available data were not used for model building. There are several ways out of that dilemma. (i)
Because data mining in principle deals with large data sets, there are normally enough data
available to split the dataset up in a training set and a test set. A good practice would be to use a
random sample of 2/3 of the data for the training, and 1/3 for testing. (ii) If one is truly
concerned about compromising the quali ty of the model, one can follow the leave-one-out
(LOO) method. In this case, one would build 19 different models, each time using 18 data for

-0.205 -0.240 0.195 -1.340 -1.233 0.881 -1.344 -0.502 1
-1.149 -1.155 1.067 -0.204 -0.336 -1.022 -0.318 -0.611 2
-1.322 -1.326 1.635 -0.565 -0.336 -0.772 -0.611 -0.502 3
0.088 0.997 -0.504 -0.680 -0.399 0.740 -0.768 0.405 4
-0.657 -0.773 0.886 0.518 0.144 -0.944 0.200 -1.300 5
-1.189 -1.195 1.273 -0.020 -0.079 -1.318 -0.039 -0.393 6
-0.511 -0.552 0.647 -2.013 -1.713 0.959 -1.930 -1.010 7
-0.311 -0.421 0.442 0.569 0.555 -0.741 0.646 0.078 8
1.086 1.259 -1.080 0.233 0.032 0.974 0.343 2.508 9
1.193 1.158 -0.998 0.265 0.206 1.099 0.336 1.855 10
-1.535 -1.547 1.289 0.555 -0.399 -2.612 0.772 -0.719 11
0.687 0.686 -0.669 0.548 0.559 0.397 0.363 1.239 12
1.566 1.249 -1.492 1.234 1.363 0.834 1.164 0.477 13
-0.005 -0.059 -0.587 -0.551 -0.458 0.413 -0.509 -0.611 14
-0.511 -0.592 0.721 -1.052 -1.075 0.288 -1.129 -0.901 15
-0.284 -0.290 0.170 -0.657 -0.596 0.085 -0.557 -0.393 16
1.951 1.712 -1.574 2.055 2.518 0.428 2.189 0.006 17
0.674 0.414 -0.751 1.503 1.522 -0.398 1.399 -0.393 18
0.434 0.676 -0.669 -0.399 -0.274 0.709 -0.206 0.767 19

Draft Document

 13

training and test on the one remaining data-point. The 19 individual tests would then be
combined and displayed in a simple plot similar to the plot of Fig. 10.4. (iii) An obvious
extension to the LOO practice is to leave several samples out. This procedure is called
bootstrapping and in analogy with the LOO method will be indicated by the acronym BOO.
Using it, it is easy to make actually 100 or more models from the 19 data samples, leaving three
samples out each time for testing, and then combining the predictions.

�

�

���

���

��	

��

���

 � 	
 � ��
 ��� ��	 ��
 ��� ��

� �
� �
�� �
��
� � �
�� �
� �
�
� �� �
��

�! #"%$'&)(*�!&)+-,.&0/.1)&324,65879&0"

:';=<?>!@ A)B0CDFE=G?H!I J)K0L
MONQP#RTS?UWV X)Y)Y

Z%[0\%]6^0Z
_.`ba)c-dfe0g'a)c

Fig. 10.3 Predictions for training model for the 19 amino-acid data form Table IV.

Making a test model proceed in a very similar way as for training: the “wisdom vector” or the
weight vector will be applied to the test data to make predictions according to:

m
test
km

test
k wXy

GG =ˆ (10.5)

In the above expression it was assumed that there are k test data, and the subscript ‘ test” is use to
explicitly indicate that the wisdom vector will be applied to a set of k test data with m attributes
or descriptors. If one considers testing for one sample data point at a time, Eq. (10.5) can be
represented as a simple neural network with an input layer and just a single neuron, as shown in
Fig. 10.4. The neuron produces the weighted sum of the average input features. Note that the
transfer function, commonly found in neural networks, is not present here. Note also that that the
number of weights for this one-layer neural networks equals the number of input descriptors or
attributes.

Draft Document

 14

Fig 10.4. Neural network representation for the simple regression model.

Let us just proceed with training the simple learning model on the first 13 data points, and make
predictions on the last six data points. The results are shown in Fig. 10.5. It is clear that this
model looks less convincing for being able to make good predictions on the test data.

�
�
�
�
�
���
���
�
	
�
�

��

��

��

 � � � � �

� �
��
�� �
��
� ��
�� �
� �
�
� ��
�!

"$#&%('*),+-"$),.0/1)3214,)65-/87:91)3%

;=<?>A@$B CED3@FHG?IJG&K L,M,M
NPORQ$SUTJV&W X,Y3V

Z([]\(^8_3Z
`1acb,d0e f3g*b,d

Fig. 10.5 Test data predictions for the simple regression model trained on the first 13 data

samples in Table10.4 and tested on the six last data samples.

10.3.4 Metrics for Assessing the Model Quality

An obvious question that now comes to mind is how to assess or describe the quality of a model
for training data and test data, such as is the case for the data shown in Figs. 10.4 and 10.6. In the
case of a classification problem that would be relatively easy, and one would ultimately present
the number of hits and misses in the form of a confusion matrix as described earlier. For a
regression problem, a common way to capture the error is by the Root Mean Square Error index
or RMSE, which is defined as the average value of the squared error (either for the training set or
the test set) according to:

Draft Document

 15

()2
ˆ

1 ∑ −=
i

ii yy
n

RMSE (10.6)

While the root mean square error is an eff icient way to compare the performance of different
prediction methods on the same data, it is not an absolute metric in the sense that the RMSE wil l
depend on how the response for the data was scaled. In order to overcome this handicap,
additional error measures will be introduced that are less dependent on the scaling and magnitude
of the response value. A first metric that will be used for assessing the quali ty of a trained model
is r2, where r2 is defined as the correlation coeff icient squared between target values and
predictions for the response according to:

()()

() ()∑∑

∑

==

=

−−

−−
=

traintrain

train

1

2

1

2

12

ˆ

ˆ

n

i
i

n

i
i

n

i
ii

yyyy

yyyy
r (10.7)

where ntrain represents the number of data points in the training set. r2 takes values between zero
and unity, and the higher the r2 value, the better the model. An obvious drawback of r2 for
assessing the model quality is that r2 only expresses a linear correlation, indicating how well the
predictions follow a line if ŷ is plotted as function of y. While one would expect a nearly perfect
model when r2 is unity, this is not always the case. A second and more powerful measure to
assess the quali ty of a trained model is the so-called “Press r squared” , or R2, often used in
chemometric modeling [14], where R2 is defined as [15]:

()

()∑

∑

=

=

−

−
−=

train

train

n

i
i

n

i
ii

yy

yy
R

1

2

1

2

2

ˆ

1 (10.8)

We consider R2 as a better measure than r2, because it accounts for the residual error as well . The
higher the value for R2, the better the model. Note that in certain cases the R2 metric can actually
be negative. The R2 metric is commonly used in chemometrics and is generally smaller than r2.
For large datasets, R2 tends to converge to r2, and the comparison between r2 and R2 for such data
often reveals hidden biases.

For assessing the quali ty of the validation set or a test set, we will i ntroduce similar metrics, q2
and Q2, where q2 and Q2 are defined as 21 r− and 21 R− for the data in the test set. For a model
that perfectly predicts on the test data, we now would expect q2 and Q2 to be zero. The reason for
introducing metrics that are symmetric between the training set and the test set is actually to
avoid confusion. Q2 and q2 values will always apply to a validation set or a test set, and that we
would expect these values to be quite low in order to have a good predictive model. R2 and r2
values will always apply to training data, and should be close to unity for a good training model.
For the example above, trained on 13 training data, we obtained RMSE = 0.1306, r2 = 0.826, and

Draft Document

 16

R2 = 0.815 for the training data. Similarly, with a model in which the six data points are put aside
for the validation set, we obtained 2.524, 0.580, 2.966, for the RMSE, q2, and Q2 respectively.

Note that for the above example Q2 is significantly larger than unity (2.966). While 0 < q2 < 1,
inspecting Eq. (10.8) reveals that this upper limit does not hold anymore for Q2. The Q2 measure
for the six test data actually indicates that the predictions on the test data are poor. The large
difference between q2 and Q2 indicates that the model also has a lot of uncertainty. Looking at
Fig.10.6a, this conclusion is not entirely obvious: the predictions in this figure seem to follow the
right trend, and there are two data points that are clearly missed in the predictions. A better type
of plot, that clearly supports the conclusions from the q2 and Q2 analysis, is the scatterplot. A
scatterplot is a plot where the true values are indicated on the horizontal axis and the predicted
values correspond to the y-axis. For a perfect predictive model, all the data should fall on the
main diagonal. Fig.10.6b shows the scatterplot for the six test data for the amino acid example.
From looking at the scatterplot, it now becomes immediately clear that the predictive model is
not good at all i n predicting on test data. The scatterplot on the left hand side is for the six test
data (the six last samples from Table 10.3), while the scatterplot on the right hand side is
obtained from running 200 different bootstraps, and testing on a random selection of six test
samples. The variance on the bootstrap predictions for this case is indicated with error bars on
the figure.

Figure 10.6 Scatterplot for predictions on (a) six test data for the amino acid example, and (b)

200 bootstraps with six sample test data each.

10.4 INTRODUCTION TO DIRECT KERNEL METHODS

10.4.1 The data mining dilemma and the machine learning dilemma for real-world data

The example above is a simple “toy” problem and rather naïve. Real-world data mining
problems differ in many ways. Real-world datasets can be vast. They are often so large that they

Draft Document

 17

cannot be elegantly presented and looked at in a spreadsheet anymore. Furthermore, real-world
data sets have missing data, errors, outliers, and minority classes.

There is also the problem of diminishing “ information density” in large datasets. As datasets
become larger and larger, we would expect, on the one hand, that there is more information out
there to build good and robust models. On the other hand, there might also be so much spurious
and superfluous data in the dataset that the information density is actually lower. Even if it is
possible to obtain better models from larger datasets because there is more useful and relevant
information out there, it is actually a harder to extract that information. We call this the
phenomenon “ the data mining dilemma.”

Another observation will be even more fundamental for predictive data mining. Looking back at
equations (2) and (3) it can be noticed that they contain the inverse of the feature kernel, FK ,
defined as:

nm
T
mnF XXK = (10.9)

The feature kernel is a mm × symmetric matrix where each entry represents the similarity
between features. Obviously, if there were two features that would be completely redundant the
feature matrix would contain two columns and two rows that are (exactly) identical, and the
inverse does not exist. For the case of data strip mining problems, where there are more
descriptors than data, this matrix would be rank deficient and the inverse would not exist.
Consequently, the simple regression model we proposed above would not work anymore. One
can argue that all i s still well , and that in order to make the simple regression method work one
would just make sure that the same descriptor or attribute is not included twice. By the same
argument, highly correlated descriptors (i.e., “cousin features” in data mining lingo) should be
eliminated as well . While this argument sounds plausible, the truth of the matter is more subtle.
Let us repeat Eq. (10.2) again and go just one step further as shown below.

() () ()
()

() n
T
mnnm

T
mnm

n
T
mnnm

T
mnm

n
T
mnnm

T
mnmnm

T
mnnm

T
mn

n
T
mnmnm

T
mn

yXXXw

yXXXw

yXXXwXXXX

yXwXX

GG

GG

GG

GG

1

1

11

−

−

−−

=

=

=

=

 (10.10)

Eq. (10.10) is the derivation of an equivalent linear formulation to (2.2), based on the so-called
right-hand pseudo-inverse or Penrose inverse, rather than using the more common left-hand
pseudo-inverse. It was not shown here how that last line followed from the previous equation,
but the proof is straightforward and left as an exercise to the reader. Note that now the inverse is
needed for a different entity matrix, which now has an nn × dimensionali ty, and is called the
data kernel, DK , as defined by:

T
mnnmD XXK = (10.11)

Draft Document

 18

The right-hand pseudo-inverse formulation is less frequently cited in the li terature, because it can
only be non-rank deficient when there are more descriptive attributes than data points, which is
not the usual case for data mining problems (except for data strip mining cases). The data kernel
matrix is a symmetrical matrix that contains entries representing similarities between data points.
The solution to this problem seems to be straightforward. We will first try to explain here what
seems to be an obvious solution, and then actuall y show why this won’ t work. Looking at Eqs.
(10.10) and (10.11) it can be concluded that, except for rare cases where there are as many data
records as there are features, either the feature kernel is rank deficient (in case that nm > , i.e.,
there are more attributes than data), or the data kernel is rank deficient (in case that mn > , i.e.,
there are more data than attributes). It can be now argued that for the nm < case one can proceed
with the usual left-hand pseudo-inverse method of Eq. (10.2), and that for the nm > case one
should proceed with the right-hand pseudo inverse, or Penrose inverse following Eq. (10.10).

While the approach just proposed here seems to be reasonable, it will not work. Learning occurs
by discovering patterns in data through redundancies present in the data. Data redundancies
imply that there are data present that seem to be very similar to each other (and that have similar
values for the response as well). An extreme example for data redundancy would be a dataset
that contains the same data point twice. Obviously, in that case, the data matrix is ill -conditioned
and the inverse does not exist. This type of redundancy, where data repeat themselves, will be
called here a “hard redundancy.” However, for any dataset that one can possibly learn from,
there have to be many “soft redundancies” as well . While these soft redundancies will not
necessarily make the data matrix ill -conditioned, in the sense that the inverse does not exist
because the determinant of the data kernel is zero, in practice this determinant will be very small .
In other words, regardless whether one proceeds with a left-hand or a right-hand inverse, if data
contain information that can be learnt from, there have to be soft or hard redundancies in the
data. Unfortunately, Eqs. (10.2) and (10.10) can’ t be solved for the weight vector in that case,
because the kernel will either be rank deficient (i.e., ill -conditioned), or poor-conditioned, i.e.,
calculating the inverse will be numerically unstable. We call this phenomenon “ the data mining
dilemma:” (i) machine learning from data can only occur when data contain redundancies; (ii)
but, in that case the kernel inverse in Eq. (10.2) or Eq. (10.10) is either not defined or
numerically unstable because of poor conditioning. Taking the inverse of a poor-conditioned
matrix is possible, but the inverse is not “sharply defined” and most numerical methods, with the
exception of methods based on single value decomposition (SVD), will run into numerical
instabiliti es. The data mining dilemma seems to have some similarity with the uncertainty
principle in physics, but we will not try to draw that parallel too far.

Statisticians have been aware of the data mining dilemma for a long time, and have devised
various methods around this paradox. In the next sections, we will propose several methods to
deal with the data mining dilemma, and obtain eff icient and robust prediction models in the
process.

10.4.2 Regression Models Based on the Data Kernel Model

In this section, we wil l consider the data kernel formulation of Eq. (10.10) for predictive
modeling. Not because we have to, but because this formulation is just in the right form to apply
the kernel transformation on test data. There are several well -known methods for dealing with

Draft Document

 19

the data mining dilemma by using techniques that ensure that the kernel matrix will not be rank
deficient anymore. Two well-known methods are principal component regression [16] and ridge
regression [17-18]. In order to keep the mathematical diversions to its bare minimum, only ridge
regression will be discussed.

Ridge regression is a very straightforward way to ensure that the kernel matrix is positive
definite (or well-conditioned), before inverting the data kernel. In ridge regression, a small
positive value, λ, is added to each element on the main diagonal of the data matrix. Usually the
same value for λ is used for each entry. Obviously, we are not solving the same problem
anymore. In order to not deviate too much from the original problem, the value for λ will be kept
as small as we reasonably can tolerate. A good choice for λ is a small value that will make the
newly defined data kernel matrix barely positive definite, so that the inverse exists and is
mathematically stable. In data kernel space, the solution for the weight vector that will be used in
the ridge regression prediction model now becomes:

() n
T
mnnm

T
mnn yIXXXw

GG 1−+= λ (10.12)

and predictions for y can now be made according to:

()
()

nD

nDD

n
T
mnnm

T
mnnm

wK

yIKK

yIXXXXy

G

G

GG

=
+=

+=
−

−

1

1ˆ

λ

λ

 (10.13)

where a very different weight vector was introduced: nw

K

. This weight vector is applied directly

to the data kernel matrix (rather than the training data matrix) and has the same dimensionali ty as
the number of training data. To make a prediction on the test set, one proceeds in a similar way,
but applies the weight vector on the data kernel for the test data, which is generally a rectangular
matrix, and projects the test data on the training data according to:

()Ttrain
mn

test
km

test
D XXK = (10.14)

where it is assumed that there are k data points in the test set.

10.4.3 The Kernel Transformation

The kernel transformation is an elegant way to make a regression model nonlinear. The kernel
transformation goes back at least to the early 1900’s, when Hilbert addressed kernels in the
mathematical lit erature. A kernel is a matrix containing similarity measures for a dataset: either
between the data of the dataset itself, or with other data (e.g., support vectors [1]). A classical use
of a kernel is the correlation matrix used for determining the principal components in principal
component analysis, where the feature kernel contains linear similarity measures between
(centered) attributes. In support vector machines, the kernel entries are similarity measures
between data rather than features and these similarity measures are usually nonlinear, unlike the

Draft Document

 20

dot product similarity measure that we used before to define a kernel. There are many possible
nonlinear similarity measures, but in order to be mathematically tractable the kernel has to
satisfy certain conditions, the so-called Mercer conditions [1-3].



















=

nnnn

n

n

nn

kkk

kkk

kkk

K

...

...

...

...

21

22221

11211

I

 (10.15)

The expression above, introduces the general structure for the data kernel matrix, nmK
I

, for n data.

The kernel matrix is a symmetrical matrix where each entry contains a (linear or nonlinear)
similarity between two data vectors. There are many different possibilities for defining similarity
metrics such as the dot product, which is a linear similarity measure and the Radial Basis
Function kernel or RBF kernel, which is a nonlinear similarity measure. The RBF kernel is the
most widely used nonlinear kernel and the kernel entries are defined by

2

2

2

2σ
lj xx

ij ek

��

−
−

≡ (10.16)

Note that in the kernel definition above, the kernel entry contains the square of the Euclidean
distance (or two-norm) between data points, which is a dissimilarity measure (rather than a
similarity), in a negative exponential. The negative exponential also contains a free parameter, σ,
which is the Parzen window width for the RBF kernel. The proper choice for selecting the
Parzen window is usually determined by an additional tuning, also called hyper-tuning, on an
external validation set. The precise choice for σ is not crucial, there usually is a relatively broad
range for the choice for σ for which the model quali ty should be stable.

Different learning methods distinguish themselves in the way by which the weights are
determined. Obviously, the model in Eqs. (10.12) - (10.14) to produce estimates or predictions
for y is linear. Such a linear model has a handicap in the sense that it cannot capture inherent
nonlinearities in the data. This handicap can easily be overcome by applying the kernel
transformation directly as a data transformation. We will t herefore not operate directly on the
data, but on a nonlinear transform of the data, in this case the nonlinear data kernel. This is very
similar to what is done in principal component analysis, where the data are substituted by their
principal components before building a model. A similar procedure will be applied here, but
rather than substituting data by their principal components, the data will be substituted by their
kernel transform (either linear or nonlinear) before building a predictive model.

The kernel transformation is applied here as a data transformation in a separate pre-processing
stage. We actually replace the data by a nonlinear data kernel and apply a traditional li near
predictive model. Methods where a traditional l inear algorithm is used on a nonlinear kernel
transform of the data are introduced in this chapter as “direct kernel methods.” The elegance and
advantage of such a direct kernel method is that the nonlinear aspects of the problem are

Draft Document

 21

captured entirely in the kernel and are transparent to the applied algorithm. If a linear algorithm
was used before introducing the kernel transformation, the required mathematical operations
remain linear. It is now clear how linear methods such as principal component regression, ridge
regression, and partial least squares can be turned into nonlinear direct kernel methods, by using
exactly the same algorithm and code: only the data are different, and we operate on the kernel
transformation of the data rather than the data themselves. This same approach for converting
algorithms to direct kernel methods can also be applied to nonlinear learning algorithms such as
the self-organizing map [4].

In order to make out-of-sample predictions on true test data, a similar kernel transformation
needs to be applied to the test data, as shown in Eq. (10.14). The idea of direct kernel methods is
illustrated in Fig. 10.7, by showing how any regression model can be applied to kernel-
transformed data. One could also represent the kernel transformation in a neural network type of
flow diagram and the first hidden layer would now yield the kernel-transformed data, and the
weights in the first layer would be just the descriptors of the training data. The second layer
contains the weights that can be calculated with a hard computing method, such as kernel ridge
regression. When a radial basis function kernel is used, this type of neural network would look
very similar to a radial basis function neural network [19-20], except that the weights in the
second layer are calculated differently.

Figure 10.7 Operation schematic for direct kernel methods as a data pre-processing step.

10.4.4 Dealing with the Bias: Centering the Kernel

There is still one important detail that was overlooked so far, and that is necessary to make direct
kernel methods work. Looking at the prediction equations in which the weight vector is applied
to data as in Eq. (10.1), there is no constant offset term or bias. It turns out that for data that are
centered this offset term is always zero and does not have to be included explicitly. In machine
learning lingo the proper name for this offset term is the bias, and rather than applying Eq.
(10.1), a more general predictive model that includes this bias can be written as:

Draft Document

 22

bwXy mnmn += GKˆ (10.17)

where b is the bias term. Because we made it a practice in data mining to center the data first by
Mahalanobis scaling, this bias term is zero and can be ignored.

When dealing with kernels, the situation is more complex, as they need some type of bias as
well . We will give only a recipe here, that works well i n practice, and refer the reader to the
literature for a more detailed explanation [3, 21-23]. Even when the data were Mahalanobis-
scaled, before applying a kernel transform, the kernel still needs some type of centering to be
able to omit the bias term in the prediction model. A straightforward way for kernel centering is
to subtract the average from each column of the training data kernel, and store this average for
later recall , when centering the test kernel. A second step for centering the kernel is going
through the newly obtained vertically centered kernel again, this time row by row, and
subtracting the row average form each horizontal row.

The kernel of the test data needs to be centered in a consistent way, following a similar
procedure. In this case, the stored column centers from the kernel of the training data will be
used for the vertical centering of the kernel of the test data. This vertically centered test kernel is
then centered horizontally, i.e., for each row, the average of the vertically centered test kernel is
calculated, and each horizontal entry of the vertically centered test kernel is substituted by that
entry minus the row average.

Mathematical formulations for centering square kernels are explained in the literature [21-23].
The advantage of the kernel-centering algorithm introduced (and described above in words) in
this section is that it also applies to rectangular data kernels. The flow chart for pre-processing
the data, applying a kernel transform on this data, and centering the kernel for the training data,
validation data, and test data is shown in Fig. 10.8.

Figure 10.8 Data pre-processing with kernel centering for direct kernel methods.

Draft Document

 23

10.5. DIRECT KERNEL RIDGE REGRESSION

10.5.1 Overview

So far, the argument was made that by applying the kernel transformation in Eqs. (10.13) and
(10.14), many traditional linear regression models can be transformed into a nonlinear direct
kernel method. The kernel transformation and kernel centering proceed as data pre-processing
steps (Fig. 10.8). In order to make the predictive model inherently nonlinear, the radial basis
function kernel will be applied, rather than the (linear) dot product kernel, used in Eqs. (10.2)
and (10.10). There are actually several alternate choices for the kernel [1-3, 19], but the RBF
kernel is the most widely applied kernel. In order to overcome the machine learning dilemma, a
ridge can be applied to the main diagonal of the data kernel matrix. Because the kernel
transformation is applied directly on the data, before applying ridge regression, this method is
called direct-kernel ridge regression.

Kernel ridge regression and (direct) kernel ridge regression are not new. The roots for ridge
regression can be traced back to the statistics literature [18]. Methods equivalent to kernel ridge
regression were recently introduced under different names in the machine literature (e.g.,
proximal SVMs were introduced by Mangasarian et al. [24], kernel ridge regression was
introduced by Poggio et al. [25-27], and Least-Squares Support Vector Machines were
introduced by Suykens et al. [28-29]). In these works, Kerned Ridge Regression is usually
introduced as a regularization method that solves a convex optimization problem in a
Langrangian formulation for the dual problem that is very similar to traditional SVMs. The
equivalency with ridge regression techniques then appears after a series of mathematical
manipulations. By contrast, in this chapter direct kernel ridge regression was introduced with few
mathematical diversions in the context of the machine learning dilemma. For all practical
purposes, kernel ridge regression is similar to support vector machines, works in the same feature
space as support vector machines, and was therefore named least-squares support vector
machines by Suykens et al. [28-29].

Note that kernel ridge regression still requires the computation of an inverse for a nn × matrix,
that can be quite large. This task is computationally demanding for large datasets, as is the case
in a typical data mining problem. Because the kernel matrix now scales with the number of data
squared, this method can also become prohibitive from a practical computer implementation
point of view, because both memory and processing requirements can be very demanding.
Krylov space-based methods and conjugate gradient methods are relatively efficient ways to
speed up the matrix inverse transformation of large matrices, where the computation time now
scales as n2, rather than n3. Krylov-space methods are discussed in [30]. Conjugate gradient-
based methods for inverting large matrices are discussed in [1] and [29]. The Analyze/Stripminer
[31] code used for the analysis presented here applies M � ller’s scaled conjugate gradient method
to calculate the matrix inverse [32].

The issue of dealing with large datasets is even more profound. There are several potential
solutions that will not be discussed in detail . One approach would be to use a rectangular kernel,
were not all the data are used as bases to calculate the kernel, but a good subset of “support
vectors” is estimated by chunking [1] or other techniques such as sensitivity analysis (explained

Draft Document

 24

further on in this chapter). More eff icient ways for inverting large matrices are based on piece-
wise inversion. Alternatively, the matrix inversion may be avoided altogether by adhering to the
support vector machine formulation of kernel ridge regression and solving the dual Lagrangian
optimization problem and applying the sequential minimum optimization or SMO algorithm as
explained in [33].

10.5.2 Choosing the Ridge Parameter, λλ

It has been shown in the literature [29] that kernel ridge regression can be expressed as an
optimization method, where rather than minimizing the residual error on the training set,
according to:

21

train

ˆ∑
=

−
n

i
ii yy
GG

 (10.18)

we now minimize:

2
21 2

ˆ
train

wyy
n

i
ii

GGG λ+−∑
=

 (10.19)

The above equation is a form of Tikhonov regularization [34-35] that has been explained in
detail by Cherkassky and Mulier [17] in the context of empirical versus structural risk
minimization. Minimizing the norm of the weight vector is in a sense similar to an error
penalization for prediction models with a large number of free parameters. An obvious question
in this context relates to the proper choice for the regularization parameter or ridge parameter λ.

In the machine learning, it is common to tune the hyper-parameter λ by making use of a
tuning/validation set. This tuning procedure can be quite time consuming for large datasets,
especially in consideration that a simultaneous tuning for the RBF kernel width must proceed in
a similar manner. We therefore propose a heuristic formula for the proper choice for the ridge
parameter, that has proven to be close to optimal in numerous practical cases [36]. If the data
were originally Mahalanobis scaled, it was found by scaling experiments that a near optimal
choice for λ is


















=

2

3

200
05.0;1min

nλ (10.20)

where n is the number of data for the training set.

Note that in order to apply the above heuristic the data have to be Mahalanobis scaled first. Eq.
(10.20) was validated on a variety of standard benchmark datasets from the UCI data repository
[36], and provided results that are nearly identical to an optimally tuned λ on a tuning/validation
set. In any case, the heuristic formula for λ should be an excellent starting choice for the tuning
process for λ. The above formula proved to be also useful for the initial choice for the
regularization parameter C of SVMs, where C is now taken as 1/λ.

Draft Document

 25

10.6. CASE STUDIES

10.6.1 Case Study #1: Predicting the Binding Energy for Amino Acids

In this section, predicting the free energy for unfolding amino acids will be revisited by applying
direct kernel ridge regression with a Gaussian or RBF kernel. The ridge parameter λ was chosen
as 0.00083, following Eq. (10.20), and the Parzen window parameter, σ, was chosen to be unity
(obtained by tuning with the leave-one-out method on the training set of 13 data). The
predictions for the six amino acids are shown in Fig. 10.9. The lower values for q2, Q2, and
RMSE show a clear improvement over the predictions in Fig. 10.5. Figure 10.10 illustrates the
scatterplot for 200 bootstrap predictions on six randomly selected samples. The values of q2 and
Q2 are now 0.366 and 0.374, compared to 0.737 and 1.233 for the corresponding values in the
linear bootstrap model shown in Fig. 10.6b. The execution time for the 200 bootstraps was 13
seconds for kernel ridge regression, compared to 0.5 seconds with the simple regression model
using the Analyze/Stripminer code on a 128MHz Pentium III computer. Note also that the
bootstrapped values for q2 and Q2, i.e., 0.366 and 0.374, are now almost equal. The similar values
for q2and Q2 indicate that there is no bias in the models, and that the choices for the hyper-
parameters σ and λ, are at least close to optimal.

�

�

�

���

���

���

���

� � � 	
 �

�

��
��

��
� ��
�� �
� �
�
�
� �
��

�����! #"%$&��"%')(*",+*-%"/.&(1032*",�

'4�657��8 �9�9�
:;�657��8
%	%�

<>= ��?@57�A8 �9�B�

 !CB�!D1",
E �F"%$)G -, #"%$

Figure 10.9 Predictions for DDGTS for the last six amino acids from Table IV with direct

kernel ridge regression.

Draft Document

 26

Figure 10.10 Scatterplot for predictions on six test data for DDGTS with 200 bootstraps with

six sample test data each.

10.6.2 Case study #2: Predicting the Region of Origin for 572 Italian Olive Oils

The second case study deals with classifying 572 Italian olive oils by their region of origin,
based on eight fatty acid contents. We chose this problem, because it is a multi-class problem
with nine classes that are not ordinal. With the term non-ordinal we mean that the class numbers
are not hierarchical and do not reflect a natural ordering.

Figure 10.11 572 Italian olive oil samples by nine regions of origin [37-38].

Draft Document

 27

The olive oil data were introduced by Forina [37] and extensively analyzed by Zupan and
Gasteiger [38]. They can be downloaded from the web site referenced in [37]. Following [38],
the data were split in 250 training data and 322 test data, but the split is different from the one
used in [38].

The data were preprocessed as shown in Fig. 10.8. The response for the nine classes is now
coded as {1 ... 9}, and Mahalanobis scaled before applying kernel ridge regression. σ is tuned on
the training set, and assumed a value of 2. The ridge parameter, λ, is 0.07, based on Eq. (10.20).
The errors on the test set, after de-scaling, are shown in Fig. 10.12. Figure 10.13 shows the
scatterplot for the same data.

�
�
�
�
�
�
�
�
�
	

��

�
��
����
�
�� ����� ��
�� ����� ��
��

� �
��
�� �
��
� ��
�� �
� �
�
� �� �
�

!#"%$'&)(�*+!#(�,.-.(�/.0�(213-.4657(�$

8%9;:=<?> <A@�<BDC;E=F?G FAH�F
IKJML#NPO=Q?R S�T�U

V7W'X�Y.Z [�\)X�Y
]_^A`)a7b�]

Figure 10.12 Test results for nine olive oil classes on 322 test data (kernel ridge regression).

Figure 10.13 Scatterplot for nine olive oil classes on 322 test data (kernel ridge regression).

Draft Document

 28

In this case, 84% of the classes were correctly predicted. This is significantly better than the 40%
prediction rate with a neural net with one output neuron for the classes, as reported in [38], but
also clearly below the 90% prediction rate with a neural network with nine output neurons and an
orthogonal encoding reported in the same reference. In order to improve the prediction results
one could either train nine different kernel ridge models, and predict for one-class versus the
other eight classes at a time, or train for all possible 36 combinations on two class problems, and
let a voting scheme decide on the final class predictions. While this latter scheme is definitely
not as straightforward as training a single neural network with nine orthogonally encoded output
neurons, the results should be more comparable to the best neural network results.

Note that there is a near perfect separation for distinguishing the olive oils from regions in
southern Italy from the olive oils from the northern regions. Most of the misses in the prediction
in Figs. 10.12 and 10.13, are off by just one class, locating the olive oils that were misclassified
close to the actual region of origin. The single-field encoding for the output class, still works
reasonably well on this non-ordinal classification problem, because the classes were labeled in an
almost ordinal fashion. By this we mean that class numbers that are close to each other, e.g., 1, 2,
and 3, are also geographically located nearby on the map in Fig. 10.11b.

Direct Kernel Partial Least-Squares (DK-PLS) is a direct-kernel implementation form of the PLS
algorithm, popular in chemometrics, and similar to kernel-PLS first introduced in [39]. DK-PLS
yields an 83% correct classification rate, using the same pre-processing procedure and 12 latent
variables. In this case, latent variables are the equivalent of principal components in PCA. The
traditional (linear) PLS algorithm yields a 28% correct classification rate. Direct-kernel principal
component analysis with 12 principal components yields a 54% correct classification rate, while
principal component analysis with six principal components results in a 30% correct
classification rate. The classification results reported in this section indicate a clear improvement
of direct kernel methods over their linear counterpart. The excellent comparison between kernel
ridge regression and direct kernel PLS is also a good confidence indicator for heuristic formula,
Eq. (10.20), for selecting the ridge parameter.

Rather than reporting improved results from combining binary classification models, we wil l
ill ustrate Kohonen’s self-organizing map or SOM [4]. Because self-organizing maps already
inherently account for nonlinear effects, it is not necessary to apply a Direct-Kernel Self
Organizing Map (DK-SOM). Fig. 10.14 shows a 2013× Kohonen map based on 250 training
data. 93% of the 322 test samples are now correctly classified as shown by the confusion matrix
in Table 10.5. The classification performance of the DK-SOM is similar to the SOM, but the
DK-SOM in this case requires 3 minutes training, rather than 6 seconds training for the SOM.
This is not entirely surprising because the DK-SOM operates on data with 250 features or kernel
entries, while the SOM operates on the eight original features.

An eff icient SOM module was incorporated in the Analyze/StripMiner software [31] with a goal
of keeping user decisions minimal by incorporating robust default parameter settings. To do so,
the SOM is trained in its usual two-stage procedure: an ordering phase and a fine-tuning phase.
The weights are trained by competitive learning where the winning neuron and its neighboring
neurons in the map are iteratively updated, according to

Draft Document

 29

() xww old

m
new
m

GGG αα +−= 1 (10.21)

where x� is a pattern vector with m features, α is the learning parameter and w� represents the
weight vector.

Figure 10.14 SOM for 250 training data for olive oil region of origin.

Table 10.5 Confusion matrix for 332 test data for nine non-ordinal classes.

Region # test data

North Apulia 10 1 1 1 0 0 0 0 0 13
Calabria 0 25 6 0 0 0 0 0 0 31
South Apulia 0 1 108 0 0 0 0 0 0 109
Sicily 1 5 3 13 0 0 0 0 0 22
Inner Sardinia 0 0 0 0 40 1 0 0 0 41
Coast. Sardinia 0 0 0 0 0 16 0 0 0 16
East Liguria 0 0 0 0 1 0 23 1 0 25
West Liguria 0 0 0 0 0 0 0 33 0 33
Umbria 0 0 0 0 0 0 0 0 32 32

 322

Data patterns are presented at random and the learning parameterα is linearly reduced from 0.9
to 0.1 during the ordering phase. During this phase, the neighborhood size of the SOM is reduced
from six to one on a hexagonal grid in a linear fashion. The number of iterations with Eq. (10.24)
can be user-specified: 100 times the number of samples is a robust default for the ordering phase.
During the fine iteration stage,α is reduced from 0.1 to 0.01 in a linear fashion. The code
defaults to 20000 iterations for the ordering phase and 50000 iterations in the fine-tuning phase.

Draft Document

 30

The map size defaults to a 189 × hexagonal grid. Following Kohonen [4], the initial weights are
random data samples and a supervised Learning Vector Quantization (LVQ) algorithm was
implemented in the fine-tuning stage following [4]. The cells in the Kohonen map are colored by
applying semi-supervised learning. By this, we mean that the weight vector is augmented by an
additional entry for the class, which is called the color. The color code entry is not used in the
distance metrics used in the SOM, but is otherwise updated in the same manner as the other
weights in the SOM. A second optional cell-coloring scheme implemented in the code is based
on a cellular automaton rule. Note also that in our study the data were preprocessed by
Mahalanobis scaling each column entry first. The only difference between DK-SOM and SOM is
that for DK-SOM, there is an additional pre-processing stage where the data are kernel
transformed using a Gaussian kernel. The Parzen width, σ, for the default Gaussian kernel in the
SOM is kept the same as for the kernel-ridge regression model.

10.6.3 Case Study #3: Predicting Ischemia from Magnetocardiography

10.6.3.1 Introduction

We describe in this section the use of direct-kernel methods and support vector machines for
pattern recognition in magnetocardiography (MCG) that measures magnetic fields emitted by the
electrophysiological activity of the heart. A SQUID (or Superconducting Interference Device)
measures MCGs in a regular, magnetically unshielded hospital room. The operation of the
system is computer-controlled and largely automated. Procedures are applied for
electric/magnetic activity localization, heart current reconstruction, and derivation of diagnostic
scores. However, the interpretation of MCG recordings remains a challenge since there are no
databases available from which precise rules could be educed. Hence, there is a need to automate
interpretation of MCG measurements to minimize human input for the analysis. In this particular
case we are interested in detecting ischemia, which is a loss of conductivity because of damaged
cell tissue in the heart and the main cause of heart attacks, the leading cause of death in the USA.

10.6.3.2 Data acquisition and pre-processing

MCG data are acquired at 36 locations above the torso for 90 seconds using a sampling rate of
1000 Hz leading to 36 individual time series. To eliminate noise components, the complete time
series is low-pass filtered at 20 Hz and averaged using the maximum of the R peak of the cardiac
cycle as trigger point. For automatic classification, we used data from a time window within the
ST-segment [43] of the cardiac cycle in which values for 32 evenly spaced points were
interpolated from the measured data. The training data consist of 73 cases that were easy to
classify visually by trained experts. The testing was done on a set of 36 cases that included
patients whose magnetocardiograms misled or confused trained experts doing visual
classification.

We experimented with different pre-processing strategies. Data are pre-processed in this case by
first subtracting the bias from each signal, each signal is then wavelet transformed by applying
the Daubechies 4 wavelet transform [41]. Finally, there is a (horizontal) Mahalanobis scaling for
each patient record over all the 36 signals combined. The data are then vertically Mahalanobis

Draft Document

 31

scaled on each attribute (except for the SOM based methods, where no further vertical scaling
was applied).

10.6.3.3 Results from predictive modeling for binary classification of magnetocardiograms

The aim of this application is the automatic pattern recognition and classification for MCG data
in order to separate abnormal from normal heart patterns. For unsupervised learning, we used
DK-SOMs, because SOMs are often applied for novelty detection and automated clustering. The
DK-SOM has a 189 × hexagonal grid with unwrapped edges. Three kernel-based regression
algorithms were used for supervised learning: support vector machines, direct kernel partial least
squares (DK-PLS), and kernel ridge regression (also known as least-squares support vector
machines). The Analyze/StripMiner software package, developed in-house, was used for this
analysis. LibSVM was applied for the SVM model [40]. The parameter values for DK-SOM,
SVM, DK-PLS and LS-SVM were tuned on the training set, before testing. The results are
similar to the quality of classification achieved by the trained experts and similar for all three
methods. A typical dataset for 36 signals that are interpolated to 32 equally spaced points in the
analysis window [43] and after Mahalanobis scaling on each of the individual signals is shown in
Fig. 10.15. The results for different methods are shown in table 10.6. Table 10.6 also indicates
the number of correctly classified patterns and the number of misses on the negative and the
positive cases.

Figure 10.15 Superposition of all traces of the 36-lead MCG. The typical wave forms as seen in ECG are

the P wave (P, atrial activation), the Q wave (Q,, septal activation), the R peak (R, left
ventricular depolarization), the S wave (S, late right ventricular depolarization), and the T
wave (T, ventricular repolarization).

Better results were generally obtained with wavelet-transformed data rather than pure time series
data. For wavelet-transformed data, the Daubechies-4 or D4 wavelet transform [41] was chosen,
because of the relatively small set of data (32) in each of the interpolated time signals. The
agreement between K-PLS as proposed by Rosipal [40], direct kernel PLS or DK-PLS, SVMLib,
and LS-SVM is generally excellent, and there are no noticeable differences between these
methods on these data. In this case, DK-PLS gave a superior performance, but the differences

P Q

R

S T

Draft Document

 32

between kernel-based methods are usually insignificant. After tuning, σ was chosen as 10, λ was
determined from Eq. (10.20), and the regularization parameter, C, in SVMLib was set as 1/ λ as
suggested in [39].

Table 10.6 RMSE, q2 and Q2, # of correct patterns and # of misses and execution time (on

negative and positive cases on 36 test data) for magnetocardiogram data.

The excellent agreement between the direct kernel methods (DK-PLS and LS-SVM) and the
traditional kernel methods (K-PLS and SVMLib) shows the robustness of the direct kernel
methods and also indicates that Eq. (10.20) results in a near-optimal choice for the ridge
parameter.

� ��� �

� �

���	�

�

�	�

�

���

�
 ��� ��
 ��� ��� ��� ��� ���

� �
��
�� �
 !
" ��
!# $
� �
!
% �& '
�(

)	*,+�- .�/0)	.�1324.6547�.98:2<;>=4.6+

?A@CBED	F G�G�HIKJCLEM	N O�O6J
PRQTS	UWVEX	Y Z�[�X

\^]�_6` ab` c,d0ef]hg]6i

j k�l�m<n6j
o4prq�s3t u6v q�s

Figure 10.16 Error plot for 35 test cases, based on K-PLS for wavelet-transformed

magnetocardiograms.

Not only does Eq. (10.20) apply to the selection of the ridge parameter, but also to selecting the
regularization parameter, C, in support vector machines, when C is taken as 1/ λ. Linear methods
such as partial-least squares result in an inferior predictive model as compared to the kernel
methods. For K-PLS and DK-PLS we chose 5 latent variables, but the results were not critically
dependent on the exact choice of the number of latent variables. We also tried Direct Kernel
Principal Component Analysis (DK-PCA), the direct kernel version of K-PCA [3, 21-23], but the

Method Domain q2 Q2 RMSE %correct #misses time (s) comment
SVMLib time 0.767 0.842 0.852 74 4+5 10 lambda = 0.011, sigma = 10
K-PLS time 0.779 0.849 0.856 74 4+5 6 5 latent variables, sgma = 10

DK-PCA D4-wavelet 0.783 0.812 0.87 71 7+3 5 5 principal components
PLS D4-wavelet 0.841 0.142 1.146 63 2+11 3 5 latent variables

K-PLS D4-wavelet 0.591 0.694 0.773 80 2+5 6 5 latent variables, sigma = 10
DK-PLS D4-wavelet 0.554 0.662 0.75 83 1+5 5 5 latent variables, sigma = 10
SVMLib D4-wavelet 0.591 0.697 0.775 80 2+5 10 lambda = 0.011, sigma = 10
LS-SVM D4-wavelet 0.59 0.692 0.772 80 2+5 0.5 lambda = 0.011, sigma = 10

SOM D4-wavelet 0.866 1.304 1.06 63 3+10 960 9x18 hexagonal grid
DK-SOM D4-wavelet 0.855 1.0113 0.934 71 5+5 28 9x18 hex grid, sigma = 10
DK-SOM D4-wavelet 0.755 0.859 0.861 77 3+5 28 18x18 hexagonal, sigma = 8

Draft Document

 33

results were more sensitive to the choice for the number of principal components and not as good
as for the other direct kernel methods.

Typical prediction results for the magnetocardiogram data based on wavelet transformed data
and DK-PLS are shown in Fig. 10.16. We can see from this figure, that the predictions miss 6/36
test cases (1 healthy or negative case, and 5 ischemia cases). The missed cases were also diff icult
for the trained expert to identify, based on a 2-D visual display of the time-varying magnetic
field, obtained by proprietary methods.

For medical data, it is often important to be able to make a trade-off between false negative and
false-positive cases, or between sensitivity and specificity (which are different metrics related to
false positives and false negatives). In machine-learning methods such a trade-off can easily be
accomplished by changing the threshold for interpreting the classification, i.e., in Fig. 10.16,
rather than using the zero as the discrimination level, one could shift the discrimination threshold
towards a more desirable level, hereby influencing the false positive/false negative ratio. A
summary of all possible outcomes can be displayed in an ROC curve as shown in Fig. 10.17 for
the above case. The concept of ROC curves (or Receiver Operator Characteristics) originated
from the early development of the radar in the 1940’s for identifying airplanes and is
summarized in [42].

Fig. 10.17 ROC curve showing possible trade-offs between false positive and false negatives.

Figure 10.18 displays a projection of 73 training data, based on (a) Direct Kernel Principal
Component Analysis (DK-PCA), and (b) Direct Kernel PLS (DK-PLS). Diseased cases are
shown as fill ed circles. Figure 10.18b shows a clearer separation and wider margin between
different classes, based on the first two components for DK-PLS as compared to DK-PCA in
figure 10.18a.

Draft Document

 34

Figure 10.18 Projection of 73 training data, based on (a) Direct Kernel Principal Component

Analysis (DK-PCA), and (b) Direct Kernel PLS (DK-PLS). Diseased cases are
shown as fill ed circles. The test data are not shown on these plots.

A typical 189× self-organizing map on a hexagonal grid in wrap-around mode, based on the
direct kernel SOM, is shown in Figure 10.19. The wrap-around mode means that the left and
right boundaries (and also the top and bottom boundaries) flow into each other, and that the map
is an unfolding of a toroidal projection. The dark hexagons indicate diseased cases, while the
light hexagons indicate healthy cases. Fully colored hexagons indicate the positions for the
training data, while the white and dark-shaded numbers are the pattern identifiers for healthy and
diseased test cases. Most misclassifications actually occur on boundary regions in the map. The
cells in the map are colored by semi-supervised learning, i.e., each data vector, containing 36x32
or 1152 features are augmented by an additional field that indicates the color. The color entry in
the data vectors are updated in a similar way as for the weight vectors, as indicated by Eq.
(10.21), but are not used to calculate the distance metrics for determining the winning cell . The
resulting map for a regular SOM implementation is very similar to the corresponding map based
on direct kernel DK-SOM. The execution time for generating DK-SOM on a 128 MHz Pentium
II I computer was 28 seconds, rather than 960 seconds required for generating the regular SOM.
The kernel transformation caused this significant speedup, because the data dimensionali ty
dropped from the original 1152 descriptive features to 73 after the kernel transformation. The
fine-tuning stage for the SOM and DK-SOM was done in a supervised mode with learning vector
quantization [4], following Kohonen’s suggestion for obtaining better classification results.
While the results based on SOM and DK-SOM are still excellent, they are not as good as those
obtained with the other kernel-based methods (SVMLib, LS-SVM, and K-PLS).

Draft Document

 35

Figure 19. Test data displayed on the self-organizing map based on a 189 × DK-SOM in wrap-

around mode. Light colored cells indicate healthy cases, and dark colored cells
diseased cases. Patient IDs for the test cases are displayed as well.

10.6.3.4 Feature selection

The results in the previous section were obtained using all 1152 (3236 ×) descriptors. It would
be most informative to the domain expert if we were able to identify, where exactly in the time
or wavelet signals, and for which of the 36 magnetocardiogram signals that were measured at
different positions for each patient, the most important information necessary for good binary
classification is located. Such information can be derived from feature selection.

Feature selection, i.e., the identification of the most important input parameters for the data
vector, can proceed in two different ways: the filtering mode and the wrap-around mode. In the
filtering mode, features are eliminated based on a prescribed, and generally unsupervised
procedure. An example of such a procedure could be the elimination of descriptor columns that
contain 4-σ outliers, as is often the case in PLS applications for chemometrics. Depending on the
modeling method, it is often common practice to drop the cousin descriptors (descriptors that
show more than 95% correlation between each other) and only retain the descriptors that (i)
either show the highest correlation with the response variable, or (ii) have the clearest domain
transparency to the domain expert for explaining the model.

The second mode of feature selection is based on the wrap-around mode. It is the aim to retain
the most relevant features necessary to have a good predictive model. Often the modeling quality
improves with a good feature subset selection. Determining the right subset of features can
proceed based on different concepts. The particular choice for the features subset often depends

Draft Document

 36

on the modeling method. Feature selection in a wrap-around mode generally proceeds by using a
training set and a validation set. In this case, the validation set is used to confirm that the model
is not over-trained by selecting a spurious set of descriptors.

Two generally applicable methods for feature selections are based on the use of genetic
algorithms and sensitivity analysis. The idea with the genetic algorithm approach is to be able to
obtain an optimal subset of features from the training set, showing a good performance on the
validation set as well. The concept of sensitivity analysis [12] exploits the saliency of features,
i.e., once a predictive model has been built, the model is used for the average value of each
descriptor, and the descriptors are tweaked, one-at-a time between a minimum and maximum
value. The sensitivity for a descriptor is the change in predicted response. The premise is that
when the sensitivity for a descriptor is low, it is probably not an essential descriptor for making a
good model. A few of the least sensitive features can be dropped during one iteration step, and
the procedure of sensitivity analysis is repeated many times until a near optimal set of features is
retained. Both the genetic algorithm approach and the sensitivity analysis approach are true soft
computing methods and require quite a few heuristics and experience. The advantage of both
approaches here is that the genetic algorithm and sensitivity approach are general methods that
do not depend on the specific modeling method.

10.7 FUSION OF SOFT AND HARD COMPUTING

In this chapter the fusion of soft and hard computing occurred on several levels. On the one
hand, scientific data mining applications operate on data that are generated based on extensive
and computationally intense algorithms. An example of the hard computing algorithms, are the
extensive filtering and pre-processing algorithms in the case of the heart disease example. Other
examples of hard computing in scientific data mining occur when the purpose of the soft
computing model is to mimic a more traditional computationally demanding hard computing
problem.

In this chapter the fusion of soft and hard computing occurs on a different level as well. The
direct-kernel modeling methods highlighted in this chapter are in essence neural networks, a soft
computing method. On the other hand, the kernel transform itself, and the way how the weights
of support vectors machines, kernel ridge regression, and kernel-PLS are determined are hard
computing methods. Nevertheless, the optimal choice for the hyper-parameters in these models,
H�J���WKH�NHUQHO�1��DQG�WKH���IRU�WKH�UHJXODUL]DWLRQ�SDUDPHWHU�LQ�ULGJH�UHJUHVVLRQ��LV�RIWHQ�EDVed on
a soft computing approach. By this we mean that the model performance is rather insensitive to
the exact (hard) optimal choice, and that approximate procedures for determining the
hyperparameters suffice for most applications.

10.8 CONCLUSIONS

In this chapter, we provided an introduction to predictive data mining, introduced the standard
data mining problem and some basic terminology, and developed direct kernel methods as a
way-out of the machine learning dilemma and as a true fusion between hard and soft computing.
Direct kernel methods were then applied to three different case studies for predictive data
mining. In this introduction, a rather narrow view on data mining was presented. We did not

Draft Document

 37

address explicitly how to feed back novel and potentially useful information to the expert. While
feature selection is definitely and important step to provide such meaningful feedback, the final
discovery and rule formulation phase is often highly application dependent. The use of
innovative visualization methods, such as the so-called pharmaplots in Fig. 10.18, and self-
organizing maps is often informative and helpful for the knowledge discovery process.

ACKNOWLEDGEMENT

The authors thank Thanakorn Naenna, Robert Bress and Ramathilagam Bragaspathi for the
computational support for this work. The authors also thank Profs. Kristin Bennett and Curt
Breneman, for interesting and stimulating discussions during developing the framework of direct
kernel methods for data mining applications. The helpful and substantial comments of Prof.
Ovaska for improving the presentation are greatly appreciated.

The authors acknowledge the National Science Foundation support of this work (IIS-9979860)
and SBIR Phase I #0232215.

Draft Document

 38

REFERENCES

[1] Nello Cristianini and John Shawe-Taylor [2000] Support Vector Machines and Other

Kernel-Based Learning Methods, Cambridge University Press.
[2] Vladimir Vapnik [1998] Statistical Learning Theory, John Wiley & Sons.
[3] Bernhard Schölkopf and Alexander J. Smola [2002] Learning with Kernels, MIT Press.
[4] Teuvo Kohonen [1997] Self-Organizing Maps, 2nd Edition, Springer.
[5] Guido Deboeck and Teuvo Kohonen (Eds.) [1998] Visual Explorations in Finance with Self-

Organizing Maps, Springer.
[6] Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy

Uthurusamy, Eds. [1996] Advances in Knowledge Discovery and Data mining, MIT Press.
[7] Mj. A. Berry and G. Linoff [1997] Data Mining Techniques for Marketing, Sales, and

Customer Support, John Wiley & Sons, Inc.
[8] Joseph P. Bigus [1996] Data Mining with Neural Networks, McGraw-Hill .
[9] Sholom M. Weiss and Nitin Indurkhya [1998] Predictive Data Mining: A practical Guide,

Morgan Kaufmann Publishers, Inc., San Fransisco.
[10] Zhengxin Chen [2001] Data Mining and Uncertain Reasoning, John Wiley & Sons, Inc.
[11] Curt M. Breneman, Kristin P. Bennett, Mark Embrechts, Steven Cramer, Minghu Song, and

Jinbo Bi [2003] “Descriptor Generation, Selection and Model Building in Quantitative
Structure-Property Analysis” Chapter 11 in QSAR Developments, James N. Crawse, Ed.,
John Wiley.

[12] Robert H. Kewley, and Mark J. Embrechts [2000] “Data Strip Mining for the Virtual Design
of Pharmaceuticals with Neural Networks,” IEEE Transactions on Neural Networks, Vol.11
(3), pp. 668-679.

[13] Svante Wold, Michael Sjöström, and Lennart Eriksson [2001] “PLS-Regression: a Basic
Tool of Chemometrics,” Chemometrics and Intelli gent Laboratory Systems, Vol. 58, pp.
109-130.

[14] Alexander Golbraikh and Alexander Tropsha [2002] “Beware of q2!” Journal of Molecular
Graphics and Modelling, Vol 20, pp. 269-276.

[15] Richard A. Johnson and Dean W. Wichern [2000] Applied Multivariate Statistical Analysis
(second edition), Prentice Hall

[16]Fredric M. Ham and Ivica Kostanic [2001] Priciples of Neurocomputing for Science &
Engineering, McGraw-Hill .

[17] Vladimir Cherkassky and Fili p Mulier [1998] Learning from Data: Concepts, Theory, and
Methods, John Wiley & Sons, Inc.

[18] A. E. Hoerl, and R. W. Kennard [1970] “Ridge Regression: Biased Estimation for Non-
Orthogonal Problems,” Technometrics, Vol. 12, pp. 69-82.

[19] Simon Haykin [1999] Neural Networks: A Comprehensive Foundation (2nd Ed.), Prentice
Hall .

[20] José Principe, Neil R. Euliano, and W. Curt Lefebre [2000] Neural and Adaptive Systems:
Fundamentals through Simulations, John Wiley & Sons, Inc.

[21] B. Schölkopf, A. Smola, and K-R Müller [1998] “Nonlinear Component Analysis as a
Kernel Eigenvalue Problem,” Neural Computation, Vol. 10, 1299-1319, 1998.

[22] W. Wu, D. L. Massarat and S. de Jong [1997] “The Kernel PCA Algorithm for Wide Data.
Part I: Theory and Algorithms,” Chemometrics and Intelligent Laboratory Systems, Vol. 36,
pp. 165-172.

Draft Document

 39

[23] W. Wu, D. L. Massarat and S. de Jong [1997] “The Kernel PCA Algorithm for Wide Data.
Part II : Fast Cross-Validation and Application in Classification of NIR Data,” Chemometrics
and Intelli gent Laboratory Systems, Vol. 37, pp. 271-280.

[24] Glenn Fung and Olvi L. Mangasarian, “Proximal Support Vector Machine Classifiers,” in
Proceedings KDD 2001, San Francisco, CA.

[25] Evgeniou, T., Pontil , and M. Poggio, T. [2000] “Statistical Learning Theory: A Primer,”
International Journal of Computer Vision, Vol. 38(1), pp. 9-13.

[26] Theodoros Evgeniou, Massimili ano Pontil , and Tomaso Poggio [2000] “Regularization
Networks and Support Vector Machines,” in Advances in Large Margin Classifiers, MIT
Press.

[27] Poggio, T., and Smale S., [2003] “The Mathematics of Learning: Dealing with Data,” To
appear in Notices of the AMS, May 2003.

[28] Suykens, J. A. K. and Vandewalle, J. [1999] “Least-Squares Support Vector Machine
Classifiers,” Neural Processing letters, Vol. 9(3), pp. 293-300, Vol. 14, pp. 71-84.

[29] Suykens, J. A. K., van Gestel, T. de Brabanter, J. De Moor, M., and Vandewalle, J. [2003]
Least Squares Support Vector Machines, World Scientific Pub Co, Singapore.

[30] Ilse C. F. Ipsen, and Carl D. Meyer [1998] “The Idea behind Krylov Methods,” American
Mathematical Monthly, Vol. 105, 889-899.

[31] The Analyze/StripMiner code is available on request for academic use, or can be
downloaded from www.drugmining.com.

[32] Møller, M. F., [1993] “A Scaled Conjugate Gradient Algorithm for Fast Supervised
Learning,” Neural Networks, Vol. 6, pp.525-534.

[33] Keerthi, S. S., and Shevade S. K. [2003] “SMO Algorithm for Least Squares SVM
Formulations,” Neural Computation, Vol. 15, pp. 487-507.

[34] A. N. Tikhonov [1963] “On Solving Incorrectly Posed Problems and Method of
Regularization,” Doklady Akademii Nauk USSR, Vol. 151, pp. 501-504.

[35] A. N. Tikhonov and V. Y. Arsenin [1977] Solutions of ill -Posed Problems, W.H. Winston,
Washinton D.C.

[36] Bennett, K. P., and Embrechts, M. J. [2003] “An Optimization Perspective on Kernel Partial
Least Squares Regression,” Chapter 11 in Advances in Learning Theory: Methods, Models
and Applications, Suykens J.A.K. et al., Eds., NATO-ASI Series in Computer and System
Sciences, IOS Press, Amsterdam, The Netherlands.

[37] M. Forina and C. Armanino [1981] “Eigenvector Projection and Simpli fied Non-Linear
Mapping of Fatty Acid Content of Italian Olive Oils,” Ann. Chim. (Rome) Vol. 72, pp. 127-
155.

[38] Jure Zupan and Johann Gasteiger [1999] Neural Networks in Chemistry and Drug Design,
Wiley-CH.

[39] Rosipal R., and Trejo, L. J. [2001] “Kernel Partial Least Squares Regression in Reproducing
Kernel Hilbert Spaces,” Journal of Machine Learning Research, Vol. 2, pp. 97-128.

[40] Chih-Chung Chang and Chih-Jen Lin [2001] LIBSVM: A library for Support Vector
Machines, Software available at http://www.csie.ntu.edu.tw/~cjli n/libsvm.

[41] Daubechies, I. [1992], Ten Lectures on Wavelets, Siam, Philadelphia, PA.
[42] J. A. Swets, R. M. Dawes, and J. Monahan [2000] “Better Decisions through Science,”

Scientifi c American, pp. 82-87.
 Froelicher, V., Shetler, K., and Ashley, E. [2002] “Better Decisions through Science:

Exercise Testing Scores.” Progress in Cardiovascular Diseases, Vol. 44(5), pp. 385-414.

Draft Document

 40

[43] M.S. Thaler [1999] The only ECG Book You’ ll Ever Need, Lippincott Williams & Wilkins, third
edition, 1999.

