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ABSTRACT 
  
Unbalanced, high-dimensional, binary classifications create challenges in a variety of systems and environments, 
most notably within physical security and computer security domains.  The imbalance within these problems consists 
of a significant majority of the negative (healthy, non-intruding) class and a minority (unhealthy, intruding) positive 
class.  Any system that needs protection from malicious activity, intruders, theft, or other types of breaches in 
security must address this type of problem.  Given numerical data that represent observations or instances which 
require classification, many practitioners apply state of the art machine learning algorithms to aid in solving 
unbalanced classification problems.  The unbalanced and high-dimensional structure of the data can trouble these 
learning methods. High-dimensional data poses a ``curse of dimensionality'' which can be overcome through 
subspace modeling and intelligent fusion.  A fundamental method for evaluation of the binary classification model is 
the receiver operating characteristic (ROC) curve and the area under the curve (AUC), and the intelligent fusion 
employed ties directly with the properties of this evaluation method.  This work exposes the underlying statistics 
involved with ROC curves and leverages these properties to create synergistic classifier fusion through rankings.  
Decision ROC charts are a novel illustration that augment the ROC curve to provide a more complete representation 
of the classifier performance.  Pseudo-ROC curves, created from simulated rankings utilizing principles based on the 
Wilcoxon-Rank sum or Mann-Whitney U statistic, provide novel insight into the behavior of classifier rankings.  The 
critical finding involves the unique behavior of rankings for unbalanced classification problems and methods to 
capitalize on this behavior to improve classifier accuracy for unbalanced problems.  Arguments presented include 
theoretical discussion, proof of principle through simulated classifier rankings examined with a factorial design, and 
experimental results with actual data including host-based and network-based intrusion detection datasets.   
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INTRODUCTION 
 
We live in a world of black box solvers and turn-key 
solutions.  When the black boxes lose accuracy and the 
turn-key solutions struggle to fire the engine, knowing 
what happens inside the box, or what happens when 
you turn the key, enables anticipation and postures us 
for rapid problem solving.  What better way is there to 
maintain the edge than to improve our ability to 
anticipate and speed problem solving?  There is 
nothing wrong with harnessing the power of 
technological advances.  There is also nothing wrong 
with improving our understanding of the first principles 
which support this technology.  These first principles 
guide the current solutions, and our understanding of 
these first principles could help build new and 
improved solutions.  Engineers and researchers have 
applied these first principles of signal detection to 
military applications for over half a century.  The utility 
of these principles recently garnered attention in state 
of the art machine learning and data mining research 
communities, creating an interesting opportunity to 
merge knowledge and applications.       
 
The history of signal detection illustrates the age and 
persistence of unbalanced classification problems.  
During the air defense battles of World War II, the 
value of radar and signal detection grew at an explosive 
rate.  Radar techniques were relatively primitive and 
required significant human interaction and 
interpretation.  The essence of the problem was simple.  
Radar detected incoming aircraft.  A radar operator 
needed to be able to distinguish between friendly and 
enemy aircraft.  Identifying a friendly aircraft as enemy 
(a false positive), created an expensive sequence of 
drills and defensive responses.  This created the 
potential for fratricide with inbound friendly aircraft.  
There was also the danger of not alerting when actual 
enemy aircraft were inbound, a false negative.  Radar 
represents one of the earliest signal detection problems 
which required humans to interact and interpret a 
technical measure, the radar signal, with the overall 
goal of classifying the observation as one of two 
classes.  This is a binary classification problem.  In 
order to measure the effectiveness of radar operators, 
the military recorded the performance of these radar 

operators.  This performance measure became known 
as the radar receiver operating characteristic illustrated 
on the receiver operating characteristic (ROC) curve 
(Fan et. al, 2005).  Radar became one of the earliest 
applications of signal detection theory.  After World 
War II, atomic weapons boosted the importance of air 
defense.  In the 1950s tremendous research efforts, 
such as the MIT led Project Charles, communicated the 
vast problems and gaps that existed in national air 
defense.  The final report of Project Charles, originally 
a classified document, emphasized that in order to 
improve air defense the program would need significant 
manpower and a deliberate layered detection strategy in 
order to overcome costly false positives (Loomis, 
1951). 
 
Much of the enemy aircraft threat existed in remote 
areas where vast expanses, such as oceans or harsh 
northern territories further constrained the nation's 
ability to man an adequate air defense system.  This 
marked the beginning of a long quest to automate 
signal detection.  Naka and Ward explain the history of 
air defense coverage across Alaska and Canada and the 
critical need for an automated system that could defend 
this enormous territory (Naka and Ward, 2000).   
 
Although ROC curves and automated signal detection 
has matured immensely since its inception over half a 
century ago, there is a continued effort to improve 
automation and vast use of ROC curves to support 
various types of binary decisions.  Contributions of this 
work include novel methods that involve the 
automation and accuracy of binary prediction models.  
Although the applications presented do not involve 
radar and air defense, many similar threads exist 
between early research of automated binary decision 
making and this work.  Today's binary classification 
problems have increased complexity and 
dimensionality, however today's prediction methods 
and computing resources provide tools and leverage 
necessary to tackle the problems.  There is still a 
continued quest to automate these systems, reduce false 
positives, and simply improve overall accuracy.  In 
many ways, this quest is no different from the quest that 
Naka and Ward discuss when they explain one of the 
original quests for automated signal detection that  
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Figure 1.  Evolving decision values into confusion matrices and an ROC curve.  The key for the confusion 
matrices is shown in the lower right table that compares predicted and actual labels.   
 
occurred over half a century ago (Naka and Ward, 2000). 
 
Notation 
 
This work applies to binary classification problems.  
Assume a matrix of real numbers, mN×∈RX , as a 
given data set.  X contains N instances or 
observations,  
x1, x2, …,  xN, where m

i
×∈ 1Rx .  There are m 

variables to represent every instance.  For every 
instance there is a label or class, }1,1{ +−∈iy .  

Predicted real valued labels will be referred to as 
1ˆ R∈iy .   

 
ROC Curve Background and ROC Decision 
Charts 
 
ROC curves are a two dimensional graph and popular 
method to display the performance of a binary 
classification system.  This curve plots the true 
positive (TP) rate on vertical axis and the false 
positive (FP) rate on the horizontal axis.  The 
confusion matrix is closely related and essentially a 
subset of an ROC curve.  The confusion matrix 
displays four numbers - true positive(TP), true 
negative(TN), false positive(FP), false negative(FN) - 

which illustrate the prediction performance of a 
classifier at a specific threshold. Figure 1 shows 
several confusion matrices at different points in an 
ROC curve.  A confusion matrix can also display the 
accuracy of a multi-class problem, often illustrating 
model tendencies and which classes the model tends 
to ``confuse'' (Kohavi and Provost, 1998).   
 
It is also well known that the area under the curve 
(AUC), a value between 0 and 1, has a special 
probabilistic meaning.  The AUC is equivalent to the 
probability that a randomly selected positive instance 
ranks above (has a smaller Ri) than a randomly 
selected negative instance.  Let R(xi), ),...,2,1( pi ∈  

represent the rank of positive instances, and 
R(xj), ),...,2,1( bj ∈  represent the rank of negative 

instances.  This probability is also known as the 
Mann-Whitney U statistic as shown in equation 1. 
 

 
)}1|)(()1|)({( −=<== jjii yRyRPU xx

 

(1) 

 
Much of the original study of rank statistics that apply 
to ROC curves can be attributed to Wilcoxon, Mann, 
and Whitney who used ranks to measure whether or 

Predicted Label
positive negative
k = threshold

Actual positive TP FN
Label negative FP TN

Decision Rank (Ri) True
Value (ŷi) Class (yi)
2.893 1 1
2.208 2 1
1.664 3 1
0.991 4 1
0.889 5 -1
0.609 6 1
0.015 7 1
0.013 8 -1
-0.240 9 -1
-0.278 10 1
-0.808 11 -1
-1.257 12 -1
-1.437 13 -1
-1.750 14 -1
-1.864 15 -1

U =WY X/pb 0.9107
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not two random variables were statistically different.  
Wilcoxon's work was a cursory exploration to “obtain 
a rapid approximate idea of the significance of the 
differences in experiments” (Wilcoxon, 1945).  The 
dataset utilized in his experiments measured the 
lethality of two different fly sprays.  Mann and 
Whitney also used rank statistics to determine the 
statistical difference between two treatments, with 
much more of an emphasis on describing the 
underlying distribution of the U statistic (Mann and 
Whitney, 1947).  Lehmann provides a comprehensive 
study of rank statistics in his book Nonparametrics:  
Statistical Methods Based on Ranks, thoroughly 
discussing the Wilcoxon Rank Sum statistic and 
Mann-Whitney U statistic (Lehmann, 1975). 
 
The Wilcoxon Rank Sum Statistic, Ws, is equivalent 

to ∑ =

p

i iR
1

.  Since the sum of all rankings is 

)1(
2

1 +NN , it follows that the sum of non-attack 

instance rankings is .)1(
2

1
sr WNNW −+=  Wr  can 

also be calculated as ∑ =

b

j jR
1

(Lehmann, 1975).  The 

statistics )1(
2

1 +−= ppWW sXY
 and 

)1(
2

1 +−= bbWW rYX
 are also popular forms of the 

Wilcoxon Rank Sum statistic, and it is this form of 
the statistic that relates to the area under the ROC 
curve.  The Mann-Whitney U statistic, which is 
exactly equal to the area under the receiver operating 
characteristic curve, is directly proportional to the 
Wilcoxon rank sum statistic WYX  where 

pbWU YX /= .  Hanley and McNeil show in (Hanley 

and McNeil, 1982) that the area under the ROC curve 
equates to the Mann-Whitney U statistic.   
 
Although ROC curves convey significant information, 
it is important that researchers understand the 
limitations and properties of these curves.  Many 
authors, to include (Fawcett, 2003), (Bradley, 1997), 
and (Mason and Graham,  2002), advise due caution 
when using ROC curves to measure the performance 
of binary classifiers.  ROC curves are non-parametric.  
There is value in the simplicity and pragmatism of 
displaying a classifier's output as non-parametric 
ranks, however it is without doubt that information is 
lost when we reduce the decision value from the 
classifier to a rank. 
 

The eventual purpose of an ROC curve is to support a 
decision, however ROC curves provide an incomplete 
representation of the decision environment.  
Important information not included in ROC curves 
includes balance of classes and decision values.  
Practitioners value ROC curves for the insight that 
these curves provide to a classifier or detection 
device, however applying information from the ROC 
curve is difficult without some type of translation 
from ROC space to the decision space.  The decision 
space for a binary classification problem involves 
considering the output of a model, iŷ , and comparing 

this output with a threshold, t. 
 
Classifiers create decision values.  These decision 
values, iŷ , exist on a spectrum in the real number 

realm ( 1ˆ R∈iy ), where iŷ represents nothing more 

than the classifier's judgment on the class membership 
of an observation.  Classifiers base this judgment on 
some type of function created from other 
observations, so the decision value becomes the 
classifier's similarity or strength of belief metric 
indicating class membership.  Many decision values 
follow some type of sigmoidal function, clustering in 
the center and existing in a lower density at the 
extreme ends of the spectrum.  For some types of 
detection equipment, decision values could represent 
the output of a sensor.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Decision ROC Chart displayed for the 
data in figure 1.   
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This could be a chemical measurement as in a 
medical test or an electronic signal measurement 
which exists in many types of detection scenarios.  
Regardless of the classification problem, the end 
result is that a decision must be made whether to 
classify an unlabeled instance as positive or negative.    
ROC curves illustrate the performance of a classifier, 
but they do not provide a complete picture or aid in 
classification decisions.  Practitioners must bridge the 
gap between ROC curves and decision values.   
 
The Decision ROC Chart is an extension to the ROC 
curve.  It is a simple yet novel method to aid decision 
makers and assist in bridging the gap from ROC 
curves to decision values.  The horizontal axis of an 
ROC curve measures the false positive rate of a 
classifier, and this false positive rate is simply a 
fraction of negative instances where the false positive 
rate equals FP/(FP + TN).  The extension to the ROC 
curve, referred to as the Decision ROC Chart, plots 
the false positive rate on the horizontal axis, enabling 
the bridge between the ROC curve and the decision 
value.  The vertical axis represents the decision value, 

iŷ .   

 

     
Figure 3.  Decision ROC Chart for a large dataset.   
 
The Decision ROC Chart captures much of the 
information absent from the ROC curve, to include 
the balance of the problem, distribution of the 
decision values, and perhaps most importantly the 

connection between the ROC curve and the decision 
value through the false positive rate.  Figure 2 
illustrates the Decision ROC Chart for the toy 
running problem from figure 1.  Figure 3 illustrates 
the Decision ROC Chart for a larger dataset.  In 
addition to aiding the threshold decision for a 
classification problem, the Decision ROC Chart 
provides clarity to ROC curves for those who are not 
familiar with this measure.  The area under the curve 
is visibly seen as a probability with the Decision ROC 
Chart.  It is much more believable, and 
understandable, that the probability of a positive 
value out ranking a negative value is 0.959 when 
illustrated as shown in figure 3.   
 
Decision ROC Charts educate decision makers and 
students involved with classification.  The purpose of 
these curves is simply to educate, assist in decision 
making, and provide a more complete picture of a 
decision environment. 
 
Fusion of Multiple Models 
 
The major contribution of this work involves 
introducing how model fusion for unbalanced datasets 
performs differently than model fusion for balanced 
data.  Exposing this difference provides researchers 
with an additional parameter, the balance of the data, 
which can be considered when building ensembles of 
classification models.   
 
Consider several sensors responsible for detecting 
some type of anomalous behavior.  The sensors serve 
as sentries to a larger system.  Suppose that every 
sensor reacts to every observation, evaluating or 
ranking the observation based upon a history of 
known behavior.  Suppose that for each observation, 
some of the sensors have an opportunity to closely 
observe and measure an observation (a ``good'' 
measurement), and some of the sensors remotely 
observe (a ``poor'' measurement).  All of the sensor 
measurements will be considered for the decision, 
and it is unknown which sensors closely observe and 
which ones remotely observe.  Questions emerge 
from such a scenario.  How should the measurements 
of these sensors fuse to create the best signal?  What 
other considerations regarding the observed 
population should be included when choosing the 
fusion method?  What other information should be 
considered when choosing the fusion method for this 
situation?  These and several other questions will be 
addressed both through theoretical explanation and 
empirical results.    
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This scenario is also one potential application of 
synergistic classifier fusion.  Synergistic classifier 
fusion is an ensemble technique designed for the 
unbalanced classification problem. Synergistic 
classifier fusion uses one additional piece of 
information to improve performance - assumed 
imbalance of the classes.  With this simple 
assumption, it is possible to take advantage of the 
behavior of rank distributions and use min or max 
aggregators for synergistic performance.  The 
experiments discussed in this work consider the 
classic case of model ensembles.  With model 
ensembles, fusion of ranks is all the more important 
because the underlying distributions of the model 
decision values are unknown.  Several important 
novelties stem from this work: 
 
1. Pseudo ROC curves.  ROC curves are a 
performance metric.  However, it is also possible to 
examine the underlying statistics which create ROC 
curves to better understand classifier behavior.  
Typically ROC curves are built from a classification 
scenario and simply observed for what they are.  
However, how does an ROC curve with an AUC of 
0.7 differ from an ROC curve with an AUC of 0.9?  
How does an ROC curve with an AUC of 0.9 that 
measures a classification problem with a 90% 
negative class differ from an ROC curve with an 
AUC of 0.9 that measures a classification problem 
with a 50% negative class?  These questions can be 
explored with Pseudo ROC curves. 
 
2. Rank distributions from pseudo ROC curves.  Rank 
distributions illustrate the behavior of classifiers from 
a non-parametric position.  ROC curves are non-
parametric, and the underlying distributions of the 
ranks which create ROC curves are non-parametric.  
When comparing two classifiers, comparing them 
with non-parametric statistics makes sense.  The 
underlying distribution of classifier decision values is 
unknown - using (non-parametric) ranks enables 
comparison of classifiers on a level field.  These rank 
distributions also lead to consideration of the max 
and min aggregation or fusion metrics. 
 
3. The min and max aggregators provide robust 
classifier fusion for unbalanced classification 
problems.  This chapter will discuss the behavior of 
rank distributions for unbalanced classification 
problems - rank distributions of unbalanced 
classification problems behave with different 
likelihoods (discrete rank probabilities) than a 
balanced problem.  It is possible to take advantage of 

this difference in likelihoods to improve 
classification. 
 
Several included experiments illustrate synergistic 
classifier fusion, and underlying theory explains why 
this synergistic classifier fusion occurs.  The fusion 
methods described provide consistently robust 
solutions to the security classification problem.   
 
Pseudo-ROC Curves 
 
A study of pseudo-ROC curves and rank distributions 
will provide support and insight to the underlying 
behavior of classifier fusion for the security 
classification problem.  This discussion is critical in 
understanding why certain classifier fusion metrics 
work best when fusing multiple models in the security 
classification domain. 
 
As previously discussed, ROC curves are based 
entirely upon ranks.  Furthermore, the Mann-Whitney 
U statistic, which is equivalent to the area under the 
ROC curve, is also equivalent to the probability that 
any random positive instance is ranked higher than a 
negative instance.  When referring to the rank of an 
observation, a higher rank is a smaller value, meaning 
that a rank of 1 is considered higher than a rank of 10, 
for example.  Given this property, it is entirely 
possible to create pseudo-ROC curves. 
 
ROC curves represent the performance of a binary 
classifier, based entirely upon how the binary 
classifier ranks the observations and the true class of 
these observations.  However, if an assumption is 
made that a classifier has a certain discriminating 
ability reflected in the AUC or Mann-Whitney U 
statistic, artificial ranks can be created with pseudo-
random numbers.  The simplest way to accomplish 
this is assuming normal distributions for the sake of 
creating artificial ranks.  Suppose A and B are two 
random variables such that UBAP => )( , or 

equivalently UBAP =>− )0( .  If BAW −= , and 

it is assumed that W is a standard normal random 
variable, A and B can also be defined as normal 
random variables with a variance of .5.  The 
following table provides examples of this relationship 

),(~ 2σµNw represents a normal distribution with a 

mean of µ and a variance of σ2, with the same 
notation for the distributions of a and b.
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Table 1.  Examples of Distributions Creating 
Artificial Ranks 
 

9.)( => BAP  )1,28.1(~ Nw  )5,.28.1(~ Na  )5,.0(~ Nb  

8.)( => BAP  )1,28.1(~ Nw  )5,.28.1(~ Na  )5,.0(~ Nb  

7.)( => BAP  )1,28.1(~ Nw  )5,.28.1(~ Na  )5,.0(~ Nb  

 
Given the distributions shown in table 1, it is possible 
to create random numbers which will behave with the 
desired probability of UBAP => )( .  This will also 

enforce that UbRPaRP => )))(())(( . 

 
These rankings enable the creation of pseudo-ROC 
curves with an area under the curve equivalent to U.  
The essence of this method is that it allows for the 
study of ROC curves where control variables consist 
of the AUC, the number of positive examples, and the 
number of negative examples.  
 
Pseudo-ROC curves serve a multitude of purposes.  
ROC curves are a very popular method to assess the 
performance of a binary classifier.  Research 
involving ROC curves has largely been limited to the 
analysis of curves created by the output of models 
with real data.  The study of ROC curves solely 
created from the output of classification models limits 
our ability to fully understand and explore the 
complete behavior of ROC curves and ranks.  The 
study of pseudo-ROC curves places a number of 
parameters into the hands of the researcher - the 
discriminating power (reflected in the U statistic), 
proportion of the classes, and the total numbers of 
observations are all parameters controlled by the 
researcher with pseudo-ROC curves.     
 
ROC theoretical research focuses extensively on the 
topic of the nonparametric statistics which impact 
ROC curves.  This is primarily the Wilcoxon Rank 
Sum statistic and Mann-Whitney U statistic (Bradley, 
1997; Fawcett, 2003; Hanley and McNeil, 1982).  
Exceptions to this include (Egan, 1975; Fawcett and 
Provost, 2001; Fawcett, 2001) where the authors have 
taken creative looks at ROC curves to include the 
application of game theory.  However, the concept of 
the pseudo-ROC curve and use of this method to 
improve our understanding of ROC curves is a novel 
approach.   
 
Rank Distributions 
 
Given a U statistic and desired number of positive 
and negative instances, it is possible to create rank 
distributions.  Let us consider p positive instances, b 

negative instances (choosing the letter b to signify a 
benign or negative observation), and N = p + b total 
observations.  The rank distribution will be a discrete 
probability distribution, or probability mass function, 
with 1...N possible states, or ranks.  Rank 
distributions reflect the likelihood that a particular 
rank is a positive or negative observation.  For every 
case there is a given U, p, and b.  This information is 
all that is necessary to create two rank distributions, 
one for positive observations and one for negative 
observations.   
 
Simulation will be utilized to study these 
distributions.  As stated in (Bertsekas and Tsitsiklis, 
2002) estimating probabilities by simulation due to 
pragmatic necessity (because the analytical solution is 
very difficult) is an acceptable approach.  Given a 
simulation that models behavior based upon true 
probabilities, the simulation estimates these 
probabilities with high accuracy.  The combinatoric 
complexity and implications of order statistics 
involved with these rank distributions become 
problematic in creating an analytical solution for the 
mass functions of the rank distributions.  This 
combinatoric complexity can be explored with a 
binomial distribution for a small number of instances, 
however that exploration is beyond the scope of this 
presentation.   
 
Behavior of Fused Classifiers 
 
Analyzing how these rank distributions behave 
provides insight for model fusion.  Model fusion 
involves considering several models, all of which 
measure the same observations, and for each 
observation fuse the results of each model to arrive at 
a final decision value for each observation.   
 
The fusion metric utilized in the most popular 
ensemble techniques such as random forest, bagging, 
and the random subspace method, is the average 
(avg) (Breiman,  1996; Breiman, 2001; Ho, 1998).  
The avg is a powerful aggregator, especially if all of 
the models possess roughly the same predictive 
power.   
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Figure 5.  The histograms shown above illustrate 
how the rank frequencies for a minority class 
transition as U spans between 0.5 and 1. 
 
Good prediction occurs for a model when the 
decision value distribution of the positive class 
achieves separation from the decision value 
distribution of the negative class.  Fusion with the 
average function invokes the properties of the central 
limit theorem, and improved separation occurs as a 
result of variance reduction.  This can be further 
explained in a brief example.  Assume that three 
models each create a distribution for the decision 
values of the negative class with a mean of -1 and a 
variance of 1.  Assume the distributions of the 
positive class have a mean of 1 and a variance of 1.  
The fused model, using the average aggregator, will 
create a distribution for the decision values of the 
negative class with a mean of -1 and a variance of 
1/3.  The positive class will have a mean of 1 and 
variance of 1/3.  Tighter distributions for both the 
positive and negative classes create improved 
prediction. 
  
Why the Average and min Fusion Metrics Work 
The disadvantage of the average aggregator involves 
the equal weighting and inclusion of all models, good 
and bad.  When fusing security classification problem 
models, it is likely that some of the models are poor 
classifiers.  Therefore, it is desirable to utilize fusion 
that is robust against poor classifiers without knowing 
which classifiers are poor.  This is precisely what the 
min aggregator accomplishes.  Given an unbalanced 
classification problem, the rank distributions which 
result clearly favor the highest rankings and quickly 
tail off (see figure 5).  The behavior is remarkably 
similar to the exponential distribution.  An interesting 
property of the exponential distribution involves the 
distribution of the min order statistic.  Given an 
exponential random variable x distributed with a 

mean (and standard deviation) of θ, the distribution of 
the min of x, x1, is exponential with a mean (and 
standard deviation) of θ/n.  This is a well known 
property of the exponential distribution.   
 
This property indicates that the distribution of x1 
contains less dispersion, concentrating in a tighter 
range.  This concentration enables separation, 
however more importantly the min fusion metric 
creates robustness against poor classifiers.  In 
unbalanced classification, we understand from our 
study of rank distributions that given a good model 
the probability of encountering a large rank value for 
a positive instance is small.  It is more likely to 
observe a small rank value.  The min fusion metric 
indiscriminately eliminates large rank values.  This 
indiscriminant elimination works based on the fact 
that there are a small number of positive instances.  
Machine learning researchers will immediately 
question the contribution of this fusion metric since it 
is difficult to identify how this fusion metric improves 
classification.  Haykin indicates in (Haykin, 1999) 
that one of the fundamentals in every classification or 
pattern recognition problem involves ensuring the 
inclusion of all available information.  The min 
aggregator works based upon our assumption that 
there are a small number of positive instances.  This 
information contributes and improves performance.      
 
Table 2.  A Toy Rank Fusion Problem 
 

 
 
It is useful to illustrate rank fusion through a toy 
problem.  Table 2 shows three models, two of which 
perform adequately and one which appears to have no 
predictive power.  The resulting ranks created by the 
min, avg, and (min + avg)/2 functions are also 
shown.  Realize that the aggregation columns 
represent R(f(oi1,…,oi5)), not f(R(oi1),…, R(oi5)).     

True R1 R2 R3 R4 R5 min avg R(min) R(avg)
min+avg

2 R(
min+avg

2 )
Class = oi2 = oi2 = oi2+oi2

2

0 8 15 5 6 10 5.005 8.807 16 8 12.005 12
0 16 16 19 7 17 7.006 15.003 18 20 19.000 19
0 17 18 13 15 9 9.008 14.400 19 17 18.004 18

0 15 20 8 19 1 1.002 12.601 2 15 8.504 8
0 11 13 7 1 2 1.008 6.804 4 3 3.509 3
0 14 9 4 9 18 4.007 10.808 12 12 12.008 13

0 6 6 9 18 3 3.004 8.402 10 5 7.503 6
0 13 7 20 10 5 5.003 11.007 15 13 14.008 16

0 18 17 11 3 13 3.002 12.410 8 14 11.006 11
0 7 8 16 4 7 4.003 8.402 11 4 7.508 7

0 19 19 6 8 19 6.001 14.202 17 16 16.510 17
0 12 11 14 20 15 11.003 14.404 20 18 19.008 20
0 4 10 15 5 11 4.009 9.000 13 9 11.005 10

0 5 12 17 11 6 5.003 10.209 14 11 12.509 14
0 20 3 18 17 16 3.001 14.801 7 19 13.007 15
1 3 2 10 16 12 2.001 8.605 5 6 5.508 5

1 9 4 3 14 20 3.003 10.007 9 10 9.509 9
1 1 5 1 12 14 1.003 6.609 3 2 2.508 1

1 10 1 12 13 8 1.001 8.804 1 7 4.005 4
1 2 14 2 2 4 2.005 4.801 6 1 3.505 2

AUC 0.87 0.85 0.83 0.44 0.43 - - 0.88 0.853 - 0.920
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Particularly for the min function, ties must be solved 
which is done simply at random.  Following any 
aggregation, decision values are mapped to ranks, or 
oij.  If desired, an interested reader could recreate the 
last six columns to reinforce the concept. 
 
The Properties of Synergistic Fusion - a Factorial 
Design Illustration    
 
There is a fundamental synergistic fusion property 
that emerges from the presented empirical results and 
theoretical discussion.  Stated simply, this property 
claims that when fusing ranks, there is improved 
discriminating power from the min aggregator if the 
problem is unbalanced with a minority positive class.  
The opposite is true for the max aggregator if the 
problem is unbalanced with a minority negative class.  
The paper supports this property with a discussion 
that includes a statistical explanation of the behavior 
of ranks created in a classification problem.  Another 
way to explore this property involves creating a 
factorial design. Factorial design stems from a body 
of knowledge known as design of experiments, or 
DOE.  R.A. Fisher was a pioneer of DOE, and 
researchers give much credit to Fisher for the current 
studies involving DOE (Box, 1980).  For a 
comprehensive collection of Fisher's work to include 
his DOE work, see (Bennett, 1974).The DOE for this 
problem involved four factors.  These factors were 
derived from simply considering what parameters 
effect this fusion problem.  These parameters, or 
factors, include: 
 
1. balance:  the number of observations (out of 1000) 
which are members of the negative class.  This factor 
becomes the most important factor in the experiment.  
The primary hypothesis of this study claims that the 
balance of the problem closely relates to the utility of 
the min aggregator.  This experiment will reinforce 
this hypothesis. 
 
 
 

2. AUC of “good'” models:  the assumed area under 
the curve (AUC) or predictive power of effective 
models.  A major assumption includes that all of the 
``good'' models predict with a specific accuracy. 
 
3. fraction “good”:  the percent of models predicting 
with the accuracy of the AUC, and all others have no 
predictive power (AUC = .5).  If all of the models are 
“good”, the average (avg) aggregator suffices.  The 
min aggregator is more robust against these 
powerless classifiers.  This is simply by favoring 
smaller ranks which statistically tend to be members 
of the positive class for good models classifying in an 
imbalanced environment (positive minority).  The 
avg aggregator considers all of the models equally, 
and therefore becomes susceptible to meaningless 
ranks created by the “poor” models.    
 
4.  number of models:  the number of models fused.  
This has an important but subtle effect on the 
outcome that will be discussed.   
 
Table 3.  Design of Experiment 
 

 
 
There were 4 levels explored for each factor creating 
44 = 256 design points (dp).  Each design point 
consisted of 30 repetitions, each repetition utilizing 
1000 observations for each experiment.  Three 
different fusion strategies were employed at each 
design point:  min, (min + avg)/2, and avg.  Table 
3 illustrates the values of the parameters considered 
in the DOE. 
   

 
 
 
 
 
 
 
Figure  6.  These plots compare the AUC achieved when fusing with the avg aggregator versus the (min + 
avg)/2 aggregator.  Every plot contains the full spectrum of design points with the exception of the balance 
factor which is held constant for each plot.  Notice that as imbalance increases, the (min + avg)/2 aggregator 
becomes more dominant.   

balance AUC of fraction number
good models good of models

min value 500 0.8 0.4 2

max value 980 0.95 1 8
step 160 0.05 0.2 2
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The balance of the class ranges from 500 negative 
instances (completely balanced) to 980 negative 
instances (severely imbalanced) with a step of 160 
between levels.  The 'balance' parameter is not 
explored for a minority negative class.  This is 
because the exact same property observed with the 
min aggregator for the minority positive class can be 
observed for the max aggregator if a minority 
negative class is considered.  It is a symmetrical 
property that will not be shown for the sake of 
limiting redundancy.  The AUC of the “good” models 
ranges from .8 to .95 with a step of .05 between 
levels.  There was definitely a bias to explore the 
higher end of AUC values; further experimentation 
should consider exploring the lower range of AUC 
values.  The fraction of “good” models replicates the 
unknown sensors or models in the ensemble which 
predict well, assuming that the others predict 
randomly (AUC = .5).  This fraction ranges between 
.4 and 1 with a .2 step, exploring a slight minority of 
“good” models to observing a majority of “good” 
models.  Brief experimentation indicated that having 
a fraction of “good” models less than .4 created poor 
and inconsistent performance across the board.  The 
number of models ranged from 2 to 8 with a step of 2.  
Larger numbers of models severely favor the avg 
aggregator.  Central limit theorem becomes stronger 
as the number of models increases therefore favoring 
the avg aggregator.   
 
Table 3.  Correlations between factors and the 
differences between aggregators. 
 

 
 
The min aggregator works based upon the simple 
premise that positive instances are more likely to rank 
as a low number when considering imbalanced 
(positive minority) problems.  Given an imbalanced 
problem (minority positive class) with a small number 
of models to fuse, the min aggregator is less likely 
than the avg aggregator to be affected by a random 
model.       
Table 3 illustrates the correlations observed between 
factors and the paired differences between 
aggregators.  If there was no effect from the factor, 
the expected correlation is zero.  The positive 
correlation that exists for the balance factor reinforces 
the premise that use of min aggregator improves 
classification for unbalanced classification.  The 
strong negative correlation with the “number of 
models” factor and the difference between min and 

avg reinforces the concept that the avg aggregator 
becomes more dominant as the number of models 
increases. The avg aggregator served as the 
benchmark for this experiment because this is the 
aggregation technique accepted in state of the art 
ensemble methods.  The min aggregator alone does 
not perform as well as a combination of the min 
aggregator with the avg aggregator.  This is an 
interesting behavior that was discovered when 
exploring a spectrum of aggregators, T-norms and T-
conorms, commonly known in the fuzzy logic 
literature.  (Evangelista et. al., 2005) discusses the 
results of this initial experimentation. 
 
Experimental Results 
 
The focus of this paper is to explain some of the 
theoretical properties of rankings and discuss how 
understanding these properties can improve classifier 
fusion.  During the exploratory work that led to the 
theoretical included theoretical discussion, 
experiments involving several classifier fusion 
strategies were performed.  Experimental results 
using rank fusion with several large data sets has been 
published in (Evangelista, 2005).   
 
Table 4.  Experiments explored classifier fusion 
performance for these datasets.  m represents 
dimensionality (number of variables), N 
represents the number of observations, l 
represents the bootstrapping leave out quantity. p 
represents the number of positive instances in the 
dataset. 
 

 
 
For each of these datasets, baseline classifier 
performance using the one-class support vector 
machine (with a linear kernel) was recorded.  The 
experiment compared this baseline performance 
against several  
model fusion policies.  Multiple models were created 
for each dataset using a bootstrapping of variables 
(Evangelista, 2005). 
 
The experiment iterated 30 times for each dataset.  
Each iteration involved a re-shuffling of the training / 
test data and a different bootstrap of variables for 
model fusion.  Each iteration was compared against 
the baseline performance achieved for the established 

AUC of fraction number
balance good models good of models

(min+avg)/2 - avg 0.70 0.08 -0.17 -0.14
min - avg 0.58 0.16 0.06 -0.46

Dataset m N p l comment

P300 100 4200 2100 10 Courtesy of Wadsworth Lab,
www.wadsworth.org

Ionosphere 34 351 126 5 UCI Repository
Schonlau 26 5000 231 5 www.schonlau.net
Sick 137 5393 250 10 see (Sick,2004)
Sick 137 5393 250 50 see (Sick,2004)
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training / test split, and results were compared with 
various fusion policies.   
 
Table 5.  Paired t-test p-value results for various 
model fusion policies compared against baseline 
performance.   
 

  
Table 5 illustrates the results from a one way 
hypothesis test where a small p-value indicates the 
average of the AUC achieved from the fusion policy 
was significantly greater that the average of the AUC 
achieved by the baseline model.   Table 5 shows that 
the min aggregator combined with the avg aggregator 
is the only fusion policy that outperforms the baseline 
model for every dataset.  A result of “NS” indicates a 
p-value that was greater than .5.       
 
Conclusion 
 
This paper presents several novel thrusts which 
present opportunities for improved ensembles as well 
as future directions for research with ensemble 
techniques.  Simulating rank distributions and pseudo 
ROC curves provide insight into the non-parametric 
statistics behind ROC curves.  The insight provided 
by controlling parameters such as prediction power, 
balance of classes, and number of models enables 
analysis which is not possible when analyzing fusion 
metrics and ROC curves created from actual data.  
Analysis with actual data limits control of the 
parameters.   
 
Since the rank distributions and ROC curves are 
created from first principles and model generic, there 
is no concern of bias due to the characteristics of the 
data or behavior of a particular model.  Results are 
general, and the general results of the simulation 
analysis provide a broader range of applicability for 
the research included in this chapter.    
 
The final and perhaps most important finding in this 
chapter involves consideration of the min and max 
aggregators when fusing models. When comparing 
decision values or non-binary classification systems, 
the avg is essentially the only fusion metric 
considered.  However, it is well known that there is a 
flaw of averages, including bias from outliers.  The 

rank distributions studied in this chapter clearly 
illustrate that there are different likelihoods 
associated with balanced classification problems as 
opposed to unbalanced classification problems.  The 
min or max aggregator capitalize on this difference 
in likelihoods and create improved results. 
 
Reviewing first principles is often tedious, however a 
well grounded understanding of these principles can 
be the difference between improving a technique or 
merely knowing how to apply it.  Maintaining the 
edge in a rapidly evolving technological world 
requires improving techniques and not merely 
applying them.   
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