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10.1 INTRODUCTION

The purpose of this chapter is to give a brief overview of data mining and to introduce direct
kernel methods as a genera-purpose and powerful data mining tool for predictive modeling,
feature selection and visualization. Direct kernel methods are a generalized methodology to
convert linear modeling tools into nonlinear regression models by applying the kernel
transformation as a data pre-processing step. We will illustrate direct kernel methods for ridge
regression and the self-organizing map and apply these methods to some challenging scientific
data mining problems. Direct kernel methods are introduced in this chapter because they
transpire the powerful nonlinear modeling power of support vector machines in a straightforward
manner to more traditional regression and classification algorithms. An additional advantage of
direct kernel methods is that only linear algebrais required.

Direct kernel methods will be introduced as a true fusion of soft and hard computing. We will
present such direct kernel methods as simple multi-layered neural networks, where the weights
can actualy be determined based on linear algebra, rather than the typical heuristic neura
network approach. Direct kernel methods are inherently nonlinear methods, and can be
represented as a multi-layered neural network that now combines elements of soft and hard
computing. The hard computing takes place in the scientific domain where data are generated, in
a way that often involves elaborate (hard) computing algorithms. Hard computing is also used
here to make up the kernel and to calculate the weights for the underlying neural networks in
direct kernel methods. Soft computing occurs because of the underlying neural network
framework and in estimating the hyper-parameters for direct kernel models. These hyper-
parameters usually deal with the proper choice for the nonlinear kernel, and the selection of a
close to optimal regularization penalty term.

Support Vector Machines or SVMs have proven to be formidable machine learning tool s because
of their efficiency, model flexibility, predictive power, and theoretical transparency [1-3]. While
the nonlinear properties of SVMs can be exclusively attributed to the kernel transformation,
other methods such as self-organizing maps or SOMs [4] are inherently nonlinear because they
incorporate various neighborhood-based manipulations. This way of accounting for nonlinearity
effectsis similar to the way how K-nearest neighbor algorithms incorporate nonlinearity. Unlike
SVMs, the prime use for SOMs is often as a visualization tool [5] for revealing the underlying
similarity/cluster structure of high-dimensional data on a two-dimensional map, rather than for
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regresson or clasgfication predictions. SOMs have the alditional advantage that they
incorporate class ordinality in arather natural way, i.e., viatheir self-organization properties that
preserve the topdogy of a high-dimensional spacein the two-dimensional SOM. SOMs are
therefore quite powerful for multi-class classficaion, espedally when the dasses are nat
ordinal: a problem that is far from trivial. They are dso very effective for outlier and nowelty
detedion.

Before explaining direct kernel methods, we will present a brief overview of scientific data
mining. The standard data mining problem will be introduced as the underlying framework for
different data mining tasks. We will then buld asimple linea regresson model, explain the data
mining and machine learning dilemmas, and provide asimple solution to overcome this type of
uncertainty principle. These linear methods will then be trandated into an equivalent, bu still
linea, neural network model, for which the weights can be obtained with hard computing. The
linea regresson model or predictive data mining model can be transformed into powerful
norlinea prediction method by applying the kernel transformation as a data transformation
rather than an inherent ingredient in the mathematica derivation o the modeling algorithm.
Many traditional linea regresson models can be degantly transformed into nordinea direa
kernel methods that share many desirable dharaderistics with suppat vector machines. they can
incorporate regularization and they do nd involve the mntroversial heuristics, common in the
neural network approach. We will finally apply this methoddogy to a dhalenging scientific data
mining problem and ill ustrate predictive modeling, fegure selection and dbta visuali zation based
on dred kernel methods for predicting ischemia from magneto-cardiogram data.

10.2 WHAT ISDATA MINING?
10.2.1 Introduction to Data Mining

Data mining is often defined as the auitomated extradion d novel and interesting information
from large data sets. Data mining, as we airrently know it, has its roots in statistics, probabili ty
theory, neural networks, and the experts systems angle of artificia intelligence (Al). The term
data mining used to have a negative co-notation, meaning the existence of spurious correlations,
indicating that if one looks far enough in a variety of data sets one might find a mincidental rise
in the stock market when there is a pe& of two-headed sheg born in New Zedand. This out-of-
date interpretation d data mining can be summarized as “the torturing the data until they confess
approadn.” The aurrent popuarity of the term data mining can be attributed largely to the rise of
the Knowledge Discovery and Data Mining (or KDD) Conference. The KDD conference started
in the ealy nineties as a small workshop, speaheaded by Usuama Fayyad, Gregory Pietatetsky-
Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy. The KDD conference is now an annual
event and hes a good attendance. In the book that resulted from the 1995 KDD conference in
Montred [6], data mining was defined as. “Data mining is the process of automaticdly
extrading valid, novel, potentialy useful, and utimately comprehensible information from large
databases.” We will adhere to this definition to introduce data mining in this chapter.
Reammmended boolks on data mining are summarized in [7-10]. One of the underlying principles
of knowledge discovery in dataisto promote the processof buil ding data-driven expert systems
as an extension d the more traditional Al expert systems approach. The ideais now that experts
lean from new findingsin the data & well.
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Data mining is not a narrowly focused discipline, but requires a combination of multiple
disciplines and techniques. Data mining distinguishes itself from traditional statisticsin the sense
that we now deal with potentially very large datasets that can range from gigabytes, terabytes, to
pentabytes. For a while, a problem was considered a data mining problem only if the data could
not be stored in the working memory of a computer all-at-once. Other definitions of data mining
insisted for a while that the data has to come from a variety of different databases. Of course,
interesting and extremely challenging problems such as gene discovery and protein folding in
bio-informatics, would not qualify as legitimate data mining problems under these restrictive
definitions. Data mining is different from the more traditional methods in the sense that for large
amounts of data, many classical agorithms, such as the K-means agorithm for clustering, do not
scale well with ever-larger datasets. In general, one can summarize that for atypical data mining
case: (i) the data set can be quite large; (ii) the problem is generally challenging and is often not
well defined; (iii) there are missing and faulty data; and, (iv) there are redundancies in the data
fields, but the redundant fields do not all have the same quality.

Data mining distinguishes itself aso from statistics and artificial intelligence in the sense that the
expert now exercises a different role. While the goal of Al expert systems was to query the
experts in order to come up with arule base that captures their expertise, that approach often led
to failure because the experts, even though knowledgeable and mostly right, are not necessarily
in the best position to formulate an explicit set of rules. In data mining, rather than letting the
expert formulate the rules up front, the idea is now to let the rules appear in a more or less
automated and data-driven way. The expert comes in at the end stage of this data-driven rule
discovery/formulation process and applies his domain knowledge to validate the rules.

The first very successful data mining applications were often driven by database marketing and
business applications. Typical applications of database marketing are the use of a database to
decide on a mail-order campaign, or linking a sales campaign in a supermarket with product
positioning and discounting. A classical case here is has been observed that beer sales go up
when the beer is positioned close to the diapers in a supermarket store, because dad is more
likely to puck up a 6-pack of beer when he is sent to the story to by diapers in case of an
emergency. The tongue-in-cheek corollary is here that the reverse is not true. Other early
successful applications of data mining relate to credit card fraud, establishing lending and
refinancing policies, and telephone fraud.

Data mining is an interdisciplinary science ranging from the domain area and statistics to
information processing, database systems, machine learning, artificial intelligence and soft
computing. The emphasis in data mining is not just building predictive models or good
classifiers for out-of-sample real world data, but obtaining a novel or deeper understanding. In
real world problems, data distributions are usually not Gaussian. There also tend to be outliers
and missing data. Often there are faulty and imprecise data to dea with as well. Data mining
emphasizes the use of innovative and effective data visualization techniques, such as self-
organizing maps [4], that can go way beyond the common bar and pie charts. The exact purpose
and outcome of a data mining study should probably not be clearly defined up front. The idea of
data mining is to look at data in a different way, and in a sense, to let the data speak for
themselves.
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10.2.2 Scientific Data Mining

Scientific data mining is defined as data mining applied to scientific problems, rather than
database marketing, finance, or business-driven applicaions. Scientific data mining distinguishes
itself in the sense that the nature of the datasets is often very different from traditional market-
driven data mining applicaions. The datasets now might involve vast amourts of precise and
continuows data, and acwourting for underlying system norinearities can be ectremely
chall enging from amacine leaning point of view.

Applicaions of data mining to astronamy-based data is a dear example of the case where
datasets are vast, and deding with such vast amounts of data now poses a challenge onit’s own.
On the other hand, for bio-informatics related applicaions sich as gene finding and protein
folding, the datasets are more modest, bu the modeling part can be extremely chall enging.
Scientific data mining might involve just building an onthe-fly predictive model that mimics a
large computer program that is too slow to be used in red time. Other interesting examples of
scientific data mining can be found in bioengineering, and might present themselves as
challenging pattern recognition problems based onimages (e.g., brain scans) or (multi-variate)
time series sgnals (e.g., eledrocardiograms and magneto-cardiograms).

An interesting applicaion relates to in-silico drug design [11]. The ideais to identify and select
small moleaules (ligands) with superior drug qualities from a huge library of potential often not
yet synthesized molealles. The dallenge is that the library of moleales with knawvn
pharmaceutica propertiesis often relatively small (~50 - 2000, bu that there is a large number
of descriptive fedures or attributes (e.g., 500- 2000Q. We define such problems where the
number of descriptive features exceals the number of data by far, as data strip mining problems
[12]. We cdl them data strip mining problems, becaise if the data ae placed in an Excd sheet
al the data seem to be now on the surface rather than going on and on for thousands and
thousands of rows of cells. There is one alditional interesting aspect here: many computer
programs sich as editors and the Excd spreadsheet were not design to handle this type of data. A
key challenge for in-silico drug design problems is now to identify a relatively small subset of
relevant features that explain the pharmaceutical properties of the moleaule. One ultimate am of
in-silico drug design is red-time invention and synthesis of novel drugs to mitigate natural or
man-made society threatening diseases. A second type of strip mining problems occurs in the use
of gene expresson micro-arrays for the identificalion d relevant genes that are indicative for the
presence of a disease. A typical case is a dataset of 72 micro-array data with 6000 @scriptive
feauresrelated to the identificaion o leukemia.

In a data mining context, common techniques such as clustering might now be used in a very
different way. The dustering does not necessarily have to provide agood owral clustering, bu
just finding one relatively small and fairly homogeneous cluster might offer a significant pay-off
in database marketing. Kohoren's slf-organizing map has been extensively applied as an
efficient visuali zation todl for high-dimensional data on a two-dimensional map whil e preserving
important aspeds of the underlying topdogy.



Draft Document

10.2.3 The Data Mining Process

Many data mining applications can be represented in a cartoon model that we will call the
standard data mining process. This process involves the gathering of data, data cleansing, data
pre-processing and transforming a subset of datato aflat file, building one or more models that
can be predictive models, clusters or data visualizations that lead to the formulation of rules, and
finally piecing together the larger picture. This processisoutlined in Fig. 10.1.

data prospecting
and surveying

() preprocess information
& transform |transformed
. data L
E A

Figure 10.1 Cartoon Illustration of the data mining process.

It isinteresting to note here that often a large amount of effort is required before the data can be
presented in aflat file. Data cleansing and data pre-processing often takes up a large part of the
resources committed to a typical data mining project and might involve 80 percent of the effort.
It is often necessary to experiment with different data transformations (e.g., Fourier and wavelet
transforms) in the data pre-processing stage.

Another representation of the data mining process is the data mining wisdom pyramid in Fig.
10.2, where we progress from raw data to information, knowledge and understanding, and
ultimately wisdom. The art of data mining is to charm the data into a confession. An informal
way to define data mining is to say that we are looking for a needle in a haystack without
knowing what a needle looks like and where the haystack is located.

10.2.4 Data Mining Methods and Techniques

A wide variety of techniques and methods are commonly used in data mining applications. Data
mining often involves clustering, the building of predictive regression or classification models,
attribute and/or feature selection, the formation of rules and outlier or novelty detection. These
techniques can be based on dtatistics, probability theory, Bayesian networks, decision trees,
association rules, neura networks, evolutionary computation, and fuzzy logic.
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While the reader may already be familiar with some of these techniques, they often have an
additional flavor to them, when it comes to data mining. It is not the purpose of this introduction
to discuss data mining in wide breadth, but rather to emphasize the proper use of soft computing
techniques for scientific data mining in the context of the fusion of soft computing and hard
computing methodol ogies.

Rather than exposing a breadth of data mining techniques we will introduce here only direct
kernel methods for predictive data mining, feature detection and visualization. Direct-kernel
based techniques will then be applied to a challenging problem related to the prediction of
ischemia from magneto-cardiogram data.

UNDERSTANDING

/ KNOWLEDGE \
/ INFORMATION \

/ pATA \

Figure 10.2. Data mining wisdom pyramid.

10.3 BASIC DEFINITIONS FOR DATA MINING
10.3.1 The MetaNeur al Data For mat

In this section, the standard data mining problem will be introduced and it will be shown how the
standard data mining problem actually relates to many interesting types of real-world
applications. It is assumed here that the data are already prepared and available in the form of a
single, i.e, flat, data file, rather than a relational database. Note that extracting such flat files
from different databases is often a challenging task on its own. Consider the flat file data from
Table 10.1, provided by Svante Wold [13]. They actually represent a cartoon example for a
QSAR or QSPR (quantitative structural property and quantitative structural activity relationship)
problem [11], where it is often the purpose to predict chemical properties in the case of QSPR
and bio-activities in the case of QSAR from other basic properties (or molecular descriptors)
from a molecular dataset. In this case, the activity of interest (or in data mining lingo, the
response) for which we would like to make a model is in the second column, represented by
DDGTS.

Table 10.1 is a spreadsheet-like table, with 20 horizontal row entries and 9 vertical fields. The
first row contains names MOL, DDGTS, PIE, PIF, DGR, SAC, MR, Lam and Vol that describe
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entries in each vertical field. The first column actually contains the abbreviations for 19 amino
acid (AA) names (i.e., al the coded amino acids, except arginine). The second column contains
the free energy for unfolding a protein. This free energy, nicknamed DDGTS, is called the
response. In this case, we want to build a predictive model for the response based on the
remaining seven fields, which contain the chemical properties for the 19 amino-acids listed here.
Data entries that are used in predictive models are called descriptors, attributes, or descriptive
attributes. Sometimes they are also called features. In a machine learning context, a feature,
strictly speaking, is not the same as an attribute, but rather a combination of descriptors, such as
principal components in principal component analysis [19] and latent variables in the case of
partial least-squares or PLS methods [13]. In this case, PIE and PIF are the lipophilicity
constants of the AA side, DGR is the free energy of transfer of an AA side chain from protein
interior to water, SAC isthe water-accessible surface area, MR the molecular refractivity, Lamis
apolarity parameter and Vol represents the molecular volume.

Table 10.1 Example of aflat datafile.

MOL DDGTS PIE PIF DGR SAC MR Lam Vol
Ala 8.5 0.23 0.31 -0.55 254.2 2.126 -0.02 82.2
Asn 8.2 -0.48 -0.6 0.51 303.6 2.994 -1.24 112.3
Asp 8.5 -0.61 -0.77 12 287.9 2.994 -1.08 103.7
Cys Ll 0.45 154 -1.4 282.9 2.933 -0.11 99.1
Gln 6.3 -0.11 -0.22 0.29 335 3.458 -1.19 1275
Glu 8.8 -0.51 -0.64 0.76 311.6 3.243 -1.43 120.5
Gly 7.1 0 0 0 224.9 1.662 0.03 65
His 10.1 0.15 0.13 -0.25 337.2 3.856 -1.06 140.6
lle 16.8 12 18 -2.1 322.6 3.35 0.04 131.7
Leu 15 1.28 17 -2 324 3.518 0.12 1315
Lys 7.9 -0.77 -0.99 0.78 336.6 2.933 -2.26 144.3
Met 133 0.9 1.23 -1.6 336.3 3.86 -0.33 132.3
Phe 11.2 156 1.79 -2.6 366.1 4.638 -0.05 155.8
Pro 8.2 0.38 0.49 -1.5 288.5 2.876 -0.32 106.7
Ser 7.4 0 -0.04 0.09 266.7 2.279 -0.4 88.5
Thr 8.8 0.17 0.26 -0.58 283.9 2.743 -0.53 105.3
Trp 9 1.85 2.25 -2.7 401.8 5.755 -0.31 185.9
Tyr 8.8 0.89 0.96 -1.7 377.8 4.791 -0.84 162.7
Val 12 0.71 1.22 -1.6 295.1 3.054 -0.13 115.6

While this table is definitely informative, we will introduce some conventions and standard
formats here to make it easier for a computer program to automate the data analysis procedure. It
has been our experience that, when looking at the data related to many different industrial
applications, there is no standard way of presenting data. Each applications has its own different
way of presenting data and often alot of time is spent just trying to read and organize these data
before actually doing an anaysis or starting the data mining cycle. We will therefore first
rearrange and format data into a standard shape, so that we can feed them into a computer
program or data mining software. We will be very unforgiving when it comes to adhering to this
standard format, in order to reduce the amount of potential computer problems. There is no
uniform flat file standard in the data mining community, and each data mining program assumes
that the data are organized and presented differently. We will introduce here just one way to
organize data: the MetaNeural format. The MetaNeural format will be assumed as the standard
format for data representation in this chapter.

An intermediate step towards the MetaNeural format is presented in Table 10.2, which contains
almost the same information as Table 10.1, but with a few changes. (i) The column containing
the names for each data entry is now placed last and the names are trandlated into numerical 1D
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numbers 1 — 19.(ii) The resporse of interest, DDGTS, is now made the next to last column field,
and the descriptive dphanumericd entry is now cdled Resporse. (iii) The first row, or header
row, now contains different names, indicating the columns with descriptive features or attributes
(Feature 1 ... Feature 7), followed by one or more names for the resporse, foll owed by the ID.

Tablell. Different representation for the data of Table 10.2.

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7] Response 1D
0.23 0.31 -0.55 254.2 2.126 -0.02 82.2 8.5 1
-0.48 -0.6 0.51 303.6 2.994 -1.24 112.3 8.2 2
-0.61 -0.77 1.2 287.9 2.994 -1.08 103.7 8.5 3
0.45 1.54 -1.4 282.9 2.933 -0.11 99.1 11 4
-0.11 -0.22 0.29 335 3.458 -1.19 127.5 6.3 5
-0.51 -0.64 0.76 311.6 3.243 -1.43 120.5 8.8 6

0 0 0 224.9 1.662 0.03 65 7.1 7
0.15 0.13 -0.25 337.2 3.856 -1.06 140.6 10.1 8
1.2 1.8 2.1 322.6 3.35 0.04 131.7 16.8 9
1.28 1.7 -2 324 3.518 0.12 1315 15 10
-0.77 -0.99 0.78 336.6 2.933 -2.26 144.3 7.9 11
0.9 1.23 -1.6 336.3 3.86 -0.33 132.3 13.3 12
1.56 1.79 -2.6 366.1 4.638 -0.05 155.8 11.2 13
0.38 0.49 -1.5 288.5 2.876 -0.32 106.7 8.2 14

0 -0.04 0.09 266.7 2.279 -0.4 88.5 7.4 15
0.17 0.26 -0.58 283.9 2.743 -0.53 105.3 8.8 16
1.85 2.25 -2.7 401.8 5.755 -0.31 185.9 9.9 17
0.89 0.96 -1.7 377.8 4.791 -0.84 162.7 8.8 18
0.71 1.22 -1.6 295.1 3.054 -0.13 115.6 12 19

In order to convert this flat data file to the MetaNeura format, all the dphanumericd
information in the file will be discarted. This is done by just eliminating the first header row in
the file, as wown in Table IIl. Basicdly, the MetaNeural format contains ony numericd
information, where the data ae ordered as follows: first are the descriptors or attributes, next is
the resporse (or resporses, in the rarer case of multi ple resporses), and finally somerecord ID. If
the origina data contained symbadlic or descriptive dtribute entries, they have to be somehow
converted to numbers.

Data sets often contain missng data. It is a standard practice to code missgng data a “-999'.
Before acualy processng the data, it is often common to drop columns and/or rows containing
many data entries with —999, @ replace the —999 dita with the average value for the
correspondng data descriptor.

Table 10.3.The MetaNeural format as a standard format for presenting flat file data.

0.23 0.31 -0.55 254.2 2.126 -0.02 82.2 8.5 1
-0.48 -0.6 0.51 303.6 2.994 -1.24 112.3 8.2 2
-0.61 -0.77 12 287.9 2.994 -1.08 103.7 8.5 3
0.45 1.54 -1.4 282.9 2.933 -0.11 99.1 11 4
-0.11 -0.22 0.29 335 3.458 -1.19 1275 6.3 5)
-0.51 -0.64 0.76 311.6 3.243 -1.43 1205 8.8 6

0 0 0 224.9 1.662 0.03 65 7.1 7
0.15 0.13 -0.25 337.2 3.856 -1.06 140.6 10.1 8
1.2 18 2.1 322.6 3.35 0.04 1317 16.8 9
1.28 17 -2 324 3.518 0.12 1315 15 10
-0.77 -0.99 0.78 336.6 2.933 -2.26 1443 7.9 11
0.9 1.23 -1.6 336.3 3.86 -0.33 1323 133 12
1.56 1.79 -2.6 366.1 4.638 -0.05 155.8 11.2 13
0.38 0.49 -1.5 288.5 2.876 -0.32 106.7 8.2 14

0 -0.04 0.09 266.7 2.279 -0.4 88.5 7.4 15
0.17 0.26 -0.58 283.9 2.743 -0.53 105.3 8.8 16
1.85 2.25 -2.7 401.8 5.755 -0.31 185.9 9.9 17
0.89 0.96 -1.7 377.8 4.791 -0.84 162.7 8.8 18
0.71 1.22 -1.6 295.1 3.054 -0.13 115.6 12 19
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10.3.2The " Standard Data Mining Problem”

We will define the standard (predictive) data mining problem as a regression problem of
predicting the response from the descriptive features. In order to do so, we will first build a
predictive model based on training data, evaluate the performance of this predictive model based
on validation data, and finally use this predictive model to make actual predictions on atest data
set for which we generally do not know, or pretend not to know, the response value. There are
many different ways to build such predictive regression models. Just to mention a few
possibilities here, such a regression model could be a linear statistical model, a Neural Network
based model (NN), or a Support Vector Machine (SVM) based model. Examples for linear
statistical models are Principal Component Regression models (PCR) and Partial-Least Squares
models (PLS). Popular examples of neural network-based models include feedforward neural
networks (trained with one of the many popular learning methods), Sef-Organizing Maps
(SOMs), and Radia Basis Function Networks (RBFN). Examples of Support Vector Machine
algorithms include the perceptron-like SVM for classification, and Least-Squares Support Vector
Machines (LS-SVM), also known as kernel ridge regression.

It is customary to denote the data matrix as X, and the response vector asy, . In this case, there
are n data points and m descriptive features in the dataset. We would like to infer y, from X, by
induction, denoted as X ,,, I Y, , in such away that our inference model works not only for the

training data, but also does a good job on the out-of-sample data (i.e., validation data and test
data). In other words, we aim at building alinear predictive model of the type:

n (10.1

The hat symbadl indicaes that we ae making predictions that are not perfed (especialy for the
validation and test data). Equation (10.1) answers to the question “wouldn’t it be nice if we could
apply wisdom to the data, and popcomes out the answer?’ The vedor W, is that wisdom vedor

and is usudly cdled the weight vector in madine leaning. By introdwing the standard data
mining problem we are doing a lot of over-smplifying. In a typicd data mining study, the
questions related to what we ae trying to find ou are not a priori defined. In this context,
predsely formulating the right questions might actually be amore difficult task than answering
them. A typicd data mining case is therefore more complex than the standard data mining
problem. There adually might be many regresson models involved and there will be awhadle set
of additional constraints as well. For example, a more redistic problem for data mining that is
still close to the standard data mining problem might be picking an a priori unspedfied small
subset of the dhemically most transparent descriptive feaures or descriptors from Table 10.3,in
order to make a good model for the protein folding energy. Note that now we ae using terms
that are not predsely defined (but “fuzzy’) such as “small subset,” “chemicdly most
transparent”, and “pretty good model.” Also, keep in mind that the predictive model that was
propcsed so far is grictly linea. It therefore can't be expeded that the model is going to be very
acarate, bu that will change very soon.

It shoud be pointed out that many problems that are typicd for data mining can be posed as a
variation d the standard data mining problem. In the dowe case, we mnsidered a regresson
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problem. Note, that a dasdficaion poblem can be treaed as a spedal case of a regresson
problem, e.g., the data entries for the resporse could be just —1 and 1 in the cae of a two-class
clasgficaion poblem. For a multi-class classficaion problem, the different classes could be
presented as 1, 2 3, and so on.However, there is one difficulty for multi-classclassficaion. If
the multi-class classfication problem is posed as a regresson poblem, the dasses doud be
ordinal, i.e., class2 shoud be indicaive for aresporse that isin between class1 and class3. In
pradice, that is often the case, e.g., consider the case where we have five dert levelsfrom 1 to 5,
where ahigher aert number means a more severe type of aert. On the other hand, when we have
a dasgficaion poblem where the dasses represent five dties, they are usually nat fully ordinal.
In that case, it is common to represent the response not as a single resporse, bu encode the
response on athogonal set of 5 resporse vedors of the type {0, O, 0, 0, %, {0, 0, O, 1, 0}, {0, O,
1, 0, 0},and so on.Non-orthogonal classficaion poblems are often nd-trivia to solve, and we
refer the reader to the literature [3] for afurther discusson.

A different and difficult classficaion poblem is the cae with just two classes that have very
unbalanced representation, i.e., cases in which there are much more samples from one dassthan
from the other. Consider the catoon poblem of atrinket manufaduring case were aproduct line
produces 1000000goodtrinkets that passthe inspedion line and 1000 @fect trinkets that shoud
not passthe inspedion line before the product is shipped ou. It is often difficult to buld good
models for such problems withou being aware that we are dealing here with an outlier problem.
Naively applying macdine learning models could result in the case where the model now predicts
that all trinkets belong to the mgjority class Concluding that now only 1000 ou 1001000cases
are missed, and that the dasgficationis therefore 99.9% corred, does not make sense of course,
becaise in reality 100% of the caes that we ae interested in catching are now missed altogether.
It therefore shoud be a ommon pradice for classficaion poblems to represent the results in
the form of a @nfusion matrix. In case of a binary clasdfication poblem where the
clasgficaions results can be presented as four numbers: the number of true negatives, the
number of false negatives, the number of true positives and the number of false pasitives. The
false negatives and false positives are called Type | and Type |1 errors. For medicd applications,
it is customary to convert these numbers further into sensitivity and spedficity measures.

Note that outlier problems do nd only occur in classficaion poblems, bu also in regresson
problems. Predicting the swing for the stock market is a regresson problem, and predicting a
stock market crash is an outlier problem in that context. Predicting rare events such as stock
market crashes, eathquekes, or tornados can also be cnsidered as extreme outlier problems or
rare event problems. Such cases are usually very difficult if not impaossible to ded with using
data mining techniques.

A speda case of an outlier problem is novelty detedion, where we often have a dataset
consisting of normal cases and maybe a few instances of abnama cases. The different
caegories for abnamal cases are often na known a priori. The problem is now to devise a
detedion modd that tags data samplesthat are very different from what has been seen before.

A difficult type of data mining problem is a data strip mining problem. Data strip mining is a

speaal case of predictive data mining, where the data have much more descriptors than there ae
data. Such problems are common for in-silico drug design and the analysis of gene-expresson
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arrays. The task is now to identify a combination of a subset of the most relevant feaures and
make apredictive model that works well on external test data.

A whole different class of data mining relates to signal and time series analysis. Time series
analysis problems are of common interest to the finance industry, process control, and medicd
diagnostics. Challenging time series analysis problems ded with multi-variate time series,
problems where the time series exhibits complex dynamics (such as nonlinea chaotic time
sequences), or cases with the non-stationary time series.

Note that for a legitimate data mining case, we are not just interested in bulding predictive
models. What is of red interest is the understanding and explaining of these models (e.g., in the
form of a fuzzy rules system). It is often revealing for such a rule set to identify the most
important descriptors and/or feaures, and then explain what these descriptors or feaures do for
the model. Feature detection is a sub-discipline on its own and an important part of the data
mining process There are many different ways for feaure detedion, and the most appropriate
method depends on the modeling method, the data charaderistics and the applicaion damain. It
isimportant to pant out here that the most interesting features are often not the most correlated
feaures.

10.3.3 Predictive Data Mining

In this sction, a simple statisticd regresson solution to the standard data mining problem will
be introduced. In this context, the standard data mining problem can be interpreted as a
predictive data mining problem.

Looking badk at Eq. (10.1), let us try now whether we can adually make a “pop-comes-out the
answer” model for Svante Wold's catoon QSAR data from Table 10.3. In this case, ore is
adually trying to predict the free aergy for protein folding, or the entry next to last column,
based on the descriptive fedaures in the prior columns. A model will be @nstructed here by
finding an approximate solution for the weights in (10.1). Note that the data matrix is generally
not symmetric. If that were the cae, it would be straightforward to come up with an answer by
using the inverse of the data matrix. We will therefore gply the pseudo-inverse transformation,
which will generally not lead to precise predictions fory, bu will predictyin a way that is

optimal in aleast-squares nse. The pseudo-inverse solution for the weight vedor isill ustrated
in equation below:
xr-'lr—nxnmwm = Xr-'lr—nyn

(Xr-'rrnxnm)_l(xr;nxnm Hm :(X;nxnm)_lx:nyn (103
W = (X7 X ) X,

Predictions for the training set can now be made for y by substituting (10.2) in (10.1):

A

¥ = X (XI X ) XT Y, (10.3
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Before gplying this formula for the prediction d the free binding energy of amino aads, we
have to introduce one more important stage of the data mining cycle: data pre-processng. The
seven descriptors for the amino aads have very different underlying metrics and scdes, i.e.,
some @lumns have dl very small entries and aher columns have relatively large antries. It isa
common pocedure in data mining to center all the descriptors and to bring them to a unity
variance. The same processis then applied to the resporse. This procedure of centering and
variance normali zation is known as Mahalanolis <ding [ref]. While Mahalanohis sding is not
the only way to pre-processthe data, it is probably the most general and the most robust way to
do pe-processng that applies well aaoss the board. If we represent a fedure vedor asz,
Mahalanolis sding will result in arescaled fegure vedor Z' and can be summarized as.

72-7
2d(2)

(10.4

where zZ represents the average value and std (Z)repr@ents the standard deviation for attributeZ .
After Mahalanohis <ding, the data matrix from Table 10.3 nav changesto Table 10.4.

Table 10.4.Amino add protein folding data dter Mahalanohis sding during preprocessng.

-0.205 -0.240 0.195 -1.340 -1.233 0.881 -1.344 -0.502 1
-1.149 -1.155 1.067 -0.204 -0.336 -1.022 -0.318 -0.611 2
-1.322 -1.326 1.635 -0.565 -0.336 -0.772 -0.611 -0.502 3
0.088 0.997 -0.504 -0.680 -0.399 0.740 -0.768 0.405 4
-0.657 -0.773 0.886 0.518 0.144 -0.944 0.200 -1.300 5)
-1.189 -1.195 1.273 -0.020 -0.079 -1.318 -0.039 -0.393 6
-0.511 -0.552 0.647 -2.013 -1.713 0.959 -1.930 -1.010 7
-0.311 -0.421 0.442 0.569 0.555 -0.741 0.646 0.078 8
1.086 1.259 -1.080 0.233 0.032 0.974 0.343 2.508 9
1.193 1.158 -0.998 0.265 0.206 1.099 0.336 1.855 10
-1.535 -1.547 1.289 0.555 -0.399 -2.612 0.772 -0.719 11
0.687 0.686 -0.669 0.548 0.559 0.397 0.363 1.239 12
1.566 1.249 -1.492 1.234 1.363 0.834 1.164 0.477 13
-0.005 -0.059 -0.587 -0.551 -0.458 0.413 -0.509 -0.611 14
-0.511 -0.592 0.721 -1.052 -1.075 0.288 -1.129 -0.901 15
-0.284 -0.290 0.170 -0.657 -0.596 0.085 -0.557 -0.393 16
1.951 1.712 -1.574 2.055 2.518 0.428 2.189 0.006 17
0.674 0.414 -0.751 1.503 1.522 -0.398 1.399 -0.393 18
0.434 0.676 -0.669 -0.399 -0.274 0.709 -0.206 0.767 19

The modeling results obtained from Eq. (10.3) after de-scding the “predictions” badk to the
original distribution are shown in Fig. 10.3. After a first inspedion, these “predictions’ do nd
look ked. However, there is one caved: these ae “predictions’ for training data. It is imperative
for predictive data mining to verify how goodthe model redly isonavalidation set, i.e., a set of
data that was nat used for training. Of course, thereis now a problem here: there ae only 19 cita
points. If we would buld a model using 13 data points and test on the remaining 6 data points,
the model is probably not going to be & accurate & it patentialy could be, becaise dl the
avail able data were not used for model building. There ae severa ways out of that dilemma. (i)
Because data mining in principle deds with large data sets, there ae normally enough data
avail able to split the dataset up in atraining set and a test set. A good padicewould beto use a
randam sample of 2/3 of the data for the training, and 13 for testing. (ii) If one is truly
concerned abou compromising the quality of the model, ore aan follow the leave-one-out
(LOO) method. In this case, ore would buld 19 different models, each time using 18 cata for

12



Draft Document

training and test on the one remaining data-point. The 19 individua tests would then be
combined and displayed in a simple plot similar to the plot of Fig. 10.4. (iii) An obvious
extension to the LOO practice is to leave several samples out. This procedure is called
bootstrapping and in analogy with the LOO method will be indicated by the acronym BOO.
Using it, it is easy to make actually 100 or more models from the 19 data samples, leaving three
samples out each time for testing, and then combining the predictions.
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Fig. 10.3Predictionsfor training model for the 19 amino-add dataform Table V.

Making a test model proceel in a very similar way as for training: the “wisdom vedor” or the
weight veaor will be gplied to the test data to make predictions according to:

V& = XaW, (105

In the dbove expresson it was assumed that there ae k test data, and the subscript ‘test” is use to
explicitly indicate that the wisdom vedor will be gplied to a set of k test data with m attributes
or descriptors. If one @nsiders testing for one sample data point at a time, Eq. (105) can be
represented as a simple neural network with an inpu layer and just a single neuron, as saown in
Fig. 10.4. The neuron produces the weighted sum of the average inpu fedures. Note that the
transfer function, commonly foundin neural networks, is nat present here. Note dso that that the
number of weights for this one-layer neural networks equals the number of inpu descriptors or
attributes.
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Fig 10.4. Neura network representation for the simple regression model.

Let us just proceed with training the ssmple learning model on the first 13 data points, and make
predictions on the last six data points. The results are shown in Fig. 10.5. It is clear that this
model looks less convincing for being able to make good predictions on the test data.
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Fig. 10.5 Test data predictions for the simple regresson model trained on the first 13 data
samplesin Tablel0.4 and tested on the six last data samples.

10.3.4 Metricsfor Assessing the Model Quality

An obvious question that now comes to mind is how to assess or describe the quality of a model
for training data and test data, such as s the case for the data shown in Figs. 10.4 and 10.6. In the
case of a classification problem that would be relatively easy, and one would ultimately present
the number of hits and misses in the form of a confusion matrix as described earlier. For a
regression problem, a common way to capture the error is by the Root Mean Square Error index
or RMSE, which is defined as the average value of the squared error (either for the training set or
the test set) according to:
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While the root mean square eror is an efficient way to compare the performance of different
prediction methods on the same data, it is not an absolute metric in the sense that the RM SE will
depend on hav the resporse for the data was scded. In order to overcome this handicap,
additional error measures will be introduced that are lessdependent on the scding and magnitude
of the resporse value. A first metric that will be used for assessng the quality of atrained model
is r?, where r? is defined as the orrelation coefficient squared between target values and
predictions for the response acording to:

S -y -v)
r?= (10.7)

S 6573 0-57

where nyin represents the number of data pointsin the training set. r? takes values between zero
and urity, and the higher the r? value, the better the model. An obvious drawbadk of r? for
asssdng the model quality is that r? only expresss a linea correlation, indicaing how well the
predictions follow alineif yis plotted as function of y. While one would exped a nearly perfed
model when r? is unity, this is not always the case. A secnd and more powerful measure to
asess the quality of a trained mode is the so-cdled “Pressr squared”, or R?, often used in
chemometric modeling [14], where R is defined as [15]:

We mnsider R as a better measure than r?, because it acmurts for the residual error aswell. The
higher the value for R?, the better the model. Note that in certain cases the R* metric can adually
be negative. The R metric is commonly used in chemometrics and is generally smaller than r*.
For large datasets, R® tends to converge to r?, and the mmparison between r? and R? for such deta
often reveds hidden hiases.

For asessng the quality of the validation set or a test set, we will i ntroduce simil ar metrics, g
and Q% where g” and Q? are defined as1-r?andl- R*for the data in the test set. For a model
that perfectly predicts on the test data, we now would expea g? and Q to be zero. The reason for
introducing metrics that are symmetric between the training set and the test set is adually to
avoid confusion. Q% and g values will always apply to a validation set or a test set, and that we
would exped these values to be quite low in order to have agood pedictive model. R? and r?
values will always apply to training data, and shoud be dose to unity for a goodtraining model.
For the example aove, trained on 13training data, we obtained RMSE = 0.1306,r* = 0.826,and

15



Draft Document

R? = 0.815for the training data. Simil arly, with amodel in which the six data points are put aside
for the validation set, we obtained 2.524, 0.580, 2.9660r the RMSE, ¢, and Q? respedively.

Note that for the above example Q? is sgnificantly larger than urity (2.966). While 0 < ¢ < 1,
inspeding Eq. (10.9 reveds that this upper limit does nat hald anymore for Q% The Q measure
for the six test data adually indicates that the predictions on the test data are poor. The large
difference between g” and Q? indicates that the model also hes a lot of uncertainty. Looking at
Fig.106a, this conclusionis nat entirely obvious: the predictions in this figure seem to foll ow the
right trend, and there are two data points that are dealy missd in the predictions. A better type
of plot, that clealy supports the mnclusions from the g and Q® analysis, is the scaterplot. A
scaterplot is a plot where the true values are indicated onthe horizontal axis and the predicted
values correspondto the y-axis. For a perfed predictive model, al the data shoud fal on the
main diagonal. Fig.10.6 shows the scaterplot for the six test data for the anino add example.
From looking at the scaterplot, it now becomes immediately clear that the predictive modd is
not good at al in predicting on test data. The scatterplot on the left hand side is for the six test
data (the six last samples from Table 10.3, while the scaterplot on the right hand side is
obtained from runnng 200 dfferent boastraps, and testing ona randam seledion d six test
samples. The variance on the boastrap predictions for this case is indicated with error bars on
the figure.
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Figure106 Scaterplot for predictions on (a) six test data for the anino acid example, and (b)
200 bodstraps with six sample test data each.

10.4INTRODUCTION TO DIRECT KERNEL METHODS

10.4.1 The data mining dilemma and the machine learning dilemma for real-world data

The example abowe is a simple “toy” problem and rather naive. Red-world data mining
problems differ in many ways. Red-world datasets can be vast. They are often so large that they
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canna be degantly presented and looked at in a spreadsheet anymore. Furthermore, red-world
data sets have missng data, errors, outliers, and minority classs.

There is aso the problem of diminishing “information density” in large datasets. As datasets
bewme larger and larger, we would exped, onthe one hand, that there is more information ou
there to build good and robust models. On the other hand, there might also be so much spurious
and superfluous data in the dataset that the information censity is adually lower. Even if it is
possble to oltain better models from larger datasets because there is more useful and relevant
information ou there, it is adually a harder to extrad that information. We cdl this the
phenomenon*the data mining dilemma.”

Another observation will be even more fundamental for predictive data mining. Looking back at
equations (2) and (3) it can be naticed that they contain the inverse of the feature kernel, K,
defined as:

KF = Xr-:—wnxnm (109

The feature kernel is a mxm symmetric matrix where eab entry represents the similarity
between feaures. Obvioudly, if there were two fedures that would be completely redundant the
feaure matrix would contain two columns and two rows that are (exactly) identical, and the
inverse does not exist. For the cae of data strip mining problems, where there ae more
descriptors than data, this matrix would be rank deficient and the inverse would na exist.
Consequently, the simple regresson model we propaosed above would not work anymore. One
can argue that all is gdill well, and that in order to make the simple regresson method work one
would just make sure that the same descriptor or attribute is not included twice By the same
argument, highly correlated descriptors (i.e., “cousin feaures’ in data mining lingo) shoud be
eliminated as well. While this argument sounds plausible, the truth of the matter is more subtle.
Let us repeat Eq. (10.2 again and go just one step further as sxown below.

X:wnxnmam - X:T-“y”
o L -1 -
(X;nxnm) (Xr:]nxnm)wm _(X;’”X”m)_lxlmyn (10.190
am = (X:wnxnm) X:“nyn
w, = X% (XX )y,

Eq. (10.10 is the derivation d an equivalent linear formulation to (2.2), based onthe so-called
right-hand pseudo-inverse or Penrose inverse, rather than using the more common left-hand
pseudo-inverse. It was not shown here how that last line followed from the previous equation,
but the proof is graightforward and |eft as an exercise to the reader. Note that now the inverseis
needed for a different entity matrix, which nowv has an nxn dimensionality, and is cdled the
datakernel, K, , as defined by:

Ky =X, X! (10.1)
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The right-hand pseudo-inverse formulation is lessfrequently cited in the literature, becauseit can
only be nonrank deficient when there ae more descriptive atributes than data points, which is
naot the usual case for data mining problems (except for data strip mining cases). The data kernel
matrix is a symmetricd matrix that contains entries representing simil ariti es between data points.
The solution to this problem seams to be straightforward. We will first try to explain here what
seams to be an obvious lution, and then adually show why this won’t work. Looking at Egs.
(10.10 and (10.17) it can be mncluded that, except for rare caes where there ae as many data
records as there ae features, either the feature kernel is rank deficient (in case that m>n, i.e,
there ae more dtributes than data), or the data kernel is rank deficient (in case that n>m, i.e,
there ae more data than attributes). It can be now argued that for the m < ncase one can proceed
with the usua left-hand pseudoinverse method d Eqg. (10.2, and that for the m> ncase one
shoud proceed with the right-hand pseudoinverse, or Penrose inverse following Eq. (10.10).

While the goproadh just propased here seems to be reasonable, it will not work. Learning occurs
by discovering patterns in data through redundancies present in the data. Data redundancies
imply that there are data present that seem to be very similar to ead ather (and that have simil ar
values for the resporse a well). An extreme example for data reduncancy would be adataset
that contains the same data point twice Obvioudly, in that case, the data matrix isill -condti oned
and the inverse does naot exist. This type of redundancy, where data repeat themselves, will be
cdled here a ‘hard redundancy.” However, for any dataset that one can possbly learn from,
there have to be many “soft redundancies’ as well. While these soft redundancies will nat
necessrily make the data matrix ill -condtioned, in the sense that the inverse does not exist
because the determinant of the datakernel is zero, in pradicethis determinant will be very small.
In ather words, regardless whether one proceeads with a left-hand a aright-hand inverse, if data
contain information that can be leant from, there have to be soft or hard redundancies in the
data. Unfortunately, Egs. (10.2 and (10.10 can’'t be solved for the weight vedor in that case,
because the kernel will ether be rank deficient (i.e., ill-condtioned), or poar-condtioned, i.e.,
cdculating the inverse will be numericdly unstable. We cdl this phenomenon “the data mining
dilemma” (i) macdine leaning from data can only occur when data contain redundancies; (ii)
but, in that cese the kernel inverse in Eq. (10.2) or Eq. (10.10 is either not defined o
numericaly unstable because of poa condtioning. Taking the inverse of a poor-condtioned
matrix is possble, bu the inverse is not “sharply defined” and most numericd methods, with the
exception d methods based on single value decompasition (SVD), will run into numericd
instabiliti es. The data mining dilemma seems to have some similarity with the uncertainty
principlein physics, bu we will not try to draw that parall €l toofar.

Statisticians have been aware of the data mining dilemma for a long time, and have devised
various methods around this paradox. In the next sedions, we will propose several methods to
ded with the data mining dilemma, and olain efficient and robust prediction models in the
process

10.4.2 Regression M odels Based on the Data Kernel M odel
In this sction, we will consider the data kernel formulation d Eq. (10.10 for predictive

modeling. Not becaise we have to, bu because this formulationis just in the right form to apply
the kernel transformation ontest data. There ae several well-known methods for deding with
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the data mining dilemma by using techniques that ensure that the kernel matrix will not be rank
deficient anymore. Two well-known methods are principal component regression [16] and ridge
regression [17-18]. In order to keep the mathematical diversions to its bare minimum, only ridge
regression will be discussed.

Ridge regression is a very straightforward way to ensure that the kernel matrix is positive
definite (or well-conditioned), before inverting the data kernel. In ridge regression, a small
positive value, A, is added to each element on the main diagonal of the data matrix. Usually the
same value for A is used for each entry. Obviously, we are not solving the same problem
anymore. In order to not deviate too much from the original problem, the value for A will be kept
as small as we reasonably can tolerate. A good choice for A is a small value that will make the
newly defined data kernel matrix barely positive definite, so that the inverse exists and is
mathematically stable. In data kernel space, the solution for the weight vector that will be used in
the ridge regression prediction model now becomes:

-1,

W, = XT (X, XL +Al )y, (1012

n

and predictionsfor y can now be made acording to:

§ = Xnmxr-;n (xnmer"n +AI )_1)7[1
=K, (Ky +A1)7y, (10.13
= KD\Tvn

where avery different weight vedor was introduced: W, . This weight vedor isapplied dredly

to the data kernel matrix (rather than the training data matrix) and has the same dimensionality as
the number of training data. To make aprediction onthe test set, one procedls in a similar way,
but appli es the weight vector on the data kernel for the test data, which is generally a rectangular
matrix, and projeds the test data on the training data according to:

Kt =X (i) (2019
whereit is assumed that there are k data pointsin the test set.

10.4.3 TheKernd Transformation

The kernel transformation is an elegant way to make a regresson model nonlinea. The kernel
transformation goes back at least to the early 1900s, when Hilbert addressed kernels in the
mathematicd literature. A kernel is a matrix containing similarity measures for a dataset: either
between the data of the dataset itself, or with ather data (e.g., suppat vedors[1]). A classcd use
of a kernel is the arrelation matrix used for determining the principa comporentsin principal
comporent analysis, where the feaure kernel contains linea similarity measures between
(centered) attributes. In suppat vedor madines, the kernel entries are similarity measures
between data rather than feaures and these simil arity measures are usualy noninea, urlike the
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dot product similarity measure that we used before to define a kernel. There are many possible
nonlinear similarity measures, but in order to be mathematically tractable the kernel has to
satisfy certain conditions, the so-called Mercer conditions [1-3].

|](ll k12 e kln
21 k22 e k2

The expression above, introduces the general structure for the data kernel matrix, K ., for ndata.

The kernel matrix is a symmetrical matrix where each entry contains a (linear or nonlinear)
similarity between two data vectors. There are many different possibilities for defining similarity
metrics such as the dot product, which is a linear similarity measure and the Radia Basis
Function kernel or RBF kernel, which is a nonlinear similarity measure. The RBF kernel is the
most widely used nonlinear kernel and the kernel entries are defined by

.2
%

k;=e 2 (10.19

Note that in the kernel definition above, the kernel entry contains the square of the Euclidean
distance (or two-norm) between data points, which is a dissmilarity measure (rather than a
similarity), in a negative exporential. The negative exporential also contains a freeparameter, o,
which is the Parzen window width for the RBF kernel. The proper choice for seleding the
Parzen window is usually determined by an additional tuning, aso cdled hyper-tuning, on an
external validation set. The precise choicefor o isnot crucia, there usually is arelatively broad
range for the chaice for o for which the model quality shoud be stable.

Different leaning methods distinguish themselves in the way by which the weights are
determined. Obviously, the model in Egs. (10.12) - (10.19 to produce estimates or predictions
foryis linea. Such alinea model has a handicgp in the sense that it cannat cgpture inherent

norlineaities in the data. This handicgp can easily be overcome by applying the kernel
transformation drectly as a data transformation. We will therefore not operate diredly on the
data, bu on a nonlinea transform of the data, in this case the norlinea data kernel. Thisis very
similar to what is dore in principal componrent analysis, where the data are substituted by their
principa comporents before building a model. A similar procedure will be gplied here, bu
rather than substituting data by their principal comporents, the data will be substituted by their
kernel transform (either linea or nonlinear) before buil ding a predictive model.

The kernel transformation is applied here & a data transformation in a separate pre-processng
stage. We actualy replace the data by a nonlinea data kernel and apply a traditional linear
predictive model. Methods where a traditional linea algorithm is used on a norinear kernel
transform of the data ae introduced in this chapter as “direct kernel methods.” The degance and
advantage of such a dired kernel method is that the norlinear aspeds of the problem are
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captured entirely in the kernel and are transparent to the applied algorithm. If alinear algorithm
was used before introducing the kernel transformation, the required mathematical operations
remain linear. It is now clear how linear methods such as principal component regression, ridge
regression, and partial least squares can be turned into nonlinear direct kernel methods, by using
exactly the same algorithm and code: only the data are different, and we operate on the kernel
transformation of the data rather than the data themselves. This same approach for converting
algorithms to direct kernel methods can aso be applied to nonlinear learning algorithms such as
the self-organizing map [4].

In order to make out-of-sample predictions on true test data, a similar kernel transformation
needs to be applied to the test data, as shown in Eq. (10.14). The idea of direct kernel methodsis
illustrated in Fig. 10.7, by showing how any regression model can be applied to kernel-
transformed data. One could also represent the kernel transformation in a neura network type of
flow diagram and the first hidden layer would now yield the kernel-transformed data, and the
weights in the first layer would be just the descriptors of the training data. The second layer
contains the weights that can be calculated with a hard computing method, such as kernel ridge
regression. When aradial basis function kernel is used, this type of neural network would look
very similar to a radia basis function neural network [19-20], except that the weights in the
second layer are calculated differently.
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Figure 10.7 Operation schematic for direct kernel methods as a data pre-processing step.

10.4.4 Dealing with the Bias: Centering the Kernel

Thereis still one important detail that was overlooked so far, and that is necessary to make direct
kernel methods work. Looking at the prediction equations in which the weight vector is applied
to dataasin Eq. (10.1), there is no constant offset term or bias. It turns out that for data that are
centered this offset term is always zero and does not have to be included explicitly. In machine
learning lingo the proper name for this offset term is the bias, and rather than applying Eq.
(20.1), amore general predictive model that includes this bias can be written as:
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A

V., = XW, +b (10.17

where bis the bias term. Becaise we made it a pradicein data mining to center the data first by
Mahalanols gding, this biasterm is zero and can be ignored.

When deding with kernels, the situation is more wmplex, as they neal some type of bias as
well. We will give only a reape here, that works well in pradice and refer the reader to the
literature for a more detailed explanation [3, 21-23]. Even when the data were Mahaanohis-
scded, before gplying a kernel transform, the kernel still needs ome type of centering to be
able to amit the bias term in the prediction model. A straightforward way for kernel centering is
to subtrad the average from ead column of the training data kernel, and store this average for
later recall, when centering the test kernel. A second step for centering the kernel is going
through the newly obtained vertically centered kernel again, this time row by row, and
subtrading the row average form each haizontal row.

The kernel of the test data needs to be centered in a @nsistent way, following a similar
procedure. In this case, the stored column centers from the kernel of the training data will be
used for the verticd centering d the kernel of the test data. This vertically centered test kernel is
then centered haizontally, i.e., for each row, the average of the verticaly centered test kernel is
cdculated, and each haizontal entry of the vertically centered test kernel is substituted by that
entry minus the row average.

Mathematicd formulations for centering square kernels are explained in the literature [21-23].
The avantage of the kernel-centering algorithm introduced (and described abowve in words) in
this sdion is that it also applies to redangular data kernels. The flow chart for pre-processng
the data, applying a kernel transform on this data, and centering the kernel for the training chta,
validation data, andtest datais shownin Fig. 10.8.

. Centered
Training Data I Mahalfm.obls—scaled I Kemel.TFansformed I Direct Kernel
Training Data Training Data ..
— (Training Data)
l ---------- l ........ >
Mahalanobis Vertical Kernel
Scaling Factors Centering Factors
. Centered
Test Data I Mahalanobis-scaled I Kernel Transformed I Direct Kernel
Test Data Test Data
(Test Data)

Figure 10.8 Data pre-processng with kernel centering for direct kernel methocks.
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10.5. DIRECT KERNEL RIDGE REGRESSION
10.5.1 Overview

So far, the argument was made that by applying the kernel transformation in Egs. (10.13) and
(10.14), many traditional linear regression models can be transformed into a nonlinear direct
kernel method. The kernel transformation and kernel centering proceed as data pre-processing
steps (Fig. 10.8). In order to make the predictive model inherently nonlinear, the radial basis
function kernel will be applied, rather than the (linear) dot product kernel, used in Egs. (10.2)
and (10.10). There are actualy several alternate choices for the kernel [1-3, 19], but the RBF
kernel is the most widely applied kernel. In order to overcome the machine learning dilemma, a
ridge can be applied to the main diagona of the data kernel matrix. Because the kernel
transformation is applied directly on the data, before applying ridge regression, this method is
called direct-kernel ridge regression.

Kernel ridge regression and (direct) kernel ridge regression are not new. The roots for ridge
regression can be traced back to the statistics literature [18]. Methods equivalent to kernel ridge
regression were recently introduced under different names in the machine literature (e.g.,
proximal SVMs were introduced by Mangasarian et a. [24], kernd ridge regression was
introduced by Poggio et a. [25-27], and Least-Squares Support Vector Machines were
introduced by Suykens et al. [28-29]). In these works, Kerned Ridge Regression is usually
introduced as a regularization method that solves a convex optimization problem in a
Langrangian formulation for the dua problem that is very similar to traditional SVMs. The
equivalency with ridge regression techniques then appears after a series of mathematical
manipulations. By contrast, in this chapter direct kernel ridge regression was introduced with few
mathematical diversions in the context of the machine learning dilemma. For al practica
purposes, kernel ridge regression is similar to support vector machines, works in the same feature
gpace as support vector machines, and was therefore named least-squares support vector
machines by Suykens et a. [28-29].

Note that kernel ridge regression still requires the computation of an inverse for a nx nmatrix,
that can be quite large. This task is computationally demanding for large datasets, as is the case
in atypica data mining problem. Because the kernel matrix now scales with the number of data
squared, this method can also become prohibitive from a practical computer implementation
point of view, because both memory and processing requirements can be very demanding.
Krylov space-based methods and conjugate gradient methods are relatively efficient ways to
speed up the matrix inverse transformation of large matrices, where the computation time now
scales as n?, rather than n®. Krylov-space methods are discussed in [30]. Conjugate gradient-
based methods for inverting large matrices are discussed in [1] and [29]. The Analyze/Stripminer
[31] code used for the analysis presented here applies Moller's £ded conjugate gradient method
to cdculate the matrix inverse [32].

The iswue of deding with large datasets is even more profound There are severa potentia
solutions that will nat be discussed in detail. One gproach would be to use arectangular kernel,
were not al the data ae used as bases to calculate the kernel, but a good subset of “suppat
vedors’ is estimated by chunking [1] or other techniques sich as snsitivity analysis (explained
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further on in this chapter). More dficient ways for inverting large matrices are based on pece
wise inversion. Alternatively, the matrix inversion may be avoided atogether by adhering to the
suppat vedor machine formulation d kernel ridge regresson and solving the dual Lagrangian
optimization problem and applying the sequential minimum optimization or SMO algorithm as
explained in [33].

10.5.2 Choosing the Ridge Parameter, A
It has been shown in the literature [29] that kernel ridge regresson can be expressed as an
optimization method, where rather than minimizing the residual error on the training set,

acording to:

Mirain

A

yi - yi (10-18

2

we now minimize;

Merain | A

55~ 5[+, 1019

The @owve equation is a form of Tikhonov regularization [34-35] that has been explained in
detail by Cherkasky and Mulier [17] in the context of empiricd versus dructura risk
minimization. Minimizing the norm of the weight vedor is in a sense similar to an error
penali zation for prediction models with a large number of free parameters. An obvious question
in this context relates to the proper choicefor the regularization parameter or ridge parameter A.

In the madhine learning, it is common to tune the hyper-parameter A by making we of a
tuning/validation set. This tuning procedure can be quite time @nsuming for large datasets,
espedally in consideration that a simultaneous tuning for the RBF kernel width must proceed in
a similar manner. We therefore propose aheuristic formula for the proper choice for the ridge
parameter, that has proven to be dose to oimal in numerous practicd cases [36]. If the data
were originally Mahalanobis ded, it was found by scding experiments that a nea optimal
choicefor A is

_H nF
)\—mmé_ O'O%gé (10.20

where n isthe number of datafor the training set.

Note that in order to apply the @owve heuristic the data have to be Mahalanohis scded first. Eq.
(10.20 was vaidated on a variety of standard benchmark datasets from the UCI data repository
[36], and provided results that are nealy identical to an ogimally tuned A on a tuning/validation
set. In any case, the heuristic formulafor A shoud be an excdlent starting choice for the tuning
process for A. The &ove formula proved to be dso useful for the initial choice for the
regularization parameter C of SVMs, where C is now taken as T/A.
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10.6. CASE STUDIES
10.6.1 Case Study #1: Predicting the Binding Energy for Amino Acids

In this section, predicting the free energy for unfolding amino acids will be revisited by applying
direct kernel ridge regression with a Gaussian or RBF kernel. The ridge parameter A was chosen
as 0.00083, following Eg. (10.20), and the Parzen window parameter, o, was chosen to be unity
(obtained by tuning with the leave-one-out method on the training set of 13 data). The
predictions for the six amino acids are shown in Fig. 10.9. The lower values for ¢, Q? and
RMSE show a clear improvement over the predictions in Fig. 10.5. Figure 10.10 illustrates the
scatterplot for 200 bootstrap predictions on six randomly selected samples. The values of g” and
Q? are now 0.366 and 0.374, compared to 0.737 and 1.233 for the corresponding values in the
linear bootstrap model shown in Fig. 10.6b. The execution time for the 200 bootstraps was 13
seconds for kernel ridge regression, compared to 0.5 seconds with the simple regression model
using the Analyze/Stripminer code on a 128MHz Pentium |Il computer. Note also that the
bootstrapped values for ¢ and Q?i.e., 0.366 and 0.374, are now almost equal. The similar values
for g°and Q? indicate that there is no bias in the models, and that the choices for the hyper-
parameters o and A, are at least close to optimal.
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Sorted Sequence Number

Figure 10.9 Predictions for DDGTS for the last six amino acids from Table IV with direct
kernel ridge regression.
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Figure 10.10 Scatterplot for predictions on six test datafor DDGTS with 200 bootstraps with
six sample test data each.

10.6.2 Case study #2: Predicting the Region of Origin for 572 Italian Olive Oils

The second case study deals with classifying 572 Italian olive oils by their region of origin,
based on eight fatty acid contents. We chose this problem, because it is a multi-class problem
with nine classes that are not ordinal. With the term non-ordinal we mean that the class numbers
are not hierarchical and do not reflect anatural ordering.

Figure 10.11 572 Italian olive oil samples by nine regions of origin [37-38].

26

Class Region #samples
1 MNorth Apulia Calabria 25
2 Calabria 56
3 South Apulia 206
4 Sicily 36
5 Inner Sardinia 65
6 Coastal Sardinia 33
7 East Liguria 50
8 West Liguria 50
9 Umbria 51
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The olive oil data were introduced by Forina [37] and extensively analyzed by Zupan and
Gasteiger [38]. They can be downloaded from the web site referenced in [37]. Following [38],
the data were split in 250 training data and 322 test data, but the split is different from the one
used in [38].

The data were preprocessed as shown in Fig. 10.8. The response for the nine classes is now
coded as{1 ... 9}, and Mahalanobis scaled before applying kernel ridge regression. o is tuned on
the training set, and assumed a value of 2. The ridge parameter, A, is 0.07, based on Eg. (10.20).
The errors on the test set, after de-scaling, are shown in Fig. 10.12. Figure 10.13 shows the
scatterplot for the same data.
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Figure 10.12 Test results for nine olive oil classes on 322 test data (kernel ridge regression).
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Figure 10.13 Scatterplot for nine olive oil classes on 322 test data (kernel ridge regression).
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In this case, 84% of the classes were @rredly predicted. Thisis sgnificantly better than the 40%
prediction rate with a neural net with ore output neuron for the dasses, as reported in [38], but
also clealy below the 90% prediction rate with a neural network with nine output neurons and an
orthogonal encoding reported in the same reference In order to improve the prediction results
one wuld either train nine different kernel ridge models, and predict for one-class versus the
other eight classes at atime, or train for al possble 36 combinations ontwo classproblems, and
let a voting scheme dedde on the final class predictions. Whil e this latter scheme is definitely
not as graightforward as training a single neural network with nine orthogonally encoded output
neurons, the results snoud be more cmmparable to the best neural network results.

Note that there is a nea perfect separation for distinguishing the olive oils from regions in
southern Italy from the olive oil s from the northern regions. Most of the missesin the prediction
in Figs. 1012 and 10.13are off by just one dass, locding the olive oil s that were misclassfied
close to the adua region o origin. The single-field encoding for the output class still works
reasonably well onthis nonordinal classfication problem, because the dasses were labeled in an
almost ordinal fashion. By this we mean that class numbers that are dose to ead cther, e.g., 1, 2
and 3,are dso geographicdly located nearby onthe map in Fig. 10.11b.

Dired Kernel Partial Least-Squares (DK-PLS) is adired-kernel implementation form of the PLS
algorithm, popdar in chemometrics, and similar to kernel-PLS first introduced in [39]. DK-PLS
yields an 83% correct clasdfication rate, using the same pre-processng procedure and 12|atent
variables. In this case, latent variables are the equivalent of principal comporents in PCA. The
traditional (linea) PLS algorithm yields a 28% corred classficaion rate. Dired-kernel principal
comporent analysis with 12 gincipal comporents yields a 54% corred classficdion rate, while
principal comporent analysis with six principal comporents results in a 30% corred
clasgficaionrate. The classficaion results reported in this dionindicae aclea improvement
of direct kernel methods over their linear counterpart. The excdlent comparison ketween kernel
ridge regresson and drect kernel PLS is aso a good confidence indicator for heuristic formula,
Eq. (10.20, for seleding the ridge parameter.

Rather than reporting improved results from combining binary clasgficaion models, we will
illustrate Kohoren's slf-organizing map o SOM [4]. Becaise self-organizing maps arealy
inherently acount for norlinea effeds, it is not necessry to apply a Dired-Kernel Self
Organizing Map (DK-SOM). Fig. 10.14shows a 13x 20 Kohoren map based on 250training
data. 93% of the 322 test samples are now corredly classfied as siown by the mnfusion matrix
in Table 10.5. The dassficaion performance of the DK-SOM is smilar to the SOM, bu the
DK-SOM in this case requires 3 minutes training, rather than 6 seconds training for the SOM.
Thisis nat entirely surprising becaise the DK-SOM operates on data with 250features or kernel
entries, while the SOM operates onthe eght original feaures.

An efficient SOM modue was incorporated in the Analyze/StripMiner software [31] with a goal
of kegping user dedsions minimal by incorporating robust default parameter settings. To do so,
the SOM istrained in its usual two-stage procedure: an ordering phase and a fine-tuning plese.
The weights are trained by competitive learning where the winning neuron and its neighbaring
neurons in the map are iteratively updated, according to
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W =(1-a)i2¢ +a X (10.21)

m m

whereXis a pattern vector withmfeatures, a is the learning parameter andwrepresents the
weight vector.

Figure 10.14 SOM for 250 training data for olive oil region of origin.

Table 10.5 Confusion matrix for 332 test data for nine non-ordinal classes.

Region # test data
North Apulia 10 1 1 1 0 0O O 0 0 13
Calabria 0O 25 6 0 0 O O 0 O 31
South Apulia 0 1 108 0 0 o0 O 0O O 109
Sicily 1 5 3 13 0O 0 ©O 0O O 22
Inner Sardinia | O 0 0 0O 40 1 0 0 0 41
Coast. Sardinia] 0 0 0 0 0 16 O 0 0 16
East Liguria 0 O 0 O 1 0 23 1 0 25
\West Liguria 0 O 0O 0 o 0O O 33 O 33
Umbria 0 0O 0 O O 0 O 0 32 32
322

Data patterns are presented at random and the learning parameter a is linearly reduced from 0.9
to 0.1 during the ordering phase. During this phase, the neighborhood size of the SOM is reduced
from six to one on a hexagonal grid in alinear fashion. The number of iterations with Eq. (10.24)
can be user-specified: 100 times the number of samplesis arobust default for the ordering phase.
During the fine iteration stage,ais reduced from 0.1 to 0.01 in a linear fashion. The code
defaults to 20000 iterations for the ordering phase and 50000 iterations in the fine-tuning phase.
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The map size defaults to a 9x18 hexagona grid. Following Kohonen [4], the initial weights are
random data samples and a supervised Learning Vector Quantization (LVQ) algorithm was
implemented in the fine-tuning stage following [4]. The cells in the Kohonen map are colored by
applying semi-supervised learning. By this, we mean that the weight vector is augmented by an
additional entry for the class, which is called the color. The color code entry is not used in the
distance metrics used in the SOM, but is otherwise updated in the same manner as the other
weights in the SOM. A second optional cell-coloring scheme implemented in the code is based
on a cellular automaton rule. Note aso that in our study the data were preprocessed by
Mahalanobis scaling each column entry first. The only difference between DK-SOM and SOM is
that for DK-SOM, there is an additional pre-processing stage where the data are kernel
transformed using a Gaussian kernel. The Parzen width, o, for the default Gaussian kernel in the
SOM is kept the same as for the kernel-ridge regression mode!.

10.6.3 Case Study #3: Predicting | schemia from Magnetocar diography
10.6.3.1 Introduction

We describe in this section the use of direct-kernel methods and support vector machines for
pattern recognition in magnetocardiography (MCG) that measures magnetic fields emitted by the
electrophysiological activity of the heart. A SQUID (or Superconducting Interference Device)
measures MCGs in a regular, magnetically unshielded hospital room. The operation of the
system is computer-controlled and largely automated. Procedures are applied for
electric/magnetic activity localization, heart current reconstruction, and derivation of diagnostic
scores. However, the interpretation of MCG recordings remains a chalenge since there are no
databases available from which precise rules could be educed. Hence, there is a need to automate
interpretation of MCG measurements to minimize human input for the analysis. In this particular
case we are interested in detecting ischemia, which is aloss of conductivity because of damaged
cell tissue in the heart and the main cause of heart attacks, the leading cause of death in the USA.

10.6.3.2 Data acquisition and pre-processing

MCG data are acquired at 36 locations above the torso for 90 seconds using a sampling rate of
1000 Hz leading to 36 individual time series. To eliminate noise components, the complete time
seriesis low-passfiltered at 20 Hz and averaged using the maximum of the R peak of the cardiac
cycle as trigger point. For automatic classification, we used data from a time window within the
ST-segment [43] of the cardiac cycle in which values for 32 evenly spaced points were
interpolated from the measured data. The training data consist of 73 cases that were easy to
classify visually by trained experts. The testing was done on a set of 36 cases that included
patients whose magnetocardiograns misled or confused trained experts doing visua
classification.

We experimented with different pre-processing strategies. Data are pre-processed in this case by
first subtracting the bias from each signal, each signal is then wavelet transformed by applying
the Daubechies 4 wavel et transform [41]. Finally, thereisa (horizontal) Mahalanobis scaling for
each patient record over all the 36 signals combined. The data are then vertically Mahalanobis
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scaled on each attribute (except for the SOM based methods, where no further vertical scaling
was applied).

10.6.3.3 Results from predictive modeling for binary classification of magnetocar diograms

The aim of this application is the automatic pattern recognition and classification for MCG data
in order to separate abnorma from normal heart patterns. For unsupervised learning, we used
DK-SOMs, because SOMs are often applied for novelty detection and automated clustering. The
DK-SOM has a 9x18 hexagonal grid with unwrapped edges. Three kernel-based regression
algorithms were used for supervised learning: support vector machines, direct kernel partial least
squares (DK-PLS), and kernel ridge regression (also known as least-squares support vector
machines). The Analyze/StripMiner software package, developed in-house, was used for this
anaysis. LibSVM was applied for the SVM model [40]. The parameter values for DK-SOM,
SVM, DK-PLS and LS-SVM were tuned on the training set, before testing. The results are
similar to the quality of classification achieved by the trained experts and similar for all three
methods. A typical dataset for 36 signals that are interpolated to 32 equally spaced points in the
analysis window [43] and after Mahalanobis scaling on each of the individual signalsis shownin
Fig. 10.15. The results for different methods are shown in table 10.6. Table 10.6 also indicates
the number of correctly classified patterns and the number of misses on the negative and the
positive cases.

Figure 10.15 Superposition of all traces of the 36-lead MCG. The typica wave forms as seen in ECG are
the P wave (P, atria activation), the Q wave (Q,, septa activation), the R peak (R, left
ventricular depolarization), the S wave (S, late right ventricular depolarization), and the T
wave (T, ventricular repolarization).

Better results were generally obtained with wavel et-transformed data rather than pure time series
data. For wavelet-transformed data, the Daubechies-4 or D4 wavelet transform [41] was chosen,
because of the relatively small set of data (32) in each of the interpolated time signals. The
agreement between K-PLS as proposed by Rosipal [40], direct kernel PLS or DK-PLS, SVMLib,
and LS-SVM is generdly excellent, and there are no noticeable differences between these
methods on these data. In this case, DK-PLS gave a superior performance, but the differences
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between kernel-based methods are usually insignificant. After tuning, o was chosen as 10, A was
determined from Eq. (10.20), and the regularization parameter, C, in SYMLib was set as 1/ A as
suggested in [39].

Table10.6 RMSE, g2 and Q2, # of correct patterns and # of misses and execution time (on
negative and positive cases on 36 test data) for magnetocardiogram data.

Method Domain g2 Q2 RMSE  %correct #misses time (S) comment
SVMLib time 0.767 0.842 0.852 74 4+5 10 lambda = 0.011, sigma = 10
K-PLS time 0.779 0.849 0.856 74 4+5 6 5 latent variables, sgma = 10
DK-PCA D4-wavelet 0.783 0.812 0.87 71 7+3 5 5 principal components
PLS D4-wavelet 0.841 0.142 1.146 63 2+11 3 5 latent variables
K-PLS D4-wavelet 0.591 0.694 0.773 80 2+5 6 5 latent variables, sigma = 10
DK-PLS D4-wavelet 0.554 0.662 0.75 83 1+5 5 5 latent variables, sigma = 10
SVMLib D4-wavelet 0.591 0.697 0.775 80 2+5 10 lambda = 0.011, sigma = 10
LS-SVM D4-wavelet 0.59 0.692 0.772 80 2+5 0.5 lambda = 0.011, sigma = 10
SOM D4-wavelet 0.866 1.304 1.06 63 3+10 960 9x18 hexagonal grid
DK-SOM D4-wavelet 0.855 1.0113 0.934 71 5+5 28 9x18 hex grid, sigma = 10
DK-SOM D4-wavelet 0.755 0.859 0.861 77 3+5 28 18x18 hexagonal, sigma = 8

The excellent agreement between the direct kernel methods (DK-PLS and LS-SVM) and the
traditional kernel methods (K-PLS and SVMLib) shows the robustness of the direct kernel
methods and also indicates that Eqg. (10.20) results in a near-optimal choice for the ridge
parameter.
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Figure 10.16 Error plot for 35 test cases, based on K-PLS for wavelet-transformed
magnetocardiograms.

Not only does Eq. (10.20) apply to the selection of the ridge parameter, but also to selecting the
regularization parameter, C, in support vector machines, when C istaken as 1/ A. Linear methods
such as partial-least squares result in an inferior predictive model as compared to the kernel
methods. For K-PLS and DK-PLS we chose 5 latent variables, but the results were not critically
dependent on the exact choice of the number of latent variables. We also tried Direct Kernel
Principal Component Analysis (DK-PCA), the direct kernel version of K-PCA [3, 21-23], but the
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results were more sensitive to the choice for the number of principal components and nd as good
as for the other direa kernel methocks.

Typica prediction results for the magnetocardiogram data based on wavelet transformed data
and DK-PLS are shown in Fig. 10.16.We can seefrom this figure, that the predictions miss6/36
test cases (1 hedthy or negative cae, and 5ischemia caes). The missed cases were dso dfficult
for the trained expert to identify, based ona 2-D visual display of the time-varying magnetic
field, oltained by proprietary methods.

For medicd data, it is often important to be ale to make atrade-off between false negative and
false-positi ve cases, or between sensitivity and spedficity (which are diff erent metrics related to
false positives and false negatives). In machine-leaning methods such a trade-off can easily be
acomplished by changing the threshold for interpreting the dasdficaion, i.e., in Fig. 10.16
rather than using the zero as the discrimination level, ore auld shift the discrimination threshold
towards a more desirable level, hereby influencing the false positive/false negative ratio. A
summary of all possble outcomes can be displayed in an ROC curve & shown in Fig. 10.17for
the &ove cae. The oncept of ROC curves (or Recever Operator Charaderistics) originated
from the early development of the radar in the 1940s for identifying airplanes and is
summarized in [42].

true positives

goodness =0.8982

o 0.1 0.2 03 04 05 0.6 0.7 08 0.9 1
false postives

Fig. 10.17ROC curve showing passble trade-offs between fal se positi ve and fal se negatives.

Figure 10.18 dsplays a projedion d 73 training data, based on (a) Dired Kernd Principa
Comporent Analysis (DK-PCA), and (b) Direct Kernel PLS (DK-PLS). Diseased cases are
shown as filled circles. Figure 10.18bshows a deaer separation and wider margin between
different classes, based on the first two components for DK-PLS as compared to DK-PCA in
figure10.1&
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Figure 10.18 Projedion d 73 training data, based on (a) Direct Kernel Principal Comporent
Anaysis (DK-PCA), and (b) Dired Kernel PLS (DK-PLS). Diseased cases are
shown asfill ed circles. The test data are not shown onthese plots.

A typicd 9x18self-organizing map on a hexagona grid in wrap-around mode, based on the
dired kernel SOM, is $hown in Figure 10.19. The wrap-around mode means that the left and
right boundxries (and aso the top and bdtom boundaries) flow into ead other, and that the map
is an urfolding d a toroida projedion. The dark hexagons indicate diseased cases, while the
light hexagons indicate hedthy cases. Fully colored hexagons indicae the positions for the
training data, whil e the white and dark-shaded numbers are the pattern identifiers for hedthy and
diseased test cases. Most misclasdfications adually occur on boundiry regions in the map. The
cdlsin the map are wlored by semi-supervised learning, i.e., each data vector, containing 36x32
or 1152fedures are aigmented by an additional field that indicaes the wlor. The wlor entry in
the data vedors are updated in a similar way as for the weight vedors, as indicaed by Eqg.
(20.21, bu are nat used to cdculate the distance metrics for determining the winning cell. The
resulting map for aregular SOM implementation is very similar to the crrespondng map based
on dred kernel DK-SOM. The exeaution time for generating DK-SOM on a 128 MHz Pentium
Il computer was 28 seconds, rather than 960seconds required for generating the regular SOM.
The kernd transformation caused this sgnificant speedup, lkecaise the data dimensionality
dropped from the origina 1152 descriptive features to 73 after the kernel transformation. The
fine-tuning stage for the SOM and DK-SOM was dore in a supervised mode with learning veaor
quantization [4], following Kohoren's siuggestion for obtaining better classficaion results.
Whil e the results based on SOM and DK-SOM are still excdlent, they are not as good as thase
obtained with the other kernel-based methods (SVMLib, LS-SVM, and K-PLS).
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Figure19. Test data displayed on the self-organizing map based on a 9x18 DK-SOM in wrap-
around mode. Light colored cells indicate healthy cases, and dark colored cells
diseased cases. Patient IDs for the test cases are displayed as well.

10.6.3.4 Feature selection

The results in the previous section were obtained using all 1152 (36x 32) descriptors. It would
be most informative to the domain expert if we were able to identify, where exactly in the time
or wavelet signals, and for which of the 36 magnetocardiogram signals that were measured at
different positions for each patient, the most important information necessary for good binary
classification islocated. Such information can be derived from feature selection.

Feature selection, i.e., the identification of the most important input parameters for the data
vector, can proceed in two different ways: the filtering mode and the wrap-around mode. In the
filtering mode, features are eliminated based on a prescribed, and generally unsupervised
procedure. An example of such a procedure could be the elimination of descriptor columns that
contain 4-o outliers, asis often the case in PLS applications for chemometrics. Depending on the
modeling method, it is often common practice to drop the cousin descriptors (descriptors that
show more than 95% correlation between each other) and only retain the descriptors that (i)
either show the highest correlation with the response variable, or (ii) have the clearest domain
transparency to the domain expert for explaining the model.

The second mode of feature selection is based on the wrap-around mode. It is the aim to retain
the most relevant features necessary to have a good predictive model. Often the modeling quality
improves with a good feature subset selection. Determining the right subset of features can
proceed based on different concepts. The particular choice for the features subset often depends
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on the modeling method. Feature selection in a wrap-around mode generally proceeds by using a
training set and a validation set. In this case, the validation set is used to confirm that the model
is not over-trained by selecting a spurious set of descriptors.

Two generaly applicable methods for feature selections are based on the use of genetic
algorithms and sensitivity analysis. The idea with the genetic algorithm approach is to be able to
obtain an optimal subset of features from the training set, showing a good performance on the
validation set as well. The concept of sensitivity analysis [12] exploits the saliency of features,
i.e.,, once a predictive model has been built, the model is used for the average value of each
descriptor, and the descriptors are tweaked, one-at-a time between a minimum and maximum
value. The sengitivity for a descriptor is the change in predicted response. The premise is that
when the sensitivity for a descriptor islow, it is probably not an essential descriptor for making a
good model. A few of the least sensitive features can be dropped during one iteration step, and
the procedure of sensitivity analysisis repeated many times until a near optimal set of featuresis
retained. Both the genetic algorithm approach and the sensitivity analysis approach are true soft
computing methods and require quite a few heuristics and experience. The advantage of both
approaches here is that the genetic algorithm and sensitivity approach are general methods that
do not depend on the specific modeling method.

10.7 FUSION OF SOFT AND HARD COMPUTING

In this chapter the fusion of soft and hard computing occurred on severa levels. On the one
hand, scientific data mining applications operate on data that are generated based on extensive
and computationally intense algorithms. An example of the hard computing algorithms, are the
extensive filtering and pre-processing algorithms in the case of the heart disease example. Other
examples of hard computing in scientific data mining occur when the purpose of the soft
computing model is to mimic a more traditional computationally demanding hard computing
problem.

In this chapter the fusion of soft and hard computing occurs on a different level as well. The
direct-kernel modeling methods highlighted in this chapter are in essence neural networks, a soft
computing method. On the other hand, the kernel transform itself, and the way how the weights
of support vectors machines, kernel ridge regression, and kernel-PLS are determined are hard
computing methods. Nevertheless, the optimal choice for the hyper-parameters in these models,
e.g., the kernel o, and the A for the regularization parameter in ridge regression, is often based on
a soft computing approach. By this we mean that the model performance is rather insensitive to
the exact (hard) optimal choice, and that approximate procedures for determining the
hyperparameters suffice for most applications.

10.8 CONCLUSIONS

In this chapter, we provided an introduction to predictive data mining, introduced the standard
data mining problem and some basic terminology, and developed direct kernel methods as a
way-out of the machine learning dilemma and as a true fusion between hard and soft computing.
Direct kernel methods were then applied to three different case studies for predictive data
mining. In this introduction, a rather narrow view on data mining was presented. We did not
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address explicitly how to feed back novel and potentialy useful information to the expert. While
feature selection is definitely and important step to provide such meaningful feedback, the fina
discovery and rule formulation phase is often highly application dependent. The use of
innovative visualization methods, such as the so-called pharmaplots in Fig. 10.18, and self-
organizing maps is often informative and helpful for the knowledge discovery process.
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