
Mutual Exclusion Revisited†

Boleslaw K. Szymanski

Computer Science Department
Rensselaer Polytechnic Institute

Troy, NY 12180

Abstract

A family of four mutual exclusion algorithms is pre-
sented. Its members vary from a simple three-bit linear
wait mutual exclusion to the four-bit first-come first-
served algorithm immune to various faults. The algo-
rithms are based on a scheme similar to the Morris’s
solution of the mutual exclusion with three weak sema-
phores. The presented algorithms compare favorably
with equivalent published mutual exclusion algorithms
in their program’s size and the number of required com-
munication bits.

1. Introduction

Mutual exclusion is at the center of many concur-
rent process synchronization problems and, conse-
quently, is of a great theoretical and practical signifi-
cance in parallel and distributed processing. In the
mutual exclusion problem, there is a collection of asyn-
chronous processes. Each process contains a distinct
part of the code called acritical section (or region).
The process’s remaining code is referred to as anoncrit-
ical section (or region) [2]. Each process alternately
executes its noncritical and critical sections.Processes
can proceed in parallel outside of the critical section but
only one process at a time can execute the critical sec-
tion.

Mutual exclusion in uniprocessor systems can be
provided by disabling interrupts when a process is in its
critical section. Such a solution is efficient only if criti-
cal sections are short. Otherwise the system response
time would degrade and disabled interrupts could be
mishandled. The other limitation of this technique is
that in most systems interrupt disabling and enabling is
beyond control of the user programs.

† This work was partially supported by the National Science
Foundation under grant No.CCR-8613353 and by the Army
Research Office under contract DAAL03-86-K-0112

In multiprocessors with a shared memory, a spe-
cial test-and-set instruction can be used to support the
mutual exclusion. However, this solution requires syn-
chronized accesses to the shared memory from all pro-
cesses and such accesses could be difficult to support.
In a multiprocessor multiport memory system the test-
and-set instruction cannot be implemented by control-
ling an access cycle of a single processor [4], [11]. On a
large VLSI chip processors cannot run on the same
clock because sending a clock pulse across the chip
introduces a delay in a pulse propagation. Growing
popularity of parallel and distributed architectures has
led to renewed interest in algorithmic solutions to the
mutual exclusion problem [1], [4], [6], [7], [9], [11],
[12], [13].

Algorithmic solutions to the mutual exclusion
problem were extensively studied in the past [2], [3],
[5], [12]. Recently, Lamport in [7] presented a new
extended definition of the mutual exclusion and its four
solutions characterized by different degrees of enforced
fairness and robustness. Lamport’s algorithms are
immune to several types of process malfunctions.
Unlike the majority of older solutions, his algorithms do
not assume that read/writes from/to communication
variables are mutually exclusive. Such robustness is
important in large distributed systems where failure of a
single processor should not break down the entire sys-
tem. It is also needed in VLSI chip based multiprocessor
systems, in which nonuniform conditions in the chip’s
wafer result in varying reliability of individual proces-
sors.

In Lamport’s algorithms, the desired degree of
fairness and robustness decides the number of commu-
nication variables required by each process. Let n
denotes the number of processes participating in the
mutual exclusion. The strongest fairness condition
(known as first-come first-served property) together with
the strongest robustness requirement are provided by the
algorithm that usesn-factorial of communication binary
variables per process. The fair solution with a constant
number of communication variables was published in
[13] (linear wait, four one-bit communication variables),
and reported in [8] (first-come first-served, five one-bit

szymansk
Text Box
Proceedings of the Fifth Jerusalem Conference on Information Technology, Jerusalem, Israel, October 1990 IEEE Computer Society Press, Los Alamitos, CA, pp. 110-117

communication variables) and in [14] (first-come first-
served, four one-bit communication variables). The
algorithm with 17 bit communication variables immune
to all types of malfunctions defined by Lamport was
presented in [15] . The author of that report conjectured:

"Unfortunately, the presented algorithm is quite
long and complex... It remains to be seen whether
a shorter and simpler algorithm with the same
properties exists. A conjecture is made that if a
shorter solution exists, it will be of the same basic
structure; that is, part of the algorithm will be
constructed from a weaker solution to the same
problem, along with a local critical section."

The algorithms presented in this paper show that
these requirements were too strict. What suffices is a
"separation" algorithm which keeps the processes eligi-
ble for mutual exclusion separate from newly arriving
processes (see four-bit robust algorithm in section 3).
Our four-bit (and about a quarter of the size of the pro-
gram in [15]) self-stabilizing first-come first-served
algorithm includes only one three-bit self-stabilizing
algorithm with linear wait as a basic component.

The algorithms presented in this paper are based
on a scheme similar to the Morris’s solution of the
mutual exclusion with three weak semaphores [10].

2. The Problem Statement

The Lamport’s definition of mutual exclusion has
been presented in [7], so only a general description is
given here, following also [13].There are n (n>1) pro-
cesses that are numbered from 0 to n-1.The processes
are executing independently of each other, possibly on
different processors. Each process contains a portion of
the code called acritical section,which often includes
accesses to limited resources. The rest of the process
code is called anoncritical section. There is no
assumption about the rate at which processes execute.
However, each process in its critical section makes a
finite progress. This means that a finite, but possibly
unbounded, amount of time elapses between the execu-
tion of individual instructions of the code. In addition, it
is assumed that a process entering its critical section
will leave it after a finite amount of time.

Each process starts its execution at a specified
location in the noncritical section with all variables set
to initial values. Processes alternately execute their non-
critical and critical sections. A process may enter its
critical section any number of times. Processes can com-
municate with each other throughcommunication vari-
ables.

Algorithmic solutions to the mutual exclusion
problem consists of two sections of code that surround
the critical section in each process.The first section is

executed before the critical section and is called apro-
logue or trying. The second section is executed after the
critical section, and is called anexit. The assumption
about the finite progress in execution of the critical sec-
tion is extended to prologue and exit sections as well.
However, the extended assumption does not imply that a
process which started to execute its prologue or exit sec-
tion has to leave any of them in a finite time. In other
words, an infinite looping is not excluded by assumption
and should be avoided through proper design of the
algorithm. We are interested in a uniform solution, in
which the prologue and exit sections are the same in
each process.

There are four properties required from the solu-
tion.

I. Mutual exclusion: For any pair of distinct pro-
cesses, any two of their critical section executions
are disjoint in time.

II. Deadlock freedom: If there is a nonterminating
prologue section execution, then there are
unbounded number of critical section executions.
In other words, the critical section should never
become inaccessible to all processes. If a number
of processes attempt to execute their critical sec-
tions, then after a finite amount of time some of
them should be able to do so.

III. Fairness (lockout freedom property): Every pro-
logue section execution must terminate, i.e. no
process will be denied entry to its critical section
forever. The strongest fairness property is known
as first-come first-served. For the purpose of
defining this property, we assume that the pro-
logue section consists of two parts: agate section
that requires executing only a bounded number of
elementary operation (therefore a gate section
always terminates), followed by awaiting sec-
tion. The first-come first-served property is satis-
fied if for any pair of processes the following
implication holds:

if a gate section execution of one process is
followed† by a gate section execution of the
other, than the corresponding critical sec-
tion executions of these processes are in the
same relation.

Less restrictive fairness property is know as the
linear wait. It requires that no process will enter
its critical section twice while another process is
waiting.

† i.e. the execution of the first gate section terminates before the
execution of the other one starts.

IV. Robustness:The solution should be immune to
the following types of malfunctions:

• flickering bits (read errors during writes):
a read of the communication variable which
is being concurrently written upon may
return a random value. Aspointed out in
[11] read errors during writes can easily
occur when two processors communicate
while running under control of different
clocks. The sum of pulses from two differ-
ent processors may create so called runt
pulse, which causes a read to return a ran-
dom value.
• shut-down (premature termination): at
any point of its execution, a process can
reset† its communication variables and halt
(shut-down represents the physical situation
of unplugging a processor),
• abortion: at any point in its execution, a
process can reset a predefined subset of its
communication variables and then start
executing again in its noncritical section,
• failure: a process keeps setting its state,
including the values of its variables, to arbi-
trary values within the program’s and vari-
ables’ ranges and then aborts, never again
malfunctioning,
• transient malfunction: a process keeps
setting its state, including the values of its
variables, to arbitrary values within the pro-
gram’s and variables’ ranges and then
resumes normal execution at any point in its
program, never again malfunctioning.

The robustness requirements imply that processes
can use only process specific communication variables
[12]. Suchvariable can be written only by one process
("owner" of that variable). It may be read by all pro-
cesses.

3. The Algorithms

The first algorithm presented in Figure 1 provides
the mutual exclusion with linear wait. It uses three one-
bit communication variables in each process, and is
immune only to the flickering bits malfunctions. It is a
modification of the algorithm presented in [13]. This
algorithm is used as a building block for other algo-
rithms presented in the paper.

† Since any write to a communication variable is not a null oper-
ation and can affect concurrent reads, "resetting a variable"
means here assinging a default value to the variable only if at
this instance the variable has a value different from the default.

The idea behind the algorithms is simple.The
prologue section (statements p1-9 in Figure 1) simulates
a waiting room with a door. All processes requesting
entry to the critical section at roughly the same time
gather first in the waiting room. Then, when there are no
more processes requesting entry, processes inside wait-
ing room shut the door and move to the exit from the
waiting room. From there, one by one, they enter their
critical sections in the order of their numbering. Any
process requesting access to its critical section at that
time has to wait in the initial part of the prologue sec-
tion (at the entry to the waiting room).

The door to the waiting room is initially opened.
The door is closed when a process inside the waiting
room does not see any new processes requesting entry.
The door is opened again when the last process inside
the waiting room leaves the exit section of the algo-
rithm.

Three one-bit process specific communication
variables, called a (active, competing for a critical sec-
tion), w (waiting inside the waiting room) and s (shut-
ting the door to the waiting room), respectively, describe
the status of a process.Each process can be in one of
the following five states:

1) passive - all three communication variables are
false (aws=false,false,false). Aprocess in the pas-
sive state is executing the noncritical section.

2) entry - only the variable a is set to true
(aws=true,false,false). A process in the entry state
wants to access its critical section and attempts to
enter the waiting room.

3) inside - only the variable w is set to true
(aws=false,true,false). A process in the inside
state passed through the door into the waiting
room.

4) transient- two variables: s and w are set to true
(aws=false,true,true). Aprocess in the transient
state shuts the door into the waiting room tempo-
rarily.

5) exit - only the variable s is set to true
(aws=false,false,true). Aprocess in the exit state
keeps the door into the waiting room shut for
good and is either executing its critical section or
waiting for its turn to execute it.

A transition from the passive state to the entry
state is unconditional.A process is allowed to move
from the entry state to the inside state if the variable s is
set to false in all processes (in other words, the door is
not shut either temporarily or permanently).A process
in the inside state that notices that there are no processes
in the entry state (i.e. the variable a is set to false in each
process) can move to the transient state and shut the

door temporarily by setting its variable s to true (state-
ments p5-6). From the transient state a process checks
again for presence of any processes in the entry state. If
there are any, the checking process backs off to the
inside state; otherwise it moves to the exit state and
shuts the door for good.A process that reaches the exit
state from the transient state will be called aleader.

communication variables:: a,w, s: boolean = false
private variables:: j:0..n

p1: ai=true;
p2: for(j=0;j<n;j++)while(sj);
p3: wi=true; ai=false;
p4: while(!si) {
p5: for (j=0;j<n & !aj;j++);
p6: if (j==n) { si=true;
p6.1: for(j=0;j<n & !aj;j++);
p6.2: if (j<n) si=false;
p6.3: else{ w i=false;
p6.4: for(j=0;j<n;j++)while(wj);

}
}

p7: if (j<n) for (j=0;j<n & (wj | !sj);j++);
p8: if (j!=i & j<n) {
p8.1: si=true; wi=false;

}
}

p9: for(j=0;j<i;j++) while(wj | sj);
Critical Section

e1: si=false;

Figure 1. Three-Bit Linear Wait Algorithm†

A leader waits in the exit state for processes in the
inside state to move to the exit state too.

A process in the inside state that notices a process
in the exit state moves to the exit state immediately
(statements p7-8.1). From the exit state processes enter
critical section in the order of their numbering (state-
ment p9).

If a process in the inside state attempts and fails to
become a leader (by moving to the transient state and
backing off to the inside state) then there is a process
that was in the passive state before that attempt and then
moved to the entry state (compare loop in statement
p6.1). Until the moved process reaches the inside state,
the attempting process will not move to the transient
state again. Since processes can leave the waiting room
only by passing through the exit state and the leader
waits for processes in the inside state to reach the exit
state, then no process can leave the waiting room until
the door is closed. It follows from the above that a

† The author acknowleges help of Vladislavs Jahundovics in re-
moving a typo from this program.

process can make at most n-1 attempts to become a
leader before executing its critical section. On the other
hand, if none of the processes in the inside state
attempts to become a leader, than there is a process in
the entry state which can move to the inside state (since
the door is not shut). When all processes in the entry
state reach the inside state, each process in the inside
state will be able to move to the transient state. Hence,
after a finite time some process(es) will become
leader(s).

If the highest numbered process in the waiting
room is a leader, it will keep all processes in the entry
state looping on its variable s (compare statement p2).
Otherwise the highest numbered process inside the wait-
ing room will set its variable s to true before any leader
will enter critical section. Hence, each process in the
entry state will loop at least to that moment on the vari-
able s of one of the leaders and finally on the variable s
of the highest numbered process.It follows that the pro-
cesses in the entry state cannot reach the inside state
from the moment any process reaches the exit state until
all processes inside the waiting room leave their critical
sections. In other words, our algorithm separates pro-
cesses in the passive and entry states from processes in
the exit, transient and inside states. The separation is
achieved in a finite time and lasts from the moment a
leader reaches the exit state until all processes already
inside the waiting room leave their critical sections.

With the separation property demonstrated, show-
ing that the presented algorithm enforces the mutual
exclusion with linear wait is simple. At any time only
one process can have the lowest order number in the set
of processes that reached the exit state, so the mutual
exclusion is enforced. No process will wait in the wait-
ing room forever, since a leader is created in a finite
time and then all processes in the inside state are able to
reach the exit state directly. No process will wait in the
exit state forever either. There is always a process that
is either in its critical section or able to reach it. Thus,
the algorithm is deadlock free.Finally, if a process
leaves the critical section, then it cannot pass the door
into the waiting room until all processes that waited
with it inside the waiting room executed the critical sec-
tion. Moreover, those and only those processes that
reached the entry state before a leader causing the sepa-
ration reached the transient state are inside the waiting
room after the separation. Hence, if one process reaches
the entry state before the other, then the next separation
cannot leave the former process before the waiting room
and the latter process inside the waiting room (all other
combinations are possible, however). Thus, the linear
wait is enforced.

It is possible to extend the presented above algo-
rithm to obtain a solution that is immune to all malfunc-

tions defined in section 2. In the basic algorithm only
the leader needs to be delayed in the exit state until all
processes in the transient and inside states reach the exit
state. If the leader aborts or shut-downs before some
processes in the inside state reach the exit state but after
some other processes already executed the critical sec-
tion then the linear wait requirement can easily be vio-
lated. Thus, in the robust algorithm presented in Figure
2 all processes that reached the exit state wait until pro-
cesses in the inside and transient states move to the exit
state (notice a new position of the loop in statement
p6.4).

communication variables:: a,w, s: boolean = false
private variables:: j,k: 0..n

p1: ai=true;
p2: for(k=1;k<n;k++)for(j=0;j<n;j++)
p3: while(sj && i<>j) { w i*=*false; si*=*false; }
p4: while(!si) { w i*=*true; ai*=*false;
p5: for (j=0;j<n & !aj;j++);
p6: if (j==n) { si=true;
p6.1: for(j=0;j<n & !aj;j++);
p6.2: if (j<n) si=false;
p6.3: elsewi=false;

}
p7: if (j<n) for (j=0;j<n & (wj | !sj);j++);
p8: if (j!=i & j<n) { s i=true;
p8.1a: if(!sj) si=false;
p8.1b: elsewi=false;

}
}

p6.4:for(j=0;j<n;j++) while(wj && i<>j) {a i*=*false;
wi*=*false;}
p9: for(j=0;j<i;j++) while(sj && i<>j) w i*=*false;

Critical Section
e1: si=false;

Figure 2. Three-Bit Robust Linear Wait Algorithm

Even a process in the exit state may fail to keep
the door closed†, if a shut-down or abortion takes place.
In the scenario in Figure 3, a process P1 is able to sneak
through the door into the waiting room, although in the
view of a process P2 the door was closed by the variable
s either in the process P3 or the process P2.Please note,
that the second check of values of the communication
variables would succeed in discovering that the door is
indeed closed. In general, k+1-st check of communica-
tion variables yields the proper status of the door in the
presence of at most k abortions and shut-downs of
leader processes. Aborted and shut-down processes can-
not pass through the door until the processes remaining
inside the waiting room exit it. Thus, checking values of

† The author wish to thanks Prof. Amir Pnueli for pointing out
this possibility.

step P1 P2 P3
swa swa swa
001 010 100
001 010 100
001 110 100
001 110 000abort!
001 100 000
011 me 000

Arrows show order of checking values of bit variables.

Figure 3. An Example of Possible ME Violation

the communication variables has to be done at most n-1
times to ensure the proper result (see an additional loop
in statement p2 in Algorithm 2).

It is also necessary to prevent deadlock from
occurring as the result of transient malfunctions. Since
the unbounded waits in the while loops in the algorithm
are controlled by the values of the variables w and s, in
the loops implementing these waits value false of these
variables is restored, if necessary (see statements p3,
p6.4 and p9). In Figure 2, the notation:

var*=*val;

is a shorthand for a resetting of the variable var to the
value val, i.e. it is equivalent to the following condi-
tional statement:

if (var!=val) var=val;

The third algorithm, presented in Figure 4, extends the
first algorithm bit differently than the robust algorithm
did. Namely, it enforces first-come first-served fairness
property but for the price of an additional one-bit com-
munication variable p (parity of the mutual exclusion
request).

In the third algorithm, there is a gate section
(statement g1-4) in the prologue that just takes a snap-
shot of each process status and registers it in two local
bit vectors: la (its j-th bit shows whether the j-th process
passed its gate section at the time of a snapshot) and lp
(it stores each process’ parity). In addition, two new
states (sixth and seventh) are defined for each process
as:

6) after-gate - two variables: a and w are set to true
(aws=true,true,false). Aprocess in the after-gate
state has executed its gate section, but did not get
into the waiting room yet.

7) advanced transient state - two variables: a and s
are set to true (aws=true,false,true). A process in
the advanced transient state is waiting until pro-
cesses that executed gate section before it did
access the critical section.

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

szymansk
Pencil

The only transition from the entry state leads now
to the after-gate state and is made unconditionally. The
distinction between the after-gate state and the entry
state is important only in the gate section, where a
process in the after-gate section has la bit set to true
while a process in the entry state causes this bit to be set
to false. Inother parts of the algorithm, the new after-
gate state and the entry state are equivalent.

communication variables:: a,w, s, p: boolean = false
private variables:: j:0..n, k: 0..n = 0

la, lp: array[0..n-1] of boolean

p1: ai=true;
g1: for(j=0;j<n;j++){
g2: la[j]=wj; lp[j]=pj;

}
g3: pi=!pi;
g4: wi=true;
p2: for(j=0;j<n;j++)while(sj);
p3: ai=false;
p4: while(!si) {
p5: for (j=0;j<n & !aj;j++);
p6: if (j==n) { si=true;
p6.1: for(j=0;j<n & !aj;j++);
p6.2: if (j<n) si=false;
p6.3: else{ w i=false;
p6.4g: for(j=0;j<n;j++)while(wj & ! aj);

}
}

p7: if (j<n) for (j=0;j<n & (wj | !sj);j++);
p8: if (j!=i & j<n) {
p8.1: si=true; wi=false;

}
}

d1: while(k<n){
g5: for(k=0;k<n& (!la[k] | pk!=lp[k] | !wk & ! sk);k++);
d2: if (k<n) {
d2.1: for(j=0;j<n;j++)if (j==i) ai=true;
d2.2: elsewhile(!aj & sj);
d2.3: for(j=0;j<n;j++)if (j==i) ai=false;
d2.4: elsewhile(aj & sj);

}
}

p9: for(j=0;j<i;j++) while(!aj & (wj |sj));
Critical Section

e1: si=false;

Figure 4. Four-Bit First-Come First-Served Algorithm

Unlike in the previous algorithm, a process in the
exit state is eligible to access the critical section only if
all processes that beat it at the gate already executed the
critical section (see statements g5-d2).As previously,
the critical section is accessed by the eligible processes
in the order of their numbering.Processes that reached
the exit state but are not eligible yet to access the critical
section move to the advanced transient state. This transi-

tion is made in the order of numbering of processes that
are not eligible yet to access the critical section. In the
advance transient state, each process waits for others to
leave the exit state, and then moves back into the exit
state. This transition is also made in the order of pro-
cesses’ numbering (see statements d2.1-2.4).It should
be noted that processes reach the advanced transient
state only after a separation took place, therefore no
process can be executing a leader selection code (state-
ments p5-p6.4) at that time. Thus, the condition for
leader selection can be simply a negation of the variable
a (regardless of the value of the variable s).

The justification for an additional communication
variable p is simple.If a process takes a snapshot of the
other process in the gate state, then this other process
can execute its critical section and return to the gate
state before the first process gets to the wait loop in
statement g5.Consequently, the process taking a snap-
shot needs to be able to recognize whether a process in
the gate state did or did not execute the critical section
while the snapshoting process was progressing from the
gate section to the loop of statement g5.

Suppose that a process P1 finished its gate section
before the other process P2 started it, and both processes
did not access the critical section after the most recent
execution of the gate section. Hence, the snapshot entry
la[p1] in P2 is true and lp[p1] is equal to the value of the
variable p in P1.Thanks to the loop in statement g5, the
process P2 cannot reach the critical section before the
process P1. If the process P2 is inside the waiting room
in the subsequent separation, then the leader of this sep-
aration had to reach the transient state after the process
P2 decidedto move to the inside state, that, in turn, had
to happen after the process P1 left the passive state.
Consequently, also process P1 have to be inside the
waiting room in the subsequent separation, so there is
no deadlock on the loop in statement g5 in the discussed
case.

If the process P1 already executed the critical sec-
tion, then two new cases have to be considered. In the
first case, a snapshot lp[p1] stores the value of parityof
the process P1 associated with the original gate section
execution. Inthis case, the process P1 will not cause a
delay of the process P2 in the loop in statement g5.The
second case happens when the variable lp[p1] in the
process P2 stores the parity of P1 from the subsequent
gate execution. This means that the snapshot of P2 in P1
would not delay the process P1 in its progress towards
the critical section. The process P2 will be delayed by
P1, but the process P2 cannot get into the waiting room
without P1 being there in the same separation, so no
deadlock is possible either. Finally, when gate execu-
tions of two processes intersect, then these processes
will set the corresponding la bits to false before reaching

the loop in statement g5 and therefore none will be
delayed by the other there. In summary, the loop in
statement g5 together with the gate section g1-g4
enforces first-come first-served order of accessing the
critical section without introducing any deadlocks.

communication variables:: a,w, s, p: boolean = false
private variables:: j,k: 0..n, c: 0..n-1 = n-1

la, lp: array[0..n-1] of boolean

p1: ai=true;
g1: for(j=0;j<n;j++){
g2: la[j]=wj; lp[j]=pj;

}
g3: pi=!pi;
g4: wi=true;
p2: for(k=1;k<n;k++)for(j=0;j<n;j++)
p3: while(sj && i<>j) { a i*=*true; si*=*false; }
p4: while(!si) { w i*=*true; ai*=*false;
p5: for (j=0;j<n & !aj;j++);
p6: if (j==n) { si=true;
p6.1: for(j=0;j<n & !aj;j++);
p6.2: if (j<n) si=false;
p6.3a: elsewi=false;

}
p7: if (j<n) for (j=0;j<n & (wj | !sj);j++);
p8: if (j!=i & j<n) { s i=true;
p8.1a: if(!sj) si=false;
p8.1b: elsewi=false;

}
}

p6.4:for(j=0;j<n;j++) while(wj & ! aj && i<>j)
p6.4a: {ai*=*false; wi*=*false; }
d1: do{
g5: for(k=0;k<n& (!la[k] | pk!=lp[k] | !sk);k++);
d2: if (k<n) { c--;
d2.1: for(j=0;j<n;j++)while(!aj & sj)
d2.2: { ai*=*j>=i; w i*=*false; }
d2.3: for(j=0;j<n;j++)while(aj & sj)
d2.4: { ai*=*j<i; w i*=*false; }

}
d3: } while(k<n & c>0)
p9: for(j=0;j<i;j++) while(!aj & sj && i<>j)
p9a: { ai*=*false; wi*=*false; }

Critical Section
e1: si=false;

Figure 5. Four-Bit Robust First-Come First-Served Algorithm

The last algorithm presented in Figure 5 provides
first-come first-served robust mutual exclusion using
just four one-bit communication variables. It is created
by modifying and combining the robust linear wait algo-
rithm in Figure 2 with the first-come first-served algo-
rithm presented in Figure 4. It should be noted that,
unlike the other communication variables, the variable p
should not be reset to initial value at the end of abor-
tions. In the first-come first-served algorithm, the code
after the gate section is almost the same as in the basic

algorithm shown in Figure 1. In the last algorithm pre-
sented in Figure 5, the after-gate code is nearly identical
with the robust linear wait algorithm.The important
difference between those two algorithms is that pro-
cesses waiting for their turn to access critical section in
the third algorithm can get deadlocked in the presence
of transient malfunctions. As the result of transient mal-
functions two or more processes may be placed immedi-
ately after the gate section with such values of their
snapshot vectors la and lp that they will wait for each
other in the loop of statement g5. In the robust algorithm
in Figure 5 the separation of processes enableseach
process to discover such a deadlock. Statements d1-d3
at the end of prologue in Figure 5 are used to synchro-
nize deadlock checking by all processes waiting after
the gate.

If there is no deadlock, each cycle around the exit
state and the advanced transient state makes at least one
process in the exit state eligible to access the critical
section. Thus, without a deadlock, each process can
cycle around those two states no more then n-2 times.
The counter c keeps track of the number of made cycles
and is used in detecting and resolving the deadlock in
statement d3.

It should be noted that all unbounded waits in
conditions of while loops contain references to the vari-
ables a, w, s and to the negation of variable a. Conse-
quently, all values of the variable a, and false values of
the variables w and s are restored in the while loops, if
necessary.

Due to the space limitation the more rigorous
proofs of the presented algorithms’ properties are omit-
ted here.

4. Conclusion

The robust, fair mutual exclusion algorithms that
are immune to several types of malfunctions were pre-
sented. Thesealgorithms use fewer communication
variables per process than any published algorithms
with similar properties.The four-bit first-come first-
served robust mutual exclusion algorithm contains just a
single robust mutual exclusion algorithm as a basic
component.

References

[1] Davidson, C.M., "A Note on Concurrent Pro-
gramming Control," IEEE Transaction on Soft-
ware Engineering, vol. SE-13, no. 7, July, 1987,
pp. 865-866.

[2] Dijkstra, E.W. "Solution to a problem in concur-
rent programming control," Communication of
the ACM, vol. 8, no. 9, September, 1967, p. 569.

[3] Eisenberg, M.A., and McGuire, M.R. "Further
comments on Dijkstra’s concurrent programming
control problem," Communication of the ACM,
vol. 15, no. 11, November, 1972, pp. 999.

[4] Ferguson, M.J. "Multiaccess in a Nonqueueing
Mailbox Environment," IEEE Transaction on
Software Engineering, vol. SE-10, no. 3, May,
1984, pp. 237-243.

[5] Knuth D.E., "Additional comments on a problem
in concurrent programming control," Communi-
cation of the ACM, vol. 9, no. 5, May, 1966, p.
321-322.

[6] Lamport,L. "The mutual Exclusion Problem: Part
I - A Theory of Interprocess Communication,"
JA CM, vol. 33, no. 2, April, 1986, pp. 313-326.

[7] Lamport,L. "The mutual Exclusion Problem: Part
II - Statement and Solutions," JACM, vol. 33, no.
2, April, 1986, pp. 327-348.

[8] Lycklama, E.A. "A First-Come First-Served Solu-
tion to the Critical Section Problem Using Five
Bits," M.Sc. thesis, University of Toronto, Octo-
ber 1987.

[9] Lycklama, E.A. and Hadzilacos, V. "A fi rst come
first served mutual exclusion algorithm with small
communication variables," submitted for publica-
tion, draft dated May 12, 1989.

[10] Morris, J.M. "A starvation-free solution to the
mutual exclusion problem," Information Process-
ing Letter, vol. 8, no. 2, 1979, pp. 76-80.

[11] Peterson,G.L. "A New Solution to Lamport’s
Concurrent Programming Problem Using Small
Shared Variables," ACM Transactions on Pro-
gramming Languages and Systems, vol. 5, no. 1,
January 1983, pp. 56-65.

[12] Raynal,M. "Algorithms for Mutual Exclusion,"
The MIT Press, Cambridge, Massachusetts, 1986.

[13] Szymanski,B.K. "A Simple Solution to Lam-
port’s Concurrent Programming Problem with
Linear Wait," Proc. 1988 International Confer-
ence on Supercomputing, St. Malo, France, July
4-8, 1988, pp. 621-626.

[14] Szymanski, B.K. "Efficient First-Come-First-
Serve Mutual Exclusion Algorithm," Technical
Report, RPI, Troy, NY, December, 1988.

[15] Truuvert K. "A Self-Stabilizing First-Come-First-
Served Mutual Exclusion Algorithm With Small
Shared Variables," Technical Note, University of
Toronto, July, 1989.

