
Journal of Network and Systems Management, vol. 14, no.3, September 2006, pp. 359-380

A Self-selection Technique for Flooding and Routing in Wireless
Ad-hoc Networks

Gilbert G. Chen, Joel W. Branch, and Boleslaw K. Szymanski

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY

Abstract

There is a fundamental difference between wireless and wired networks, since the latter
employ point-to-point communication while the former use broadcast transmission as the
communication primitive. In this paper, we describe an algorithm, called self-selection,
which takes advantage of broadcast communication to efficiently implement the basic
operation of selecting a node possessing some desired properties among all the neighbors
of the requestor. Self-selection employs a prioritized transmission back-off delay scheme
in which each node’s delay of transmitting a signal is dependent on the probability of the
node’s ability to best perform a pertinent task and in turn, enables the node to
autonomously select itself for the task. We demonstrate the benefits of self-selection in
two basic wireless ad hoc network communication algorithms: flooding and routing. By
relating back-off delay to the signal strength of a received packet, we design an efficient
variant of conventional flooding named Signal Strength Aware Flooding. By using
distance-to-destination to derive back-off delay, we design a novel and fault-tolerant
wireless ad hoc network routing protocol named Self-Selective Routing.

Keywords – Wireless ad hoc networks, wireless networks, ad hoc routing, ad hoc
flooding, leader election

1. INTRODUCTION
Wireless ad hoc networks (WANETs) [1] are used to provide on-demand network

infrastructures. They are usually composed of small portable clients (or nodes), but they
lack consistent topologies. They range in size from small Bluetooth piconets [2] used for
device synchronization to large-scale networks used for supporting military and
emergency-response applications. Perhaps the most popular WANET applications
recently have been wireless sensor networks [3], which are most often used for the
pervasive and remote monitoring of environmental or spatial phenomena.

To date, a plethora of research efforts have addressed some significant challenges
introduced by various aspects of WANET operation, perhaps the most fundamental being
fault-tolerant and energy-efficient communication. Since communication is typically the
most costly operation in WANETs because of the overhead of transceiver operation,
innovative and efficient approaches to basic communication algorithms such as flooding
and routing are in strong demand. Fortunately, the communication primitive in WANETs,
broadcast, offers some interesting possibilities.

As an instructive example, let us consider a lecture hall with a lecturer and student
audience. If the lecturer wants to identify a student with a certain property (e.g., the least
number of credits taken at the university) in a lecture hall with n students, it seems that n
communications (verbal in this case) would be needed. However, if the lecturer and
students use the broadcast nature of verbal communication, they can accomplish this task
in just two communications. In the first broadcast, the lecturer asks all students to
announce their total number of completed credits after a delay (in seconds, starting from
the time that the lecturer stops talking) that is equal to their answer (where 1 credit = 1
second). Upon hearing the first answer, students may suppress their response. Assuming
that the answer is unique, in a few seconds, the student with the desired property will
identify himself, and the problem will be solved in just two broadcasts. The principles of
this “lecture hall” algorithm form the basis of our work.

 In WANETs, we consider the problem of identifying a node with pertinent desired
properties among all neighbors within the transmission range of the requestor. Such a
selection problem is called local leader election, to distinguish it from more common
global leader election problems typically found in distributed computing [4,5]. This paper
starts with a description of a new local leader election technique for WANETs, called
self-selection. Then, new solutions based on self-selection are presented are applied to
flooding and routing, resulting in efficient algorithms that address fault-tolerance and
energy-efficiency in WANET communication.

The remainder of this paper is organized as follows. Section 2 presents the basic
principles and operation of the self-selection algorithm. Section 3 describes self-
selection’s application to WANET flooding. Section 4 describes WANET routing based
on self-selection and evaluates the fault-tolerance and efficiency of this solution. Section
5 covers related works. Section 6 summarizes the contributions made by this paper.

2. THE SELF-SELECTION ALGORITHM
The majority of leader election algorithms require a synchronization mechanism to

enable all participating nodes to determine the start and end of any given election round.
Unfortunately, continuous synchronization turns out to be quite a difficult problem for
WANETs because of hardware clock skew and other factors [6-9]. However, in many
situations, such as in the case of a packet transmission, which exemplifies the occurrence

of a commonly observable event, a common signal can be observed by many nearby
nodes. If each node records the time at which the signal is detected, then all nodes that
have received the same signal are implicitly synchronized in an on-demand fashion. We
refer to these time markings as implicit synchronization points (ISPs). Here, we assume
that the propagation delay of the signal to each node is negligible. Hence, the nodes are
synchronized (within the precision of the signal propagation delay) without the use of any
explicit and potentially costly synchronization protocols.

To take advantage of ISPs, every node must be instructed to wait a different amount
time before taking further actions. This delay, referred to as the back-off delay, has been
widely used in CSMA (Carrier Sense Multiple Access) protocols to avoid packet
collisions resulting from multiple simultaneous transmissions. The origin of using the
back-off delay for this purpose can be traced back to Ethernet [10]. It is also used in the
IEEE 802.11 protocol [11].

Regarding our research, the most fundamental observation, with an important
consequence, is that back-off delays do not only avoid packet collision, but they also
provide a precious opportunity to prioritize the status of different nodes, enabling a
simple solution to the local leader election problem. Employing a common ISP followed
by different back-off delays assigns different probabilities of becoming a leader to all
participating nodes. Each node, after observing the ISP, calculates a back-off delay based
on a certain criterion and then sets a back-off timer accordingly. When the back-off timer
expires, the node can start transmitting an announcement packet. However, if the node
receives an announcement packet from another node before its own back-off timer
expires, it cancels the back-off timer. Thus, in most cases, only the node with the smallest
back-off delay will succeed in transmitting the announcement packet, and will naturally
become a local leader. Upon receiving the announcement packet, other nodes passively
learn that a new local leader has been elected.

This simple algorithm does not guarantee to always produce at least one local leader.
Multiple nodes may choose almost identical back-off delays, leading to a collision. It
cannot guarantee only one local leader either, since the announcement packet sent by a
node may be out of the listening range of some nodes, and these nodes may continue to
broadcast new announcement packets. However, both cases can be easily addressed by
the algorithm. If there is no local leader elected at the first attempt, some upper layer
protocol, such as one in the transport layer, may invoke the procedure repeatedly until
there is a local leader. Also, multiple local leaders, as mentioned earlier, may be
welcomed for redundancy.

If the reliability of the outcome is desired, then an arbiter node can be chosen to
broadcast an acknowledgement packet when it hears an announcement packet. The arbiter
node may or may not be the same as the node that triggered the ISP. However, it must be
chosen so that every node involved in the local leader election is within its transmission
range. If the arbiter node does not receive any announcement packets within a predefined
interval, it will trigger the ISP again by sending out the original synchronization packet.
However, if it does receive an announcement packet, it will immediately rebroadcast the
acknowledgement packet, upon the receipt of which other nodes will cancel their back-
off timers, even if they have not received any announcement packet. Eventually there will
be at least one local leader elected.

The heart of the solution is how to derive the back-off delay based on a metric, or a
combination thereof, so that the most desirable node would have the greatest probability
of being elected a leader. In CSMA protocols the back-off delay is usually randomly
generated. Since the back-off delay actually represents the priority assigned to each node,
a fully random choice wastes the precious opportunity to prioritize different nodes as they
compete for the local leadership. As we will discuss in the next two sections, a wide
variety of metrics can be used to derive the back-off delay, some of which may lead to
effective solutions to some WANET communication problems.

The use of the back-off delay as a priority value is not completely new. For example,
back-off delay has been used to give nodes with more connectivity and more energy
higher priority to become the coordinators in the Span protocol [12]. However, the
identification of the ISPs, and the use of the arbiter node, as well as the generalization of
the local leader election problem described here, to the best of our knowledge, have not
been attempted before1. We leave a more detailed discussion regarding related works in
Section 5.

3. SIGNAL STRENGTH AWARE FLOODING
Routing is a necessity in WANET communication. The simplest routing algorithm is

flooding, which is primarily used when there is no existing knowledge about the
network’s topology. In the most basic form of flooding, every incoming packet is
forwarded to every receiver’s neighbor, except the one from which the packet was
received.

In WANETs, a packet broadcast by one node can be received by many neighboring
nodes. As this process repeats, many transmissions will occur, creating an overall energy-
intensive operation. A common practice reducing the number of packet transmissions
restricts forwarding to only those packets that were not previously received. To remain
distinguishable from other packets, every packet must contain a unique sequence number.
Every node must also keep a list of sequence numbers of received packets, and whenever
a packet is received, its content is checked against this list. The packet will be rebroadcast
only when its sequence number is new. This approach is used in counter-1 flooding [15].

A packet cannot be rebroadcast immediately for fear of collision, so a back-off delay
scheme is usually applied. The node chosen to forward the packet being broadcast can be
identified as a local leader, so the solution to the local leader election problem naturally
applies here. The end of the current packet transmission is an ISP commonly known to all
nodes that received the packet. Using properly selected back-off delays, nodes that are
most appropriate to forward the packet can be given higher probabilities of leadership,
characterizing the right to rebroadcast the packet. An example of an algorithm that uses
this approach is location-based flooding [15], in which the nodes furthest from the
previous sender of the packet rebroadcast the packet earliest. However, location
information is costly to obtain in WANETs, as it requires the use of additional GPS-
related hardware or trilateration systems.

Our solution to the above challenges is to associate the back-off delay with the
strength of the received signal, leading to Signal Strength Aware Flooding (SSAF). In
general, the farther the receiving node is from the sending node, the weaker the signal is.

1 Initial research in self-selection, on which this paper is based, was previously described in [13, 14].

This is true for large-scale wireless propagation models such as the free space and two
ray models [16]. In small-scale propagation models such as the Rayleigh model [16] and
in practice [17], the signal strength may vary dramatically at the given radius for different
directions because of obstacles. However, even in these cases, the weakening of the
signal along the specific direction as the distance increases still holds. SSAF does not
intend to precisely select the farthest node every time, but to choose nodes that are highly
likely to be far away from the sender. Overall, this creates a more efficient flooding
algorithm (reducing the number of retransmissions) without relying on the use of
additional hardware.

For evaluation purposes, we used the SENSE [18] simulation framework to compare
the performance of SSAF with that of counter-1 flooding. A WANET consisting of 100
nodes randomly distributed in a 1000 x 1000m2 terrain is simulated. 50 connections were
created between randomly chosen sources and destinations. In all simulations, the free
space propagation model was used. Figure 1 illustrates the comparison between SSAF
and counter-1 flooding with respect to the following performance factors:

• Average delay: The average time required for a packet to travel from a source to a
destination.

• Average hop count: The average number of nodes a packet must traverse to travel
from a source to a destination.

• Average delivery rate: The average percentage of packets sent by sources that are
successfully received by destinations.

All results were obtained as a function of the packet generation interval, which ranged
from 1 to 10 seconds. To obtain average values, all experiments were repeated four times
using different randomly generated seed values.

 0.01

 0.1

 1

 10

 1 2 3 4 5 6 7 8 9 10

Av
er

ag
e

de
la

y
(s

ec
on

ds
)

Packet generation interval (seconds)

Counter-1 flooding
SSAF

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 2 3 4 5 6 7 8 9 10

Av
er

ag
e

de
liv

er
y

ra
te

 (%
)

Packet generation interval (seconds)

Counter-1 flooding
SSAF

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8 9 10

Av
er

ag
e

ho
p

co
un

t

Packet generation interval (seconds)

Counter-1 flooding
SSAF

(a) (b) (c)

Figure 1. Performance comparison between SSF and counter-1 flooding.

As shown by the simulation results, SSAF consistently outperforms the counter-1
flooding with respect to all three performance factors. In most cases, SSAF obtains a
slightly shorter end-to-end delay, but for smaller packet generation intervals, the gap
becomes much more significant. This is because with more intense traffic activity, the
queue between the network layer and the MAC layer tends to become more crowded. In
SSAF, a priority queue favors those packets with shorter back-off delays; hence,
prioritization takes effect not only among packets in different nodes, but also among
packets in the same node. The priority queue has no effect on counter-1 flooding.
Another interesting property of SSAF is its decreased average hop counts and increased
delivery rates. The average hop count is smaller in SSAF than in the counter-1 flooding
because nodes farther from the current hop are more likely to forward the packet. The
delivery rate is also improved, since the rebroadcast of a packet tends to cover a larger

area that has not seen the packet before and therefore fewer rebroadcasts are needed,
causing fewer collisions. In conclusion, SSAF is likely to establish shorter routes than
counter-1 flooding when deployed to find paths between the sources and destinations,
which is the primary use of flooding in other, more complicated routing protocols.

4. SELF-SELECTIVE ROUTING
Flooding, in spite of its simplicity, is not a practical solution for large-scale WANETs

because of the potential for excessive communication overhead. This is why it is usually
employed only as an initial step in establishing bidirectional routes between sources and
destinations in WANETs. There is a substantial body of work proposing WANET routing
protocols [19], with most being categorized as either proactive or reactive. Proactive
protocols (e.g., DSDV [20]) attempt to continuously maintain routes to all nodes in a
network while reactive protocols (e.g., AODV [21] and DSR [22]) only seek to establish
routes to specific nodes on an on-demand basis. A growing number of routing protocols
have also been developed specifically for wireless sensor networks, in which more
emphasis is typically placed on energy-efficiency (e.g., LEACH [23]) and data-centric
query models (e.g., SPIN [24] and Directed Diffusion [25]).

Regardless of the application, a salient problem facing WANET routing is the
presence of dynamic topologies resulting from presence of transient nodes and
inconsistent (and frequently unpredictable) wireless link quality. Even though most
WANET routing protocols have mechanisms for maintaining routes in the context of
topological changes, they are usually costly and inefficient in nature. Frequently, after a
route has been established, a node on a route must constantly monitor the status of the
designated next hop on the route. This may be adequate for wired links, however,
wireless link failures are difficult to quickly detect, and the links can also temporarily fail
as a result of burst interference. Also, it is often the case that a considerable amount of
time elapses before a node notices the unavailability of the next hop. When this happens,
the node has to either report the route error (to a higher protocol layer) or actively repair
it by establishing a new route or selecting an alternative route through other available
candidates. The necessity of maintaining explicit routes also implies that nodes on the
route cannot autonomously hibernate to conserve energy; it is their responsibility to
notify other nodes if they want to do so.

The above problems can be addressed by reducing WANET routing to the local
leader problem, as deciding how the next hop will be selected is equivalent to selecting a
suitable local leader. To apply local leader election requires just deciding how to compute
the back-off delay in transmitting a packet. Naturally, the back-off delay should be
assigned in such a way that the closer a node is to the target node (source or destination),
the more likely it will be selected as the next hop to forward the packet. Therefore, the
distance to the target node, measured in the number of hops, becomes an appropriate
metric to calculate the back-off delay. This metric naturally gives rise to a new WANET
routing protocol called Self-Selective Routing (SSR), which, in addition to using back-off
delay, is distinguished from many others by never maintaining explicit routes. Rather, the
actual route is constructed in such a way that the next hop is always determined after the
packet leaves the current hop.

In the discussion that follows, we assume that wireless links between neighboring
nodes are mostly bidirectional. The existence of unidirectional (or asymmetric) links may
negatively affect the efficiency, but not the correctness of the protocol. Furthermore, each

node must have a hardware clock with a sufficiently small resolution to differentiate
between various back-off delays. These hardware clocks do not need to be very accurate
nor do they need to be continually synchronized.

4.1. The SSR protocol

4.1.1. Path discovery process
The data structure used by SSR is fairly simple. Each node maintains a target node

cost table. Table entries consist of (i) the identity of a target node (which is either a
source or a destination), (ii) the sequence number of the last packet observed from the
target node, and (iii) the hop distance from the target to the current node.

The path discovery process consists of two phases described below.
1) Destination request phase: When a source node wants to send DATA packets to a

destination node for which there is no cost table entry, it transmits a destination request
(DREQ) packet via a flooding protocol and then increases its own sequence number by 1.

Each DREQ packet contains the identity of the source node, a sequence number to
distinguish the packet from the other DREQ packets originating from the same source,
and the identity of the destination node. In addition, the DREQ packet has an actual hop
count field that records the number of hops that this packet traveled from the source to
the current receiving node.

If an intermediate node receives a DREQ packet from a source for which there is no
entry in its target node cost table, this node creates a new entry with the source ID,
sequence number, and actual hop count fields. Otherwise, if an entry for the source
already exists, the entry is updated either (i) when the DREQ packet’s sequence number
is higher than that in the table, or, in case of equality, (ii) when the actual hop count is
lower than the stored hop distance. In either case, the hop count is updated with the value
in the DREQ packet. If the first case occurs, the sequence number in the table is also
updated. The intermediate node then attempts to forward the packet. It will first set a
random back-off timer upon the expiration of which the packet will be forwarded. This is
to avoid collision with other nodes that received the same packet. If the node receives
another packet with the same source ID and sequence number before the back-off timer
expires, it simply cancels the timer and does not relay the packet.

2) Destination reply phase: The destination node, upon receiving a new DREQ
packet, will reply with a destination reply (DREP) packet. The header of this packet
contains the same fields as those of the DREQ packet, as well as an expected hop count
field indicating the expected number of hops needed for the packet to travel to reach the
target node (in this case, the source). As in the destination request phase, the sequence
number of the destination node is increased after broadcasting the DREP packet. Unlike
the DREQ packet, the DREP packet does not rely on flooding to find its return path back
to the source. Neither does it use an existing path determined during the traversal of the
DREQ packet.

The destination node simply broadcasts the DREP packet, without specifying the next
hop. It obtains the hop count to the source from its target node cost table, then subtracts 1
from it, and puts the result into the expected hop count field in the DREP packet.

Every node that detects the arrival of a DREP packet will first inspect its expected
hop count field. Deciding the next hop then becomes a self-selection problem, and the
algorithm presented in Section 2 can be readily applied.

The central idea of the SSR protocol is to derive the back-off delay based on the

known distance, measured by the number of intermediate hops from the target node. This
idea is based on the rationale that the node closer to the target should be given higher
priority to forward the packet than the node father from the target. However, by passively
listening to all packets and looking into the actual hop count field, an intermediate node
only knows the distance from the target node to itself, not the opposite. This is why the
assumption of bidirectional links is needed, as an asymmetric link in the forward path
may result in a longer return path.

Having received a new DREP packet, indicating an ISP, a node determines the back-
off delay, dback-off, according to the following equation2:

≤⋅
+−

>+⋅−⋅
=

ectedtable
tableexpected

ectedtableexpectedtable

backoff hhifU
hh

hhifUhh
d

exp

exp

)1,0(
1

)1)1,0()((
λ

λ
 (4.1)

In Eq. (4.1), htable is the known number of hops to the target node (available from the
current node’s cost table), hexpected is the number of expected hops indicated in the DREP
packet, and U() is a random number generator producing numbers uniformly distributed
over the range defined by its arguments. λ is a tuning parameter that must be carefully
chosen. If λ is too small, the difference between dback-off calculated by various nodes will
be too small to avoid collisions. However, a large λ would increase the end-to-end packet
delivery delay. As indicated by Eq. (4.1), the formula assigns a back-off delay larger than
λ to nodes with a hop count larger than hexpected. The smaller htable is, the smaller dback-off
will be, and the more likely the node will succeed in transmitting the packet.

After calculating dback-off, the node sets its back-off timer accordingly. A node may
cancel its back-off timer and DREP packet transmission if (i) it overhears the same DREP
packet being broadcast again, represented by an implicit ACK, indicating that another
node self-selected itself to transmit the packet first, or (ii) it receives the explicit ACK
packet from the destination node. Regarding the latter case, the destination node acts as
an arbiter and continues to listen on the wireless medium after it has transmitted the
original DREP packet. If it captures the rebroadcast of the same DREP packet by another
node, the destination node immediately transmits an explicit ACK packet that contains
the source ID and the sequence number of the DREP packet to notify nodes out of range
of the original rebroadcast that the DREP packet has been relayed.

If the back-off timer legitimately expires, the node will immediately transmit the
DREP packet. This entire process continues with each self-selected node acting as an
arbiter until the source is reached.

In Figure 2, node A wants to send a DREP (or DATA) packet to node D. It simply
broadcasts this packet, which is then received by nodes B, C, and F. Assuming that node
B ends up with the smallest back-off delay, it broadcasts the same DREP packet. Node C
can receive the rebroadcast by B and hence cancels its back-off timer. However, node F
is so far away from B that it is entirely unaware that B has become the winner. To
prevent node F from reaching the end of its back-off delay and subsequently transmitting
the same DREP packet, once node A receives the rebroadcast of node B, it broadcasts an
explicit ACK packet containing the same source ID and sequence number as that of the

2 This formulation is efficient since the expected winner of self selection should have htable - hexpected value equal to zero. In more

general applications of SSR, logarithm of this difference may be more appropriate, limiting the time the winner will wait for its back-
off timer to expire, or even limited number of integer delays can be chosen (e.g., 0 for nodes with the hop count smaller than expected,
1-2 for those with hop count equal to expected and 3 for all the others).

previously transmitted DREP packet. Upon receiving this ACK packet, node F will know
that the DREP packet originally broadcast by node A has been forwarded by another
node, even though it does not know which node it was.

F A D

C

B

E

DREP/DAT
ACK

Figure 2. ACK packets suppress multiple copies of the same DREP/DATA packet.3

Continuing, when the DREP reaches the source, the source creates a new target node
cost table entry using the packet’s source ID and actual hop count. It then sends an
explicit ACK packet to indicate that the DREP packet has reached the source, since
otherwise other nodes would keep trying to retransmit the packet. For instance, in Figure
2, if the DREP packet sent by node B reached the destination node D and node D had
neglected to transmit the explicit ACK, both nodes C and E would have continued in self-
selection and one of them would have retransmitted the packet. Therefore, the purpose of
the ACK packet sent by the target node D is to inform other nodes that the DREP packet
reached the destination.

4.1.2. Data transmission process
Upon receiving a DREP packet, the source can start transmitting DATA packets

towards the destination. DATA packets are transmitted and treated the same way as
DREP packets, as both use an actual hop count field and self-selection for forwarding.
Therefore, upon the receipt of either a DATA or DREP packet, the receiving node can
update in its target node cost table the entry corresponding to the node from which the
packet originated.

4.1.3. SSR algorithm properties
Since SSR does not maintain explicit routes, there is no need to constantly monitor

the routes’ connectivity. Hence, as opposed to most traditional routing protocols, SSR
can handle node or link failures without incurring any control packet overhead. Also,
with traditional protocols, if a node on the route wants to go to sleep, it must inform its
neighbors and pass them the task of relaying packets [26]. It is even more troublesome
when a node or a link suddenly goes down, for it is difficult to quickly distinguish a
temporary fault from a permanent one. Furthermore, a substantial amount of time may
elapse before the nature of the fault is discovered. In contrast, under SSR, when a node or
link fails, other nodes will self-select themselves to quickly form a new route; the
transition is seamless and no extra actions are needed. As a result, any node, even if it is

3 For simplicity, arrows to the previous sender are omitted.

on the route, can freely switch to the sleep or standby mode to save energy, making SSR
well suited for energy-constrained WANETs.

A
D

C

B

E

A
D

C

B

E

X

(a) (b)
Figure 3. Packets immediately seek an alternative route in case of a node failure.

Figure 3 demonstrates that packets can immediately seek an alternative route after a

node in the previous route fails. In Figure 3(a), node B is an intermediary on the path
from node A to D. However, if node B is deactivated, either passively by a sudden failure
or actively by itself in order to conserve energy, the next packet would naturally travel
through node C, since node B would no longer be involved in self-selection. This is
reflected in Figure 3(b). The transition from a path going through node B to a path going
thought node C is seamless, and does not require extra control packets.

In SSR, DATA packets and DREP packets always carry the most up-to-date
information about the distance from the originating node. Hence, SSR can often choose
the shortest paths to the destination. In other routing protocols, such information could
also be made available to intermediate nodes. However, for packets to find the shortest
paths, constant route changes would be required in those protocols, and the overhead of
excessive route maintenance would likely offset the benefit. It is SSR’s ability to handle
topology changes effortlessly that makes it capable of always looking for the shortest
paths as well.

B C

EA D

B C

EA D
(a) (b)

B C

EA D
(c)

Figure 4. SSR is capable of constantly looking for and switching to shorter paths.

Figure 4 shows such an example. At first (Figure 4(a)), the route between nodes A
and D is passing through nodes B and C. Although there is a shorter route via node E,
these nodes are not aware of it, either because (i) node E is excluded from the path
discovery phase either by randomness of delays, or (ii) by the recent arrival of node E in
this neighborhood. If the communication continues to flow one way from A to D, then
node E would never get a chance to know that it is within one hop of node D. However,
as soon as node D transmits a packet, node E immediately updates D’s entry in its target

node cost table. After that, both nodes E and C will compete for the next hop, and E will
win because its distance to node A is just one. The next time node A sends a packet to
node D, node E will self-select itself for transmission, which effectively shortens the
route between nodes A and D by one.

Another less obvious feature of SSR is that it automatically avoids congestion. In
dense physical regions, the nodes may subject packets to excessive wait times for
transmission in the MAC queue. Even if a node with a large MAC queue is assigned a
small back-off delay, most likely it will not be able to self-selected itself as quickly as
nodes in less congested areas [13, 14].

4.2. Performance evaluation

In this section, we present an analysis of SSR's performance using the SENSE
simulation framework [18]. We compare various performance factors between using
SSR and AODV [21]. We have chosen AODV for comparison primarily because it is
a straight-forward example of a table-driven routing algorithm that must maintain it
neighbors’ states and also has no significant tunable parameters that can affect its
behavior. Hence, AODV serves as a good, standard benchmark for comparison
purposes. In our experiments, we analyze the following performance factors:

• Average delay: The average time required for a packet to travel from a source
to a destination.

• Average delivery rate: The average percentage of packets sent by sources that
are successfully received by destinations.

• Average number of transmitted MAC packets: The average number of MAC
layer packets transmitted during the entire simulation.

The average number of transmitted MAC packets was included to compare the
message-passing overhead of the two protocols and also to give an indication of the
energy consumed in the network.

A network consisting of 500 nodes randomly distributed in a 2000 x 2000m2 terrain is
simulated. Nodes had transmission ranges of 250m (under the free space signal
propagation model). We executed two sets of simulations. The first set compared the
protocols’ performance under increasing node failure rates while the number of source-
destination pairs was held at 10. The second set maintained a failure rate of zero but
varied the amount of network traffic by changing the number of communicating source-
destination pairs. Network traffic was generated using a constant-bit-rate model that
generated bidirectional traffic at a random rate.

We further evaluated SSR’s performance in two ways. One, we ran simulations using
varying values of λ (see Eq. 4.1). Two, in addition to using the free space signal
propagation model, we also used a signal propagation model, described in [27], that uses
log-normal signal propagation and other parameters to simulate the transitional region in
a node's transmission range [28]. We used this model because empirical data has shown
that the packet reception rate does not ideally decrease with increasing distance. Instead,
there are three distinct regions in a node's transmission range: connected, transitional,
and disconnected. In the first and last regions, the packet reception rates are near 100%
and 0%, respectively. However, the transitional region is characterized by highly varying
reception rates between 0% and 100% and hence, introduces asymmetric wireless links.
The transitional region starts at a transmission distance of approximately 10m and is

approximately 20m long. Hence, for all simulations using the transitional region model,
we used a terrain size of 100 x 100m2 to account for smaller transmission ranges. We did
not compare SSR with AODV under this model since AODV is not designed to handle
asymmetric links. Finally, all simulations were repeated four times using different
randomly generated seed values.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30

Av
er

ag
e

de
la

y (
se

co
nd

s)

Node failure rate (%)

AODV
SSR, lambda=0.1

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30

Av
er

ag
e

de
liv

er
y r

at
e

(%
)

Node failure rate (%)

AODV
SSR, lambda=0.1

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 5 10 15 20 25 30

Av
er

ag
e

M
AC

 p
ac

ke
ts

se
nt

Node failure rate (%)

AODV
SSR, lambda=0.1

 (a) (b) (c)

Figure 5. SSR's packet delivery performance versus node failure rate for the free
space model and λ=0.1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30

Av
er

ag
e

de
la

y (
se

co
nd

s)

Node failure rate (%)

lambda=.01
lambda=.001

lambda=.0001
lambda=.00001

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30

Av
er

ag
e

de
liv

er
y r

at
e

(%
)

Node failure rate (%)

lambda=.01
lambda=.001

lambda=.0001
lambda=.00001

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 0 5 10 15 20 25 30

Av
er

ag
e

M
AC

 p
ac

ke
ts

se
nt

Node failure rate (%)

lambda=.01
lambda=.001

lambda=.0001
lambda=.00001

 (a) (b) (c)

Figure 6. SSR's packet delivery performance versus node failure rate for the free
space model and varying λ.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

Av
er

ag
e

de
la

y (
se

co
nd

s)

Node failure rate (%)

SSR, free space
SSR, trans. region

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30

Av
er

ag
e

de
liv

er
y r

at
e

(%
)

Node failure rate (%)

SSR, free space
SSR, trans. region

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 5 10 15 20 25 30

Av
er

ag
e

M
AC

 p
ac

ke
ts

se
nt

Node failure rate (%)

SSR, free space
SSR, trans. region

 (a) (b) (c)
Figure 7. SSR's packet delivery performance versus node failure rate for the free
space and transitional region models and λ=0.1.

4.2.1. Effect of node failure rate
The graphs in Figures 5 and 6 illustrate the effect of node failure rate on both

AODV's and SSR's performance under the free space propagation model. The graphs in
Figure 7 illustrate the same behavior for SSR observed under the transitional region
model. To simulate failure rate, we periodically forced each node to fail for a constant
amount of time. For simplicity, the sources and destinations of the CBR traffic never fail.

According to Figure 5(a), SSR maintains a nearly consistent packet delivery delay as
opposed to AODV, in which the delivery delay increases along with the node failure rate.
Figure 5(b) shows that SSR is highly competitive with AODV in terms of the packet
delivery rate. As the failure rate increases, AODV starts to beat the performance of SSR.
However, in analyzing the graphs in Figures 5(b) and 5(c) together, it is apparent that for
AODV to guarantee nearly the same rate of end-to-end delivery as SSR, it must use the
order of magnitude larger number of MAC packets for packet retransmissions and route
repairs; this magnitude generally increases along with the node failure rate.

The graphs in Figure 6 illustrate the effect of varying λ, which controls the trade-off
between delay and potential collisions. Figure 6(a) shows that packet delivery delay only
slightly increases for all λ values as the node failure rate increases. For smaller node
failure rates, λ is generally proportional to delay. However, for the smallest λ value
(0.00001), the delay is larger. This is expected because as λ decreases, more collisions
will occur and result in increased delay. However, as the node failure rate increases,
using low and high λ values start to yield similar results. Figure 6(b) shows that λ is
proportional to the packet delivery rate, which is expected since shrinking the value of λ
yields more collisions. As also expected, the node failure rate is inversely proportional to
packet delivery rate. Finally, Figure 6(c) shows that λ is inversely proportional to the
number of transmitted MAC packets, which is expected since more collisions cause more
packet retransmissions.

The graphs in Figure 7 show that SSR's performance degrades under the transitional
region propagation model. However, the level of degradation is not severe. According to
Figure 7(a), delay is increased only by 0.5s on average. This is still an improvement upon
AODV's performance for the more ideal free space model which is shown in Figure 5(a).
Figure 7(b) shows that at a node failure rate of 0%, the transitional region model degrades
SSR's average packet delivery rate only by approximately 5%. As the failure rate
increases, the delivery rate decreases at a slightly smaller rate under the transitional
region model than the free space model. Figure 7(c) shows that the transitional region
model induces SSR to transmit approximately 6 to 7 times more MAC packets. As the
failure rate increases, the number of transmitted MAC packets eventually decreases as the
MAC layer eventually stops attempting to retransmit packets.

In general, all of these results are expected since there are asymmetric links present
that affect the efficiency of the algorithm. Yet, especially regarding end-to-end packet
delivery delay and rate, SSR's performance still remains strong considering that the
asymmetric links are compounded with re-occurring node failures, in turn creating a very
challenging operating environment for any WANET routing algorithm.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 12 14 16 18 20

Av
er

ag
e

de
la

y (
se

co
nd

s)

Number of source-sink pairs

AODV
SSR, lambda=0.1

 70

 75

 80

 85

 90

 95

 100

 10 12 14 16 18 20

Av
er

ag
e

de
liv

er
y r

at
e

(%
)

Number of source-sink pairs

AODV
SSR, lambda=0.1

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 10 12 14 16 18 20

Av
er

ag
e

M
AC

 p
ac

ke
ts

se
nt

Number of source-sink pairs

AODV
SSR, lambda=0.1

 (a) (b) (c)

Figure 8. SSR's packet delivery performance versus network traffic activity for free
space model and λ=0.1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 12 14 16 18 20

Av
er

ag
e

de
la

y (
se

co
nd

s)

Number of source-sink pairs

lambda=.01
lambda=.001

lambda=.0001
lambda=.00001

 70

 75

 80

 85

 90

 95

 100

 10 12 14 16 18 20

Av
er

ag
e

de
liv

er
y r

at
e

(%
)

Number of source-sink pairs

lambda=.01
lambda=.001

lambda=.0001
lambda=.00001

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 10 12 14 16 18 20

Av
er

ag
e

M
AC

 p
ac

ke
ts

se
nt

Number of source-sink pairs

lambda=.01
lambda=.001

lambda=.0001
lambda=.00001

 (a) (b) (c)
Figure 9. SSR's packet delivery performance versus network traffic activity for free
space signal propagation and varying λ.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 12 14 16 18 20

Av
er

ag
e

de
la

y (
se

co
nd

s)

Number of source-sink pairs

SSR, free space
SSR, trans. region

 70

 75

 80

 85

 90

 95

 100

 10 12 14 16 18 20

Av
er

ag
e

de
liv

er
y r

at
e

(%
)

Number of source-sink pairs

SSR, free sapce
SSR, trans. region

 0
 200000
 400000
 600000
 800000
 1e+06

 1.2e+06
 1.4e+06
 1.6e+06
 1.8e+06

 2e+06

 10 12 14 16 18 20

Av
er

ag
e

M
AC

 p
ac

ke
ts

se
nt

Number of source-sink pairs

SSR, free space
SSR, trans. region

 (a) (b) (c)
Figure 10. SSR's packet delivery performance versus network traffic activity for the
free space and transitional region models and λ=0.1.

4.2.2. Effect of traffic rate
The graphs in Figures 8 and 9 illustrate the effect of network traffic on both AODV's

and SSR's performance for the free space propagation model. Similar to the previous
section, Figure 10 illustrates the same behavior for SSR observed under the transitional
region model.

Figure 8(a) illustrates that SSR exhibits a higher packet delivery delay than AODV.
This is expected since one of SSR's fundamental operations involves transmission back-
off delay. As network traffic increases, back-off delay will also increase due to increased
channel contention. Figure 8(b) shows that SSR remains competitive with AODV
regarding packet delivery rate in the context of increasing network traffic. Figure 8(c)
shows that for both protocols, the number of transmitted MAC packets increases as
network traffic does. Since this set of simulations does not introduce topology changes,
collisions can be blamed for the increase in MAC packets. However, SSR still requires
fewer packets to be sent primarily because it finds shorter routes and also requires fewer
packet retransmissions.

The graphs in Figure 9 generally illustrate the same behavior observed in Figure 6. As
shown in Figure 9(a), decreasing λ yields lower delays. However, due to a higher number
of collisions, SSR yields lower packet delivery rates and an increased number of MAC
packet transmissions.

The graphs in Figure 10 show how SSR's performance degrades under the transitional
region propagation model. Whereas SSR's performance was largely unaffected under the
free space model, the transitional region model increases degradation for all performance
factors as the amount of network traffic increases. These results are to be expected
because as the number of packets being transmitted in the network increases in the
context of asymmetric links, the opportunities for delays, dropped packets, and
retransmissions increase as well.

5. RELATED WORKS
The classic leader election problem has been extensively studied in the context of

radio networks [29, 30] in which a communication channel is shared by all nodes and the
network is fully connected in the sense that any node can send packets directly to any
other node. The time is slotted to avoid collisions, so that each packet transmission
always starts at the beginning of a time slot. These networks require a synchronous
version of the local leader election problem discussed here. However, since it is difficult,
if not impossible at all, to synchronize clocks across all nodes in a WANET, the
synchronous clock assumption cannot be satisfied in general. Several methods for
electing a global leader in WANETs have been proposed [31, 32]. The term “local leader
election” has also been referred to as the problem of finding leaders in partitioned

systems [33], where broken links cause the network to split into a number of
disconnected sub-networks. One leader has to be elected for each connected sub-network.
However, this problem is in fact a special case of the classic leader election problem, so
its solution does not apply to the local leader election problem discussed in this paper.

Research in WANET routing protocols has spawned some notable related
contributions. We classify our discussion of them according to two major approaches:
table-driven and cost-based routing.

Table-driven routing includes most of the earlier WANET routing protocols. The
primary commonality of these protocols is their use of forwarding tables that direct the
node to what neighbor to transmit a packet so that it reaches its destination. Three
significant contributions within this class are AODV [21], DSDV [20], and DSR [22]. In
AODV, the most widely-accepted table-driven routing protocol, nodes use route request
and reply packets to set up paths between each other. This route discovery process results
in each node maintaining a forwarding table that explicitly identifies the next node on a
path towards the target. AODV uses hello and repair messages to detect and fix broken
links, which add high latency to finding new routes under dynamic network conditions.
DSDV works in a very similar manner, but it constantly maintains routes to all nodes and
also uses more elaborate message-passing techniques to cope with link additions and
failures. In DSR, as opposed to all nodes maintaining forwarding tables, the source node
includes the entire route in the packet header; multiple routes are stored at the source in
case of link failures. This solution relieves intermediate nodes of table memory
requirements but greatly increases the packet overhead and memory requirements at the
source node.

Most table-driven routing protocols are close adaptations of traditional routing
protocols of wired networks. SSR’s significant advantage is its departure from these
methods and its ability of taking full advantage of the wireless medium, leading to more
efficient and autonomic route repair procedures.

SSR is more representative of cost-based routing protocols, which direct traffic
towards its destination using some metric of cost routing cost. TORA [34] establishes
directed links towards a destination using node “heights” which are proportional to the
hop distance from the destination. Thus, traffic travels in the direction of decreasing
height. This is similar to SSR, however, TORA relies on the Internet MANET
Encapsulation Protocol (IMEP) [35] for explicit notification about broken links. SSR’s
avoids this additional overhead using self-selection. GRAd [36] and gradient broadcast
routing (GRAB) [37] are more similar to SSR. SSR’s use of intermediary explicit ACKs,
as opposed to GRAd’s use of it only at the end of a route, and SSR’s specialized self-
selection algorithm enable the reduction of network congestion and packet delivery delay
to a larger extent than is possible in GRAd. GRAB employs an aggressive fault-tolerance
technique by allowing DATA packets to simultaneously follow multiple paths to a
destination. Self-selection achieves the same goal with lower packet delivery overhead.
Other protocols that are similar to SSR include Geographic Random Forwarding (GeRaF)
[38] and Implicit Geographic Forwarding (IGF) [39]. GeRaf also uses transmission back-
off delay. However, it calculates delay as a function of geographic distance from
destination, which requires the use of additional GPS hardware; SSR avoids this
requirement. GeRaF also uses a more complex packet forwarding scheme that employs a
request-to-send/clear-to-send (RTS/CTS) packet transmission mechanism. Last, GeRaF

uses two radios, one to check if a channel is idle before sending data and the other to
actually send the data, to reduce the probability of collisions. SSR is comparatively more
efficient in that it avoids all of this extra overhead. IGF is similar to GeRaF in that it also
uses GPS and an RTS/CTS packet forwarding mechanism. However, in IGF, only the
neighbors that reside within a 30 degree angle of a line connecting the sender with the
destination are allowed to compete to rebroadcast a packet. If no neighbors within this
region respond, then the sender will rebroadcast the packet and neighbors within a larger
area will be considered. SSR reduces the probability of a sender having to rebroadcast a
packet multiple times by allowing any neighbor with a hop count less than or equal to
that of the sender to compete to forward the packet, allowing SSR to route around holes
with lower message-passing overhead.

6. CONCLUSION
Our discovery of the local leader election problem and its solution may have a

significant impact on protocol design for wireless networks. The local leader election
solution can be applied to general protocol design in the following way. First, the
protocol to be developed must be carefully analyzed to see if there are any instances of
the local leader election problem, as such instances may not be apparent at the first
glance. Next, implicit synchronization points must be identified, since they are valuable
as they synchronize wireless nodes at no cost. Finally, an appropriately chosen metric for
deriving the back-off delays must be found to complete the solution.

SSAF and SSR are two examples of the application of the local leader election
solution. Of these two, SSAF has been shown to be capable of improving the efficiency
of flooding. SSR, on the other hand, exemplifies a new generation of WANET routing
protocols that do not attempt to maintain routes explicitly. The benefit of doing so is that
it makes networks more adaptive to dynamic topology changes and therefore more fault-
tolerant.

7. REFERENCES
[1] C. Sivaram Murthy and B. S. Manoj, Ad Hoc Wireless Networks: Architectures and

Protocols, Prentice Hall, New Jersey, 2004.
[2] Bluetooth.com, http://www.bluetooth.com.
[3] F. Zhao and L. J. Guibas, Wireless Sensor Networks: An Information Processing

Approach, Elsevier, San Francisco, CA, 2004.
[4] V. C. Barbosa, An Introduction to Distributed Algorithms, MIT Press, Cambridge,

MA, 1996.
[5] N. A. Lynch, Distributed algorithms, The Morgan Kaufmann Series in Data

Management Systems, Morgan Kaufmann, San Francisco, CA, 1996.
[6] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using

reference broadcasts, in 2002 Usenix Symposium on Operating Systems Design and
Implementation (OSDI'02), pp.147-163, 2002.

[7] D. Ganesan, S. Ratnasamy, H. Wang, and D. Estrin, Coping with irregular spatio-
temporal sampling in sensor networks. ACM SIGCOMM Computer Communication
Review, Vol. 34, No. 1, pp. 125-130, 2004.

[8] M. L. Sichitiu and C. Veerarittiphan, Simple, accurate time synchronization for
wireless sensor networks, in WCNC 2003 - IEEE Wireless Communications and
Networking Conference, pp.1266-1273, 2003.

[9] J. Van Greunen and J. Rabaey, Lightweight time synchronization for sensor
networks, in Proceedings of the Second ACM International Workshop on Wireless
Sensor Networks and Applications, WSNA 2003, pp.11-19, 2003.

[10] R. M. Metcalfe and D. R. Boggs, Ethernet: distributed packet switching for local
computer networks, Communications of the ACM, Vol. 19, No. 7, pp. 359-404, 1976.

[11] B. P. Crow, I. Widjaja, L. G. Kim, and P. T. Sakai, IEEE 802.11 Wireless Local
Area Networks, IEEE Communications Magazine, Vol. 35, No. 9, pp. 116-126, 1997.

[12] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, Span: an energy-efficient
coordination algorithm for topology maintenance in ad hoc wireless networks.
Wireless Networks, Vol. 8, No. 5, pp. 481-494, 2002.

[13] G. Chen J. Branch, B. Szymanski, Local leader election, signal strength aware
flooding, and routeless routing, in 5th IEEE International Workshop on Algorithms
for Wireless, Mobile, Ad Hoc Networks and Sensor Networks (WMAN05), April 2005.

[14] G. Chen J. Branch, B. Szymanski, Self-selective routing for wireless ad hoc
networks, in Proceedings of IEEE International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob05), Vol. 3, pp. 57-64, Aug.
2005.

[15] Y. C. Tseng, S. Y. Ni, Y. S. Chen, and J. P. Sheu, The broadcast storm problem in
a mobile ad hoc network, in Proceedings of 5th Annual Joint ACM/IEEE
International Conference on Mobile Computing and Networking (MOBICOM'99), pp.
153-167, 1999.

[16] T. S. Rappaport, Wireless Communications: Principles and Practice, Prentice
Hall, New Jersey, 2001.

[17] J. Zhao and R. Govindan, Understanding packet delivery performance in dense
wireless sensor networks, in Proceedings of the First International Conference on
Embedded Networked Sensor Systems. pp.1-13, 2003.

[18] G. Chen, J. Branch, E. Brevdo, L. Zhu, and B. Szymanski, SENSE: A Sensor
Network Simulator, in Advances in Pervasive Computing and Networking, B. K.
Szymanski and B. Yener (eds.), Springer, pp. 249-267, 2004.

[19] M. Abolhasan, T. Wysocki, and E. Dutkiewicz, A review of routing protocols for
mobile ad hoc networks, Ad Hoc Networks, Vol. 2, No. 1, pp. 1-22, 2004.

[20] C. E. Perkins and P. Bhagwat, Highly dynamic destination-sequenced distance-
vector routing (DSDV) for mobile computers, Computer Communication Review,
ACM SIGCOMM '94 Conference on Communications Architectures, Protocols and
Applications, Vol. 24, No. 4, pp. 234-244, 1994.

[21] C. Perkins, E. Belding-Royer, and S. Das, RFC 3561-ad hoc on-demand distance
vector (AODV) routing [Online], 2003, Available:
http://www.faqs.org/rfcs/rfc3561.html.

[22] D. Johnson, D. Maltz, and J. Broch, DSR the dynamic source routing protocol for
multihop wireless ad hoc networks, in Ad Hoc Networking, C. E. Perkins (ed),
Addison-Wesley, Boston, MA, pp. 139-172, 2001.

[23] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient
communication protocol for wireless microsensor networks, in Proceedings of
HICSS33: Hawaii International Conference on System Sciences, pp. 8020, 2000.

[24] W. R. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for
information dissemination in wireless sensor networks, in Proceedings of 5th Annual

Joint ACM/IEEE International Conference on Mobile Computing and Networking
(MOBICOM'99), pp.174-185, 1999.

[25] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and
robust communication paradigm for sensor networks, in Proceedings of Sixth Annual
International Conference on Mobile Computing and Networking (MobiCom 2000),
pp. 56-67, 2000.

[26] J. W. Branch, G. Chen, and B. Szymanski, ESCORT: energy-efficient sensor
network communal routing topology using signal quality metrics, in Proc 4th Int.
Conf. on Networking, Part I, LNCS, Vol. 3420, Springer Verlag, Berlin, pp. 438-448,
2005.

[27] M. Zuniga and B. Krishnamachari, Analyzing the transitional region in low power
wireless links, in Proceedings of the 1st IEEE Communications Society Conference
on Sensor and Ad Hoc Communications and Networks, pp. 517-526, 2004.

[28] A. Woo, T. Tong, and D. Culler, Taming the underlying challenges of reliable
multihop routing in sensor networks, in Proceedings of the 1st International
Conference on Embedded Networked Sensor Systems, pp. 14-27, 2003.

[29] D. E. Willard, Log-logarithmic selection resolution protocols in a multiple access
channel, SIAM Journal on Computing, Vol 15, No. 2, pp. 468-477, 1986.

[30] K. Nakano and S. Olariu, Uniform leader election protocols for radio networks,
IEEE Transactions on Parallel and Distributed Systems, Vol. 13, No. 5, pp. 516-526,
2002.

[31] S. Vasudevan, B. DeCleene, N. Immerman, J. Kurose, and D. Towsley. Leader
election algorithms for wireless ad hoc networks, in Proceedings DARPA Information
Survivability Conference and Exposition, pp. 261-272, 2003.

[32] N. Malpani, J. L. Welch, and N. Vaidya. Leader election algorithms for mobile ad
hoc networks, in Proceedings of the 4th International Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communications, pp. 96-103,
2000.

[33] C. Fetzer and F. Cristian, A highly available local leader election service, IEEE
Transactions on Software Engineering, Vol. 25, No. 5, pp. 603-618, 1999.

[34] V. D. Park and M. S. Corson, A highly adaptive distributed routing algorithm for
mobile wireless networks, in Proc. 16th Annu. Conf. of the IEEE Computer and
Communications Societies, pp. 1405-1413, 1997.

[35] S. Corson, S. Papademetriou, P. Papadopoulos, V. Park, and A. Qayyum, An
internet MANET encapsulation protocol (IMEP) specification, IETF Draft, draft-ietf-
manet-imep-spec02.txt, 1999.

[36] R. Poor, Gradient routing in ad hoc networks, unpublished.
[37] F. Ye, G. Zhong, S. Lu, and L. Zhang, GRAdient Broadcast: a robust data

delivery protocol for large scale sensor networks, in ACM Wireless Networks, Vol.
11, No. 2, March 2005.

[38] M. Zorzi and R. R. Rao, Geographic random forwarding (GeRaF) for ad hoc and
sensor networks: energy and latency performance, in IEEE Transactions on Mobile
Computing, Vol. 2, No. 4, pp. 349-365, Oct.-Dec. 2003.

[39] B. Blum, T. He, S. Son, and J. Stankovic, IGF: A state-free robust communication
protocol for wireless sensor networks, Technical Report CS-2003-11, University of
Virginia Computer Science Department, 2003.

