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Abstract 

 
Routing protocols for Wireless Sensor Networks (WSN) 
face three major performance challenges. The first one 
is an efficient use of bandwidth that minimizes the 
transfer delay of packets between nodes to ensure the 
shortest end-to-end delay for packet transmission from 
source to destination. The second challenge is the 
ability to maintain data flow around permanent and 
transient node or link failures ensuring the maximum 
delivery rate of packets from source to destination. The 
final challenge is to efficiently use energy while 
maximizing delivery rate and minimizing end-to-end 
delay.  Protocols that establish a permanent route 
between source and destination send packets from 
node to node quickly, but suffer from costly route 
recalculation in the event of any node or link failures.  
Protocols that select the next hop at each node on the 
traversed path suffer from a delay required to make 
such selection. The way in which a protocol repairs 
routes determines the number of packets lost by each 
failure and ultimately affects the energy used for 
communication. This paper presents a novel family of 
wireless sensor routing protocols, the Self-Selecting 
Reliable Path Routing Protocol Family (SSRPF), that 
address all three of the afore-mentioned challenges.    
 
1. Introduction 
 
A Wireless Sensor Network (WSN) consists of 
numerous sensor nodes that are linked into a wireless 
network.  There are many applications for which WSNs 
are well suited [1].  A large majority of WSNs require 
battery powered nodes capable of surviving harsh 
environments for extended periods of time.  Moreover, 
WSN must be autonomous, fault tolerant, and energy 
efficient.  These requirements are critical in routing, 
because multi-hop transmission is an extremely fault 
prone and energy consuming operation.  For example, 
commonly occurring in WSNs are faulty or ill placed 

nodes and transient links causing an oscillation of 
packet reception quality which can cause severe packet 
loss and spontaneous network topology changes [2], 
[3].  Studies show that most WSN operational energy is 
used for radio operations [4]. Typical hardware 
specifications are listed in [5] and [6].  

Different applications and nonstandard hardware of 
WSNs result in the diverse network environments in 
which they operate.  Generally the exact location of a 
node is not planned and they are scattered throughout 
their operating environment.  This often leads to either 
entire networks or portions within a network having 
extremely high or very sparse node density. Hence, 
WSN routing protocols must maintain performance in 
networks that have both a dense and sparse dispersion 
of nodes.  The terrain and the harshness of the climate 
in which a WSN is employed, determine how likely 
nodes will either fail completely or will experience 
intermittent node and link failures.  If the location is 
remote or behind enemy lines, the ability for those 
nodes to be quickly replaced or repaired might be 
significantly limited.  Since WSNs can be employed in 
all operating environments, a routing protocol must 
perform well regardless if there is a high rate of 
permanent failures or a high rate of transient node or 
link failures, or both.  The application’s purpose and its 
ability to recover from lost or duplicate data packets 
determine how essential the data delivery rate is.  Three 
major challenges need to be addressed while designing 
WSN protocols able to perform in all operating 
environments.  

The first challenge is to efficiently use bandwidth to 
minimize the end-to-end delay in packet transmission.  
Traditional wired approaches such as AODV [7], 
MintRoute [8], and Directed Diffusion [9] do a good 
job of quickly forwarding packets especially when the 
network has a low rate of node or link failures; 
however, when this is not the case, then either packet 
losses uncontrollably increase or a costly repair routine 
is frequently evoked.  The second challenge is to 
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maintain a high delivery ratio even in the face of node 
or link transient or permanent failures.  Protocols that 
determine the next forwarder at each hop work well 
even with high rates of node and link failures because 
they are memory-less.  Some examples of protocols 
that fall into this category are SSR [10], [11], SHR 
[12], GRAd [13], and GRAB [14]. The final challenge 
is to both efficiently use the bandwidth and maintain 
dataflow while minimizing energy use. Radio 
operations are the most energy consuming operation 
performed by a node. The number of nodes in sleep 
mode and the number of broadcasts necessary to either 
forward packets or maintain route information 
determine jointly the energy efficiency of the protocol. 
A recent review of WSN and energy saving algorithms 
is given in [15], which also includes protocols for ad-
hoc networks. 

This paper presents a novel family of wireless 
sensor routing protocols, the Self-Selecting Reliable 
Path Routing Protocol Family (SSRPF), that address all 
three challenges.  There are three members of the 
SSRPF family. The first is Self-Selecting Reliable Path 
(SRPv1) protocol [16] which finds a reliable path by 
cutting the back off delay of a winning node, ensuring 
its future selection, thereby expediting transmission of 
packets from source to destination. The second is Self-
Selecting Reliable Path (SRPv2) protocol [17] which, 
compared to SRPv1, modifies the route repair routine 
by not changing the hop count at the node level.  The 
final protocol is the Reliable Path Self-Selecting 
Protocol (RPSP), introduced in this paper, which 
modifies the route repair routine to eliminate the lost 
packets that occur in the repair routine for SRP.   

The rest of this paper is organized as follows.  
Section 2 describes our research background on SRP.  
The new contributions to protocol design, mainly the 
improvement of the route repair routine from SRP to 
RPSP, are described in Section 3.  Sections 4 and 5 
compare the members of the SSRPF family with 
AODV, SHR and GRAB in the prevalent operating 
environments using the SENSE Simulator [18]. Section 
6 contains conclusions and outlines future work.   
 
2. SRP Overview 
 

The inspiration for SRP, specifically the addition of 
the reliable path, came from observations on ant 
colonies [16].  The reliable path selection closely 
resembles how ants use pheromones to mark a path 
from a food source to their colony.  When the non-
scouting ant goes out, it follows the path with the 
strongest pheromone levels in an attempt to reinforce 
success.  Our reliable path does the same by allowing 

nodes to quickly self select if they previously won and 
forwarded a packet based on a simple back-off delay 
scheme. 

When a data packet is sent from a source to a 
destination, each node competes for self selection 
based on the following back-off delay scheme. The 
node that received a packet with the given distance to 
the destination, selects its delay depending on the 
condition it satisfies, as follows. 

1. If it is a part of the reliable path, its delay is λ/625 
(enough time to ensure that another node is not 
transmitting). 

2. Otherwise, if it is one hop closer to the 
destination, its delay is selected randomly from range 
(0,λ/4). 

3. Otherwise, if it is more than one hop closer, its 
delay is λ/4+ random delay selected from range (0,λ/4). 

4. Otherwise, if it its distance is equal to packet’s 
distance, its delay is λ/2+random delay selected from 
range (0,λ/2). 

5. Nodes father than the packet’s distance ignore the 
packet. 

In the above formulas λ denotes the range over 
which the response messages are distributed. The 
probability of collision of two response messages is 
thus proportional to the number of nodes competing for 
response and inversely proportional to this range λ. 
However, the average delay on each hop is 
proportional to this range, unless the hop is on the 
preferred path. Thanks to routing most of the packets 
via the preferred paths in SSRPF family of protocols, 
the value of range λ can be selected large, so the 
probability of collision of responses is below 1%. This 
is a major improvement over the earlier version, were 
low probability of response message collisions was 
paid by the delay of forwarding the packet at each hop. 

Through experimentation on Micaz nodes [5], we 
found that the best forwarders are nodes one hop closer 
to the destination than the sender [12], so the scheme 
favors such nodes.  Nodes more than one hop closer 
have a considerably higher chance of having a transient 
link and may not be stable in a reliable path; they are 
given a separate and lower priority to help avoid them, 
if possible.  In cases where a node wins and there is no 
subsequent node closer to the destination, a node at the 
distance equal to the packet’s distance can win and 
ensure that the packet is forwarded on.  This is a last 
resort choice because it adds both additional time and 
packet transmission, affecting end to end delay, energy 
use, and potentially delivery ratio. Even with the ability 
for nodes to self select using the aforementioned back 
off delay scheme, there can be considerable packet loss 
in the route repair routines 



 
2.1. SHR and SRP Route Repair Routines 
 

The original route repair routine description was 
given in [11].  A timer is set once a node forwards a 
packet.  If the node has not heard the packet forwarded 
and the timer expires, then the packet is sent again.  
This can be done multiple times. The more times the 
packet is retransmitted, the more likely a node closer to 
the destination than the sender will hear and forward it; 
however, it also slows the end to end transmission of 
the packet and could waste energy if an active node 
closer to the destination in the transmission radius does 
not exist. We attempt to send the packet twice.  Once 
the second timer expires then the node adds two to its 
expected hop count to the destination in both the packet 
header and in the node itself.  This does two things;  it 
both enables the packet to be forwarded by a node that 
previously had a higher hop count to the destination 
and it prevents that node from forwarding packets 
along a dead end path in the future. 

Originally, as described in [11], there could be a 
hello packet sent when a node came back online.  This 
packet would then propagate its hop count to the 
destination out to its neighbors allowing them to update 
their hop counts.  The idea of the hello packet was to 
correct the distances to the destination.  While the idea 
was a good one, it did not work in practice because 
usually a node does not know when it is reentering a 
network. 

A simple change to the route routine is to only 
update the packet’s header and resend the packet. This 
simple change helped to keep nodes from changing 
their hop count and altering the way the network 
topology looked.  A simple example of the network 
being adjusted is below.  This is preferred especially 
when introducing sleep schedules which could alter 
reliable paths and cause self induced network updates. 
 
2.2. SRP Route Repair Routine Problems 
 

Both route repair routines work in most situations, 
but as seen in Fig. 1 (adopted from [17]) there are still 
packets lost during the route repair routine of SRPv1. 
As shown in Fig. 1, packets flow from the source S to 
destination D along a reliable path (S,A,B,C,D).  Then, 
node C goes down because of a transient link or part of 
a sleep cycle and the first packet flowing (S,A,B) and 
encountering inactive C (see Fig. 1), will cause node B 
to both increase its hop count to the destination and  

 
Fig. 1. SHR/SRPv1 Route Repair Routine 

 
resend the packet with a hop count of 4.  In the state 
transition, once node A confirms that node B 
forwarded the packet, it subsequently ignores all 
additional packets with the same sequence number, 
resulting in the loss of this packet.  The following 
packet will flow (S,A), and cause node A to both send  
the packet with a higher hop count and update the hop 
count value of node A.  This causes a second packet 
loss.  At this point the network is corrected and the next 
packet will flow (S,X,Y,Z,D), which will become the 
reliable path.  If following that successful packet 
transmission, node Z goes down and node C comes 
back up, then there will be additional packets lost 
repairing the network again. This process can repeat 
multiple times or there could be a longer double line 
scenario, causing significant packet loss. 

In SRPv2 route repair routine, neither node B nor A 
will change their hops to destination. After node C 
fails, node B, upon receiving a packet, will attempt to 
forward the packet twice and then add two to the 
expected hop count of the packet header and send the 
packet a third time maintaining its hop count to the 
destination.  Node A, as sender, will ignore the packet, 
so it will be lost.  The next packet will follow the same 
path (S,A,B), again resulting in a packet loss.  This will 
continue until node X wins and forwards the packet. In 
SHR [12], prior to the idea of a preferred path, each 
packet sent would have a 50% chance for node A or 
node X to win and forward the packet.  In SRP, Node 
A has a significantly higher chance of winning, as per 
the backoff delay scheme stated above. Node A’s 
backoff delay is λ/625 while node X’s is a random 
number between 0 and λ/4.  The average number of 
packets needed to correct the path would be 625/4 or 
approximately 156 packets.  This illustrates two key 
points.  The first is that in SRP, the route will correct 
and forward data.  The second is that in some unlikely 
situations that could result in a significant number of 
lost packets. 

 



 Fig. 2. FSA of RPSP 
 
3. RPSP 
 

The introduction of a reliable path in SRP 
significantly improved the performance of a dynamic 
route selection protocol in a stable network [17].  Yet, 
as seen above, there is still the possibility of significant  
packet loss in the route repair routine for SRP.  This 
led to a new approach to route repair, presented here. 

Two major changes are introduced in RPSP.  The 
first is that a node that forwards a packet returns to a 
state where it can resend the same packet multiple 
times, eliminating packet loss that occurs at each 
iteration of the SRP route repair routine. The second is 
the addition of a COMP packet.  RPSP maintains the 
reliable path introduced in SRP.   

Fig. 2 shows the finite state automata for RPSP 
which expresses what occurs at the node level and aids 
code debugging. In SRP all nodes that either won and 
successfully forwarded a packet or competed and lost 
move to the ignore state to limit creation of multiple 
paths. In RPSP, to allow nodes to compete multiple 
times, nodes go back to the new state.  There is still a 
need for the ignore state for any node that had to 
invoke the repair routine to avoid a packet from getting 
stuck in an infinite loop.  This led to the addition of the 
comp state that signified that a packet successfully 
reached the destination. 

SRP uses the ACK packet in two ways. First, it 
stops multiple nodes from forwarding a packet.   A 
node that won self-selection and forwarded a packet is 
in the owner state.  If that node hears the packet 
forwarded, it goes to the father state. If it hears the 
same packet forwarded again, signifying a multiple 
path, an ACK packet is sent to silence all other nodes 
and the node goes to the ignore state.  The second use 
for the ACK packet is at the destination node which 
sends it to tell all nodes around it to move to the ignore 

state in an attempt to stop multiple paths as far away 
from the destination as possible.  RPSP adds a COMP 
packet type; it is only used around the destination and 
retains a similar function to the latter use of the ACK 
packet in SRP.  By adding this packet type, the ACK 
packet can be used exclusively to silence multiple paths 
in the network.  Looking at Fig. 3, a winner, in the 
owner state, sends an ACK packet immediately upon 
hearing that the packet is forwarded.  This silences all 
nodes except the next node in the path. Doing so 
dramatically reduces any additional paths. 

In Fig. 1 above, RPSP has a reliable path from 
source S to Destination D of (S,A,B,C,D).  If node C 
fails, then node B will attempt to send the packet twice. 
Then, on the third attempt, it will forward the packet 
with an updated header having an expected hop count 
of 4, its hop count to the destination plus 2, and go to 
the ignore state to avoid a potential infinite loop.  In 
RPSP, node A goes back to the new state; it will 
receive the packet and compete for the packet sent by 
node B.  Node S will do the same as node B and the 
packet will then follow the alternate path of (X,Y,Z,D).  
This makes the path to the destination going back to the 
source, (S,A,B,A,S,X,Y,Z,D).   

The RPSP route repair routine appears to add both 
broadcasts and delay to get the packet from source to 
destination. Consider n node network arranged into a 
double line, with a source, a destination and n/2-1 
nodes on each line.  Additionally, along one line there 
is a reliable path and its final node prior to the 
destination fails, as shown to Fig. 1 for n=8.  In SRPv1, 
SRPv2, and RPSP route repair routines a packet will 
flow along the reliable path with n/2-1 broadcasts (add 
one in S and subtract one for the last node).  At that 
point, the route repair routines are called.  SRPv1 will 
lose n/2-1 packets. The final packet lost will broadcast 
4 times, all n/2-1 nodes will send (n/2-1)(n/4+3) 
packets in a sequence starting at 4 and adding one 
recursively for each subsequent node.    

 
Fig. 3. Best Suited Protocol 



  

 
Fig. 4. Sink Test 

  
SRPv2, as shown above, loses on average 156 packets 
and has 156(n/2-1) or approximately 78n - 156 
broadcasts between successful data transmissions.  
RPSP will lose zero packets and will have n-1 nodes 
broadcast (all except the destination) of which n/2-2 
nodes broadcasts three times and the rest just once to 
correct the flow for a total of 2n - 5 total broadcasts.  
So, the improved route repair routine for RPSP will 
both send fewer broadcasts and have fewer packets 
lost.  
 
4. Environmental Conditions 
 
While the weather and physical terrain effect how 
individual nodes perform and have an impact on the 
network, they are factors that are constant for a given 
area. While they will affect performance of the 
network, they are not instrumental in picking a 
protocol. There are three major network factors that are 
controlled by the WSN user: the number of nodes used 
over a given area (density); the expected frequency of 
transmissions (bandwidth); and the data reliability 
required of the application.  We run a series of tests to 
find the best protocol in our suite for the expected use 
of the WSN.  Fig. 4 shows a diagram of the different 
considerations. Each block contains the protocol best 

suited for use given the expected density, network 
traffic, and data reliability. The simulation section 
discusses the specifics of the results. 

 
5. Simulations 
 
To determine the best protocol for use in each 
environmental condition, we conducted a series of 
simulations using SENSE simulator [18] that is 
available publicly at www.ita.cs.rpi.edu/sense/. We 
conducted two basic tests. The first is a Sink Test in 
which one destination receives data from a number of 
source nodes ranging from 15 to 75 in increments of 
fifteen nodes.  The second is a DutyCycle test where a 
certain percentage of nodes fails over randomly 
distributed 200 sec. period and then came back online, 
simulating transient links and nodes. The transient 
failure rate started a 0% and went to 30% in increments 
of 5%.  

The simulations were done on a topology consisting 
of an 8 x 8 unit terrain populated with uniformly 
randomly placed nodes. Each node was stationary and 
had a single unit nominal transmission range. Each 
simulation was conducted at node densities varying 
from 250, to 500, and to 750 nodes.  The wireless 
medium was simulated with the free space propagation 



Fig. 5. Duty Cycle Test 
      

model [19], and the radio modeled operation at 914 
MHz with 1 Mb/s of bandwidth. Packet sizes were 
uniformly distributed around a mean of 1000 bytes and 
were sent at uniformly distributed intervals with a mean 
of 40 seconds. MAC broadcast was used in which a 
node senses the carrier and broadcasts only if no other 
transmissions are detected. Each simulation was 
executed six times, each time with a different random 
number seed for a simulation time of 3,000 seconds per 
seed. Each test set used the same seeds for all 
simulations.  λ was set to 100ms for all simulations.  

In many WSNs, there are a large number of nodes 
that send data to a central sink that aggregates data for 
future use. This use pattern plays a significant role in 
determining which protocol is best suited for the given 
node density and end-to-end delay.  Fig. 4 shows the 
results from the sink test.  

  While AODV does well with few sources, as the 
number of sources increases from 45 to 60, its end-to-
end delivery ratio goes from almost 100% to 96% for 
250 and 500 nodes to 95% for 750 nodes.  RPSP 
maintains over 97% delivery ratio regardless of the 
node density. As the number of source nodes increases 
to 75, AODV performs at 94% with a node density of 
250 and 500 nodes.  When the node density is high, as 
it is in case of 750 nodes, the delivery ratio drops to 
70%. 

RPSP makes an improvement over SRPv1 and 
SRPv2 in terms of end-to-end delay, as see in Fig. 4. It 
maintains a better end-to-end delay for all node 
densities.  

The end-to-end delay significantly affects AODV, 
increasing significantly as the number of sources is 
increased.  RPSP is more likely to stop a reliable path 
than SRP and has a higher end-to-end delay; however, 
it remains below 0.5 seconds throughout all of the 
simulations. 

The Duty Cycle test is designed to show how a 
protocol reacts to transient nodes and links which occur 
frequently either due to the environment, node failure 
caused by power exhaustion, or nodes put in sleep 
mode by an energy saving algorithm.  Fig. 5 shows the 
results for the duty cycle test.  For end-to-end delay, 
RPSP, as expected, has higher delay than SRPv1 and 
SRPv2.  As discussed earlier in the route repair routine 
section, RPSP should lose fewer packets because there 
are no packets lost during a successful route repair.  
RPSP is only slightly better that SRP in low node 
densities; however it is significantly better in higher 
node densities. RPSP additionally maintains roughly 
that same end-to-end delay no matter what the node 
density is while SRP has a slight increase in end-to-end 
delay as the node density increases.  

 As expected, AODV does better in a less 
dense network.  As the node density increases, AODV 



has to send considerably more packets to maintain the 
network connectivity, as nodes fail.  AODV performs 
poorly when the node density increases to 750 nodes, 
when there are a large number of transient failures. 

 
6. Conclusions and Future Work 
 

In this paper, we have introduced RPSP as the 
newest member of the Self Selecting Routing Protocol 
Family.  Its route repair routine makes it well suited for 
most operating environments. Additionally, through 
simulation we have shown that for any operating 
environment, there is a member of the SSRPF that will 
perform well.  Fig. 3 above shows the best protocol in 
the SSRPF for each operating environment based on 
the simulation results show in Fig. 4 and Fig. 5. 
Clearly, only in a small part of the overall environment 
diversity space, namely for medium or high volume of 
traffic, medium or low density and highly reliable 
networks, SRPv2 delivers performance comparable to 
RPSP. Even in a smaller subspace defined by low 
volume traffic over highly reliable and low density 
networks, can AODV rival the performance of RPSP. 
Only in a few settings, AODV bettered RPSP on 
delivery ratio metric. Overall, however, RPSP delivers 
the most reliable, fast communication using small 
number of packets over the majority of the wireless 
sensor network operating environments.  

Future work on SSRPF includes improving the 
protocols in the family to minimize energy 
consumption and adapting them to route effectively in 
environments with mobile nodes. The first extension 
requires addressing the challenge of limiting 
overhearing of packet transmission. For this extension, 
the notion of the preferred path is valuable, as the 
nodes not on the preferred path do not need to listen to 
the packets, as long as the node on the preferred path is 
on. Thus, they can drop listening to a broadcast after 
hearing the header of the packet and listen to the entire 
broadcast only if the packet is rebroadcast and marked 
in the header as such. The second extension needs to 
address the challenge of efficient updates to hop 
distance to the destination. This challenge is easier to 
address when there is a mixture of mobile and 
stationary nodes in the network, enabling the mobile 
nodes to learn their hop distances from the stationary 
ones. We plan also to introduce a time-to-live (TTL) on 
the hop distance in each node, after which the node 
would learn its distance from neighbor whose hop 
distance is still alive. The node’s TTL in such a 
solution will be dependent on the speed with which the 
node moves. 
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