
Self-Selecting Reliable Path Routing in Diverse Wireless Sensor Network
Environments

Thomas Babbitt, Christopher Morrell, and Boleslaw Szymanski
Department of Computer Science, RPI, Troy, NY

{babbit, morrec, szymansk}@cs.rpi.edu

Abstract

Routing protocols for Wireless Sensor Networks (WSN)
face three major performance challenges. The first one
is an efficient use of bandwidth that minimizes the
transfer delay of packets between nodes to ensure the
shortest end-to-end delay for packet transmission from
source to destination. The second challenge is the
ability to maintain data flow around permanent and
transient node or link failures ensuring the maximum
delivery rate of packets from source to destination. The
final challenge is to efficiently use energy while
maximizing delivery rate and minimizing end-to-end
delay. Protocols that establish a permanent route
between source and destination send packets from
node to node quickly, but suffer from costly route
recalculation in the event of any node or link failures.
Protocols that select the next hop at each node on the
traversed path suffer from a delay required to make
such selection. The way in which a protocol repairs
routes determines the number of packets lost by each
failure and ultimately affects the energy used for
communication. This paper presents a novel family of
wireless sensor routing protocols, the Self-Selecting
Reliable Path Routing Protocol Family (SSRPF), that
address all three of the afore-mentioned challenges.

1. Introduction

A Wireless Sensor Network (WSN) consists of
numerous sensor nodes that are linked into a wireless
network. There are many applications for which WSNs
are well suited [1]. A large majority of WSNs require
battery powered nodes capable of surviving harsh
environments for extended periods of time. Moreover,
WSN must be autonomous, fault tolerant, and energy
efficient. These requirements are critical in routing,
because multi-hop transmission is an extremely fault
prone and energy consuming operation. For example,
commonly occurring in WSNs are faulty or ill placed

nodes and transient links causing an oscillation of
packet reception quality which can cause severe packet
loss and spontaneous network topology changes [2],
[3]. Studies show that most WSN operational energy is
used for radio operations [4]. Typical hardware
specifications are listed in [5] and [6].

Different applications and nonstandard hardware of
WSNs result in the diverse network environments in
which they operate. Generally the exact location of a
node is not planned and they are scattered throughout
their operating environment. This often leads to either
entire networks or portions within a network having
extremely high or very sparse node density. Hence,
WSN routing protocols must maintain performance in
networks that have both a dense and sparse dispersion
of nodes. The terrain and the harshness of the climate
in which a WSN is employed, determine how likely
nodes will either fail completely or will experience
intermittent node and link failures. If the location is
remote or behind enemy lines, the ability for those
nodes to be quickly replaced or repaired might be
significantly limited. Since WSNs can be employed in
all operating environments, a routing protocol must
perform well regardless if there is a high rate of
permanent failures or a high rate of transient node or
link failures, or both. The application’s purpose and its
ability to recover from lost or duplicate data packets
determine how essential the data delivery rate is. Three
major challenges need to be addressed while designing
WSN protocols able to perform in all operating
environments.

The first challenge is to efficiently use bandwidth to
minimize the end-to-end delay in packet transmission.
Traditional wired approaches such as AODV [7],
MintRoute [8], and Directed Diffusion [9] do a good
job of quickly forwarding packets especially when the
network has a low rate of node or link failures;
however, when this is not the case, then either packet
losses uncontrollably increase or a costly repair routine
is frequently evoked. The second challenge is to

szymansk
Text Box
Proc. IEEE International Symposium on Computers and Communication, Sousse, Tunisia, July 5-8, 2009, pp. 1-7

maintain a high delivery ratio even in the face of node
or link transient or permanent failures. Protocols that
determine the next forwarder at each hop work well
even with high rates of node and link failures because
they are memory-less. Some examples of protocols
that fall into this category are SSR [10], [11], SHR
[12], GRAd [13], and GRAB [14]. The final challenge
is to both efficiently use the bandwidth and maintain
dataflow while minimizing energy use. Radio
operations are the most energy consuming operation
performed by a node. The number of nodes in sleep
mode and the number of broadcasts necessary to either
forward packets or maintain route information
determine jointly the energy efficiency of the protocol.
A recent review of WSN and energy saving algorithms
is given in [15], which also includes protocols for ad-
hoc networks.

This paper presents a novel family of wireless
sensor routing protocols, the Self-Selecting Reliable
Path Routing Protocol Family (SSRPF), that address all
three challenges. There are three members of the
SSRPF family. The first is Self-Selecting Reliable Path
(SRPv1) protocol [16] which finds a reliable path by
cutting the back off delay of a winning node, ensuring
its future selection, thereby expediting transmission of
packets from source to destination. The second is Self-
Selecting Reliable Path (SRPv2) protocol [17] which,
compared to SRPv1, modifies the route repair routine
by not changing the hop count at the node level. The
final protocol is the Reliable Path Self-Selecting
Protocol (RPSP), introduced in this paper, which
modifies the route repair routine to eliminate the lost
packets that occur in the repair routine for SRP.

The rest of this paper is organized as follows.
Section 2 describes our research background on SRP.
The new contributions to protocol design, mainly the
improvement of the route repair routine from SRP to
RPSP, are described in Section 3. Sections 4 and 5
compare the members of the SSRPF family with
AODV, SHR and GRAB in the prevalent operating
environments using the SENSE Simulator [18]. Section
6 contains conclusions and outlines future work.

2. SRP Overview

The inspiration for SRP, specifically the addition of
the reliable path, came from observations on ant
colonies [16]. The reliable path selection closely
resembles how ants use pheromones to mark a path
from a food source to their colony. When the non-
scouting ant goes out, it follows the path with the
strongest pheromone levels in an attempt to reinforce
success. Our reliable path does the same by allowing

nodes to quickly self select if they previously won and
forwarded a packet based on a simple back-off delay
scheme.

When a data packet is sent from a source to a
destination, each node competes for self selection
based on the following back-off delay scheme. The
node that received a packet with the given distance to
the destination, selects its delay depending on the
condition it satisfies, as follows.

1. If it is a part of the reliable path, its delay is λ/625
(enough time to ensure that another node is not
transmitting).

2. Otherwise, if it is one hop closer to the
destination, its delay is selected randomly from range
(0,λ/4).

3. Otherwise, if it is more than one hop closer, its
delay is λ/4+ random delay selected from range (0,λ/4).

4. Otherwise, if it its distance is equal to packet’s
distance, its delay is λ/2+random delay selected from
range (0,λ/2).

5. Nodes father than the packet’s distance ignore the
packet.

In the above formulas λ denotes the range over
which the response messages are distributed. The
probability of collision of two response messages is
thus proportional to the number of nodes competing for
response and inversely proportional to this range λ.
However, the average delay on each hop is
proportional to this range, unless the hop is on the
preferred path. Thanks to routing most of the packets
via the preferred paths in SSRPF family of protocols,
the value of range λ can be selected large, so the
probability of collision of responses is below 1%. This
is a major improvement over the earlier version, were
low probability of response message collisions was
paid by the delay of forwarding the packet at each hop.

Through experimentation on Micaz nodes [5], we
found that the best forwarders are nodes one hop closer
to the destination than the sender [12], so the scheme
favors such nodes. Nodes more than one hop closer
have a considerably higher chance of having a transient
link and may not be stable in a reliable path; they are
given a separate and lower priority to help avoid them,
if possible. In cases where a node wins and there is no
subsequent node closer to the destination, a node at the
distance equal to the packet’s distance can win and
ensure that the packet is forwarded on. This is a last
resort choice because it adds both additional time and
packet transmission, affecting end to end delay, energy
use, and potentially delivery ratio. Even with the ability
for nodes to self select using the aforementioned back
off delay scheme, there can be considerable packet loss
in the route repair routines

2.1. SHR and SRP Route Repair Routines

The original route repair routine description was
given in [11]. A timer is set once a node forwards a
packet. If the node has not heard the packet forwarded
and the timer expires, then the packet is sent again.
This can be done multiple times. The more times the
packet is retransmitted, the more likely a node closer to
the destination than the sender will hear and forward it;
however, it also slows the end to end transmission of
the packet and could waste energy if an active node
closer to the destination in the transmission radius does
not exist. We attempt to send the packet twice. Once
the second timer expires then the node adds two to its
expected hop count to the destination in both the packet
header and in the node itself. This does two things; it
both enables the packet to be forwarded by a node that
previously had a higher hop count to the destination
and it prevents that node from forwarding packets
along a dead end path in the future.

Originally, as described in [11], there could be a
hello packet sent when a node came back online. This
packet would then propagate its hop count to the
destination out to its neighbors allowing them to update
their hop counts. The idea of the hello packet was to
correct the distances to the destination. While the idea
was a good one, it did not work in practice because
usually a node does not know when it is reentering a
network.

A simple change to the route routine is to only
update the packet’s header and resend the packet. This
simple change helped to keep nodes from changing
their hop count and altering the way the network
topology looked. A simple example of the network
being adjusted is below. This is preferred especially
when introducing sleep schedules which could alter
reliable paths and cause self induced network updates.

2.2. SRP Route Repair Routine Problems

Both route repair routines work in most situations,
but as seen in Fig. 1 (adopted from [17]) there are still
packets lost during the route repair routine of SRPv1.
As shown in Fig. 1, packets flow from the source S to
destination D along a reliable path (S,A,B,C,D). Then,
node C goes down because of a transient link or part of
a sleep cycle and the first packet flowing (S,A,B) and
encountering inactive C (see Fig. 1), will cause node B
to both increase its hop count to the destination and

Fig. 1. SHR/SRPv1 Route Repair Routine

resend the packet with a hop count of 4. In the state
transition, once node A confirms that node B
forwarded the packet, it subsequently ignores all
additional packets with the same sequence number,
resulting in the loss of this packet. The following
packet will flow (S,A), and cause node A to both send
the packet with a higher hop count and update the hop
count value of node A. This causes a second packet
loss. At this point the network is corrected and the next
packet will flow (S,X,Y,Z,D), which will become the
reliable path. If following that successful packet
transmission, node Z goes down and node C comes
back up, then there will be additional packets lost
repairing the network again. This process can repeat
multiple times or there could be a longer double line
scenario, causing significant packet loss.

In SRPv2 route repair routine, neither node B nor A
will change their hops to destination. After node C
fails, node B, upon receiving a packet, will attempt to
forward the packet twice and then add two to the
expected hop count of the packet header and send the
packet a third time maintaining its hop count to the
destination. Node A, as sender, will ignore the packet,
so it will be lost. The next packet will follow the same
path (S,A,B), again resulting in a packet loss. This will
continue until node X wins and forwards the packet. In
SHR [12], prior to the idea of a preferred path, each
packet sent would have a 50% chance for node A or
node X to win and forward the packet. In SRP, Node
A has a significantly higher chance of winning, as per
the backoff delay scheme stated above. Node A’s
backoff delay is λ/625 while node X’s is a random
number between 0 and λ/4. The average number of
packets needed to correct the path would be 625/4 or
approximately 156 packets. This illustrates two key
points. The first is that in SRP, the route will correct
and forward data. The second is that in some unlikely
situations that could result in a significant number of
lost packets.

 Fig. 2. FSA of RPSP

3. RPSP

The introduction of a reliable path in SRP
significantly improved the performance of a dynamic
route selection protocol in a stable network [17]. Yet,
as seen above, there is still the possibility of significant
packet loss in the route repair routine for SRP. This
led to a new approach to route repair, presented here.

Two major changes are introduced in RPSP. The
first is that a node that forwards a packet returns to a
state where it can resend the same packet multiple
times, eliminating packet loss that occurs at each
iteration of the SRP route repair routine. The second is
the addition of a COMP packet. RPSP maintains the
reliable path introduced in SRP.

Fig. 2 shows the finite state automata for RPSP
which expresses what occurs at the node level and aids
code debugging. In SRP all nodes that either won and
successfully forwarded a packet or competed and lost
move to the ignore state to limit creation of multiple
paths. In RPSP, to allow nodes to compete multiple
times, nodes go back to the new state. There is still a
need for the ignore state for any node that had to
invoke the repair routine to avoid a packet from getting
stuck in an infinite loop. This led to the addition of the
comp state that signified that a packet successfully
reached the destination.

SRP uses the ACK packet in two ways. First, it
stops multiple nodes from forwarding a packet. A
node that won self-selection and forwarded a packet is
in the owner state. If that node hears the packet
forwarded, it goes to the father state. If it hears the
same packet forwarded again, signifying a multiple
path, an ACK packet is sent to silence all other nodes
and the node goes to the ignore state. The second use
for the ACK packet is at the destination node which
sends it to tell all nodes around it to move to the ignore

state in an attempt to stop multiple paths as far away
from the destination as possible. RPSP adds a COMP
packet type; it is only used around the destination and
retains a similar function to the latter use of the ACK
packet in SRP. By adding this packet type, the ACK
packet can be used exclusively to silence multiple paths
in the network. Looking at Fig. 3, a winner, in the
owner state, sends an ACK packet immediately upon
hearing that the packet is forwarded. This silences all
nodes except the next node in the path. Doing so
dramatically reduces any additional paths.

In Fig. 1 above, RPSP has a reliable path from
source S to Destination D of (S,A,B,C,D). If node C
fails, then node B will attempt to send the packet twice.
Then, on the third attempt, it will forward the packet
with an updated header having an expected hop count
of 4, its hop count to the destination plus 2, and go to
the ignore state to avoid a potential infinite loop. In
RPSP, node A goes back to the new state; it will
receive the packet and compete for the packet sent by
node B. Node S will do the same as node B and the
packet will then follow the alternate path of (X,Y,Z,D).
This makes the path to the destination going back to the
source, (S,A,B,A,S,X,Y,Z,D).

The RPSP route repair routine appears to add both
broadcasts and delay to get the packet from source to
destination. Consider n node network arranged into a
double line, with a source, a destination and n/2-1
nodes on each line. Additionally, along one line there
is a reliable path and its final node prior to the
destination fails, as shown to Fig. 1 for n=8. In SRPv1,
SRPv2, and RPSP route repair routines a packet will
flow along the reliable path with n/2-1 broadcasts (add
one in S and subtract one for the last node). At that
point, the route repair routines are called. SRPv1 will
lose n/2-1 packets. The final packet lost will broadcast
4 times, all n/2-1 nodes will send (n/2-1)(n/4+3)
packets in a sequence starting at 4 and adding one
recursively for each subsequent node.

Fig. 3. Best Suited Protocol

Fig. 4. Sink Test

SRPv2, as shown above, loses on average 156 packets
and has 156(n/2-1) or approximately 78n - 156
broadcasts between successful data transmissions.
RPSP will lose zero packets and will have n-1 nodes
broadcast (all except the destination) of which n/2-2
nodes broadcasts three times and the rest just once to
correct the flow for a total of 2n - 5 total broadcasts.
So, the improved route repair routine for RPSP will
both send fewer broadcasts and have fewer packets
lost.

4. Environmental Conditions

While the weather and physical terrain effect how
individual nodes perform and have an impact on the
network, they are factors that are constant for a given
area. While they will affect performance of the
network, they are not instrumental in picking a
protocol. There are three major network factors that are
controlled by the WSN user: the number of nodes used
over a given area (density); the expected frequency of
transmissions (bandwidth); and the data reliability
required of the application. We run a series of tests to
find the best protocol in our suite for the expected use
of the WSN. Fig. 4 shows a diagram of the different
considerations. Each block contains the protocol best

suited for use given the expected density, network
traffic, and data reliability. The simulation section
discusses the specifics of the results.

5. Simulations

To determine the best protocol for use in each
environmental condition, we conducted a series of
simulations using SENSE simulator [18] that is
available publicly at www.ita.cs.rpi.edu/sense/. We
conducted two basic tests. The first is a Sink Test in
which one destination receives data from a number of
source nodes ranging from 15 to 75 in increments of
fifteen nodes. The second is a DutyCycle test where a
certain percentage of nodes fails over randomly
distributed 200 sec. period and then came back online,
simulating transient links and nodes. The transient
failure rate started a 0% and went to 30% in increments
of 5%.

The simulations were done on a topology consisting
of an 8 x 8 unit terrain populated with uniformly
randomly placed nodes. Each node was stationary and
had a single unit nominal transmission range. Each
simulation was conducted at node densities varying
from 250, to 500, and to 750 nodes. The wireless
medium was simulated with the free space propagation

Fig. 5. Duty Cycle Test

model [19], and the radio modeled operation at 914
MHz with 1 Mb/s of bandwidth. Packet sizes were
uniformly distributed around a mean of 1000 bytes and
were sent at uniformly distributed intervals with a mean
of 40 seconds. MAC broadcast was used in which a
node senses the carrier and broadcasts only if no other
transmissions are detected. Each simulation was
executed six times, each time with a different random
number seed for a simulation time of 3,000 seconds per
seed. Each test set used the same seeds for all
simulations. λ was set to 100ms for all simulations.

In many WSNs, there are a large number of nodes
that send data to a central sink that aggregates data for
future use. This use pattern plays a significant role in
determining which protocol is best suited for the given
node density and end-to-end delay. Fig. 4 shows the
results from the sink test.

 While AODV does well with few sources, as the
number of sources increases from 45 to 60, its end-to-
end delivery ratio goes from almost 100% to 96% for
250 and 500 nodes to 95% for 750 nodes. RPSP
maintains over 97% delivery ratio regardless of the
node density. As the number of source nodes increases
to 75, AODV performs at 94% with a node density of
250 and 500 nodes. When the node density is high, as
it is in case of 750 nodes, the delivery ratio drops to
70%.

RPSP makes an improvement over SRPv1 and
SRPv2 in terms of end-to-end delay, as see in Fig. 4. It
maintains a better end-to-end delay for all node
densities.

The end-to-end delay significantly affects AODV,
increasing significantly as the number of sources is
increased. RPSP is more likely to stop a reliable path
than SRP and has a higher end-to-end delay; however,
it remains below 0.5 seconds throughout all of the
simulations.

The Duty Cycle test is designed to show how a
protocol reacts to transient nodes and links which occur
frequently either due to the environment, node failure
caused by power exhaustion, or nodes put in sleep
mode by an energy saving algorithm. Fig. 5 shows the
results for the duty cycle test. For end-to-end delay,
RPSP, as expected, has higher delay than SRPv1 and
SRPv2. As discussed earlier in the route repair routine
section, RPSP should lose fewer packets because there
are no packets lost during a successful route repair.
RPSP is only slightly better that SRP in low node
densities; however it is significantly better in higher
node densities. RPSP additionally maintains roughly
that same end-to-end delay no matter what the node
density is while SRP has a slight increase in end-to-end
delay as the node density increases.

 As expected, AODV does better in a less
dense network. As the node density increases, AODV

has to send considerably more packets to maintain the
network connectivity, as nodes fail. AODV performs
poorly when the node density increases to 750 nodes,
when there are a large number of transient failures.

6. Conclusions and Future Work

In this paper, we have introduced RPSP as the
newest member of the Self Selecting Routing Protocol
Family. Its route repair routine makes it well suited for
most operating environments. Additionally, through
simulation we have shown that for any operating
environment, there is a member of the SSRPF that will
perform well. Fig. 3 above shows the best protocol in
the SSRPF for each operating environment based on
the simulation results show in Fig. 4 and Fig. 5.
Clearly, only in a small part of the overall environment
diversity space, namely for medium or high volume of
traffic, medium or low density and highly reliable
networks, SRPv2 delivers performance comparable to
RPSP. Even in a smaller subspace defined by low
volume traffic over highly reliable and low density
networks, can AODV rival the performance of RPSP.
Only in a few settings, AODV bettered RPSP on
delivery ratio metric. Overall, however, RPSP delivers
the most reliable, fast communication using small
number of packets over the majority of the wireless
sensor network operating environments.

Future work on SSRPF includes improving the
protocols in the family to minimize energy
consumption and adapting them to route effectively in
environments with mobile nodes. The first extension
requires addressing the challenge of limiting
overhearing of packet transmission. For this extension,
the notion of the preferred path is valuable, as the
nodes not on the preferred path do not need to listen to
the packets, as long as the node on the preferred path is
on. Thus, they can drop listening to a broadcast after
hearing the header of the packet and listen to the entire
broadcast only if the packet is rebroadcast and marked
in the header as such. The second extension needs to
address the challenge of efficient updates to hop
distance to the destination. This challenge is easier to
address when there is a mixture of mobile and
stationary nodes in the network, enabling the mobile
nodes to learn their hop distances from the stationary
ones. We plan also to introduce a time-to-live (TTL) on
the hop distance in each node, after which the node
would learn its distance from neighbor whose hop
distance is still alive. The node’s TTL in such a
solution will be dependent on the speed with which the
node moves.

7. References

[1] I.F. Akyildiz; W. Su; Y. Sankarasubramaniam; E. Cayirci.

2002. “A survey on sensor networks.” In IEEE Communication
Magazine, 40(8):102-114.

[2] A. Woo; T. Tong; D. Culler. 2003. “Taming the underlying
challenges of reliable multihop routing in sensor networks.” In
Proc. ACM SenSys ’03, 14-27.

[3] J. Zhao; R. Govindan. 2003. “Understanding packet delivery
performance in dense wireless sensor networks.” In Proc. ACM
SenSys ‘03, 1-13.

[4] G. Anastasi; A. Falchi; A. Passarella; M. Conti; E. Gregori.
2004. “Performance measurements of motes sensor networks.”
In Proc. 7th ACM International Symposium on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, 174-
181.

[5] Crossbow Technology, Inc. http://www.xbow.com.
[6] J. Hill; R. Szewczyk; A. Woo; S. Hollar; D. Culler; K. Pister.

2000. “System Architecture Directions for Networked
Sensors.” In Proc. 9th ACM Int. Conf. Architectural Support
for Programming Languages and Operating Systems, 93-104.

[7] C. Perkins; E. Belding-Royer; S. Das. RFC 3561-ad hoc on-
demand distance vector (AODV) routing,
http://www.faqs.org/rfcs/rfc3561.html.

[8] W.R. Heinzelman; J. Kulik; H. Balakrishnan. 1999. “Adaptive
protocols for information dissemination in wireless sensor
networks.” In Proc. ACM MobiCom, 174-185.

[9] C. Intanagonwiwat; R. Govindan; D. Estrin. 2000. “Directed
diffusion: a scalable and robust communication paradigm for
sensor networks.” In Proc. ACM MobiCom, 56-67.

[10] G. Chen; J.W. Branch; B.K. Szymanski. 2006. “A self-
selection technique for flooding and routing in wireless ad-hoc
networks.” In Journal of Network and Systems Management,
14(3):359-380.

[11] G. Chen; J.W. Branch; B.K. Szymanski. 2005. “Self-selective
routing for wireless ad hoc networks.” In Proc. of IEEE Int.
Conf. Wireless and Mobile Computing, Networking and
Communications, WiMob’05, vol. 3, 57-65.

[12] K. Wasilewski; J. Branch; M. Lisee; B.K. Szymanski. 2007.
“Self-healing routing: a study in efficiency and resiliency of
data delivery in wireless sensor networks.” In Proc.
Conference on Unattended Ground, Sea, and Air Sensor
Technologies and Applications, SPIE Symposium on Defense
& Security.

[13] R. Poor. “Gradient routing in ad hoc networks.”
[14] F. Ye; G. Zhong; S. Lu; L. Zhang. 2005. “Gradient broadcast:

a robust data delivery protocol for large scale sensor
networks.” In ACM Wireless Networks, 11(2).

[15] A. Boukerche. 2009. Algorithms and Protocols for Wireless
Sensor Networks, John Wiley and Sons Inc.

[16] B.K. Szymanski; C. Morrell; S.C. Geyik; T. Babbitt. 2008
“Biologically Inspired Self-Healing Routing with Preferred
Path Selection.” Bio-Inspired Computing and Communication,
LNCS, vol. 5151, Springer, New York, NY, pp. 229-240.

[17] T. Babbitt; C. Morrell; B.K. Szymanski; J. Branch. 2008.
“Self-Selecting Reliable Path for Wireless Sensor Network
Routing.” Computer Communication Journal, 31(16):3799-
3809.

[18] G. Chen; J.W. Branch; M. Pflug; L. Zhu; B.K. Szymanski.
2005. “SENSE: a wireless sensor network simulator,” in
Advances in Pervasive Computing and Networking, B.
Szymanski and B. Yener, Ed. New York: Springer, 249-267.

[19] T. S. Rappaport. 2002. Wireless Communications: Principles
and Practice (2nd Edition), Prentice Hall.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

