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Abstract To address the problem of unsupervised outlier detection in wireless sensor

networks, we develop an approach that (1) is flexible with respect to the outlier defi-

nition, (2) computes the result in-network to reduce both bandwidth and energy con-

sumption, (3) uses only single-hop communication, thus permitting very simple node

failure detection and message reliability assurance mechanisms (e.g., carrier-sense), and

(4) seamlessly accommodates dynamic updates to data. We examine performance by

simulation, using real sensor data streams. Our results demonstrate that our approach

is accurate and imposes reasonable communication and power consumption demands.

Keywords Outlier detection · Wireless sensor networks

1 Introduction

Outlier detection, an essential step preceding most any data analysis routine, is used

either to suppress or amplify outliers. Suppressing outliers (also known as data cleans-

ing) improves the robustness of data analysis, for instance, in clustering [31], time series
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analysis [9] or text categorization [60]. Amplifying outliers helps find rare patterns in

domains such as fraud analysis [47], intrusion detection, and Web purchase analysis.

Several factors make wireless sensor networks (WSNs) especially prone to outliers.

First, they collect their data from the real world using imperfect sensing devices. Sec-

ond, they are battery powered and thus their performance tends to deteriorate as power

dwindles. Third, since these networks may include a large number of sensors, the chance

of error accumulates. Finally, when used for security and military purposes, sensors are

especially prone to manipulation by adversaries. Hence, it is clear that outlier detection

should be an inseparable part of any data processing routine in WSNs.

Simply put, outliers are observations whose probability of occurrence is extremely

small. Since the actual distribution of the data is usually unknown, direct computation

of probabilities is difficult. Because the problem is fundamental, a huge variety of out-

lier detection methods have been developed. In this paper we focus on non-parametric,

unsupervised methods. A simplistic implementation of these methods would require

collecting all data at one central node and executing the outlier detection algorithm

there. Such a centralized solution has several disadvantages in WSNs [34]. The two

most important are (i) the energy overhead incurred by sending the data across the

WSN and (ii) the time delays incurred between data collection and processing. Both

disadvantages increase proportionally to the average distance a data item needs to

travel. They are also exacerbated by the dense flows arising in the areas close to the

central node into which data from the entire WSN, by necessity of a centralized algo-

rithm, converge. The delays increase in such areas because of likely packet collisions,

so either the colliding packets need to be retransmitted, or bandwidth sharing needs to

be imposed. Additionally, the nodes in such areas transmit far more than the average

number of messages, and therefore expend their energy faster than other nodes.

We developed a technique for the computation of outliers in WSNs. This technique

(1) is flexible with respect to the outlier definition, (2) computes the result in-network

to reduce both bandwidth and energy consumption (see, e.g., [30]), (3) uses only single-

hop communication, thus permitting very simple node failure detection and message

reliability assurance mechanisms (e.g., carrier-sense), and (4) seamlessly accommodates

dynamic updates to data. In addition to these essential features, the algorithm pre-

sented here has two highly desirable properties: it is generic – suitable for many outlier

detection heuristics, and its communication load is proportional to the outcome (i.e.,

the number of outliers reported).

We exemplify the benefits of our algorithm by means of two different outlier de-

tection heuristics and 53 sensors, which we simulate using the SENSE network simu-

lator [20] on real data streams. Our results show that the algorithms both converge

to an accurate result with reasonable communication load and power consumption. In

most tested cases, our algorithms outperform the equivalent centralized algorithm.

The rest of the paper is organized as follows. In the next section, we provide a

motivating example, in which a network of acoustic sensors attempts to locate the

possible source of a sound. In Section 3, we discuss related work, including prior publi-

cations on outlier detection, wireless sensor networks, and distributed data mining. We

introduce preliminaries in Section 4 and use them in Section 5 and 6 to describe the

global and semi-global distributed outlier detection algorithms. A the detailed proof of

the correctness of the former is given in the Appendix A. In Section 7 we present the

performance evaluation of our algorithms and our conclusions in Section 8.
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Fig. 1 The expansion of a sound over time and the possible source location as computed by
two different pairs of sensors according to the time difference of arrival. The origin of the sound
lies in the intersection of the two hyperbolas.

2 Motivating Application

The importance of efficient outlier detection in wireless sensor networks is best under-

stood in the context of popular applications of those systems. Consider, for instance,

the acoustic source localization problem. In this problem, a set of synchronized sensors

all register the arrival of a certain sound at a certain time. Given the distance of two

sensors from one another and the time difference of arrival (TDOA) of the sound, the

possible locations of the source vis-a-vis the two sensors can be deduced. Theoreti-

cally, given data from several sensors, the possible relative locations (each a hyperbola

in the plane) can be intersected and the location of the source pinpointed (see, for

example [3,61] and Fig. 1).

In practice, the problem is much more complex. First, the real terrain in which the

problem occurs is rarely flat, or an unobstructed three-dimensional space. Secondly,

echoes and multiple concurrent sounds may add many possible hyperbolas from which

the relevant ones have to be selected. Last, and perhaps most importantly, the method

is sensitive to errors in sensor synchronization and positioning which may result from

unsuccessful initialization, degradation with time, or power depletion. All these factors

amount to a multiplicity of possible hyperbolas, only a few of which intersect at the

correct location of the source.

A similar principle of localization applies in a broader setting, known as binary

sensing object location [65], in which a single sensor detects an object’s whereabouts

to some accuracy and the neighboring nodes then cooperate to decrease measurement

inaccuracy. Note that the modality of the signal and of the sensor (e.g., acoustic,

seismic, visual, electromagnetic) is irrelevant. Also notice any detection, be it true

or false, of object presence within a sensor’s range will trigger a tracking algorithm or

even the entire tracking service [21]. Such algorithm or service is usually associated with

significant costs, which WSN applications often try to reduce or avoid by using, e.g.,

Maximum Likelihood [59]. Unfortunately, such error reduction methods often require
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centralization of the raw data which, in itself, can be a costly process; especially when

the sensor outputs a stream of measurements.

It is therefore crucial to be able to perform data cleaning in the network prior to

any decision protocol. With the method suggested in this paper, sensors can constantly

and efficiently prune away data suspected of being false. Only then, and only if the

remaining data seems to require further analysis, would the more complex and costly

procedure for source localization be executed. In this way, much energy can be saved

and system lifetime extended. In the rest of this paper we avoid the discussion of any

specific WSN application, which deserve thorough discussion in their own right (see,

e.g., [12] for source localization and tracking). Instead, we focus on the detection and

elimination of outliers.

3 Related work

3.1 Outlier detection

Outlier detection is a long studied problem in data analysis, and its treatment has

been thoroughly described in several studies [8,33]. An outlier is an observation which

appears to deviate markedly from other members of the sample in which it occurs.

Outlier detection methods can be divided into two kinds: model based, and density

based. Model based methods assume that the data follows a model which, excluding

the specifics of its parameters, is known, so they focus on evaluating the model’s pa-

rameters and singling out the outliers which obstruct their true value. Some methods

assume a statistical model. For instance, the Tietjen-Moore test [64] assumes the data

follows the normal distribution, with unknown mean and variance. However, many

popular methods assume far more abstract models: e.g., that the non-outlier data can

be modeled using a neural network [32,45] or a decision tree [37].

Density based outlier detection methods evaluate the probability of an observation

using the density of data near it. The advantage of this second approach is that no

assumption of a global model for the data source is required but only a metric on

the data domain1. Examples of such metrics include: distance to kth nearest neighbor

[11], [55]; average distance to the k nearest neighbors [6], [11]; inverse of the number of

neighbors within a fixed distance α [42]. A more complicated approach is to utilize both

the local properties of the data (as do the metrics above ) and its global properties, e.g.,

by denoting outliers the n most sparse data points [29]. Alternatively, methods such as

LOF [18] use the ratio of the distance from an observation to its nearest neighbors to

the average of their own distances to their nearest neighbors. The algorithms described

in this work are suitable, as is, to all density based methods except LOF. Generalization

to LOF, while apparently possible, is left for further research.

3.2 Outlier detection in wireless sensor networks

WSNs combine the ability to sense, compute, and coordinate their activities with the

ability to communicate results to the outside world. They have revolutionized data col-

lection in all kinds of environments. Yet, the design and deployment of these networks

1 Often, methods which fall short of even the triangle inequality are sufficient.
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creates unique research and engineering challenges due to their intended large size (up

to thousands of sensor nodes), their often random and hazardous deployment, obsta-

cles to their communication, their limited power supply, and their high failure rate.

These limitations must be taken into account when developing WSN software. In [28],

Estrin et al. introduce scalable coordination as an important software component. A

survey on the state-of-the-art for WSNs is given in [5], and another survey [4] focuses

on challenges arising from military, health care, ecology, and security applications.

Energy-efficiency is a cardinal WSN requirement and much research has focused

on meeting it [7], [22]. One common strategy for achieving energy-efficiency is by mini-

mizing communication using topology-control algorithms that dictate the active/sleep

cycles of sensor nodes. Examples include ESCORT [16], ASCENT [19], STEM [56],

and GAF [70]. While the focus of this paper is on WSN outlier detection, the chal-

lenge is the same. Hence, while we do not propose a topology-control algorithm, we do

aim to design an energy-efficient algorithm by minimizing the required communication

overhead.

Other research efforts have also focused on developing a framework for distributed

outlier detection in WSNs. Zhuang et al. [72] use a weighted moving average approach

to smooth noise from the data stream arriving at each sensor. Sensors also use data

from neighboring sensors (spatial smoothing) to reduce data propagation to the sink by

not sending observed data whose value remains within the established spatio-temporal

trend. Unlike our approach, theirs does not seek to detect outliers.

Sheng et al. [58] developed a framework for the discovery of k-nearest-neighbor

based outliers: points whose distance to their k-nn exceeds a fixed threshold or the top

n points with respect to the distance to their k-nns. Each sensor maintains a histogram-

type summary of pertinent information over a sliding window of its data points. The

sink node collects these summaries and queries the network for any additional infor-

mation needed to correctly determine the outliers over the whole network. The use

of summaries allows less communication than a naive, centralized approach. Their

approach differs from ours in several ways. First, they only detect outliers over one-

dimensional data and difficulty of of building compact, multi-dimensional histograms

will hinder any extension beyond that. Second, they only consider the two k-nn based

outlier definitions described above, while our approach encompasses these and more.

Thirdly, their approach only applies in settings where spatial proximity is unimportant

while our approach can, if needed, to accommodate spatial proximity (”semi-local”

outlier detection).

Subramaniam et al. [63] require the sensors to maintain a tree communication topol-

ogy and compute outliers using an estimate of the underlying probability distribution

from which the data arises. Such an estimate is computed by each sensor maintaining

a random sample of its data observations. Our approach differs in at least four ways.

First, ours does not make any assumptions about the communication topology (e.g.,

that it is a tree), save that it is connected. Second, ours computes outliers with respect

to all of the data observations at each sensor, not a sample. Third, ours can smoothly

take into account spatial proximity among the sensors (“semi-local” outliers) while

Subramaniam et. al do not focus on this task. Fourth, our approach is designed to

smoothly adjust to changes in the underlying network topology while theirs requires

that the underlying communication tree be reestablished by other means before the

algorithm can resume operation.

Janakiram et al. [36] developed a framework based on a Bayesian Belief Network

(BBN) that has been constructed over the WSN (and distributed to each sensor).
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Using this, each sensor can estimate the likelihood of an observed tuple and, therefore,

detect outliers, yet it is not clear to what extent the BBN construction phase can be

carried out in-network. Moreover, the authors do not discuss the problem of updating

the BBN given network/data change. In contrast, our processing is entirely in-network

and smoothly adjusts to changes in data/network.

Zhuang and Chen [71] use a wavelet based technique for correcting large isolated

spikes from single sensor data streams. A dynamic time warping (DTW) distance-

based technique is also used to identify more steady intervals of erroneous sensor data

by comparing the data streams of spatially close sensors assumed to produce similar

streams. To reduce energy consumption, anomalous data streams are not transmitted

to the base station. Our method is similar in that it is in-network. However, Zhuang and

Chen’s use of DTW is tightly integrated with a minimum hop count routing algorithm,

which makes the approach more restrictive than ours.

Rajasegarar et al. [54] describe an approach that is based on distributed non-

parametric anomaly detection and requires sensors to maintain a tree communication

network topology. Here each sensor clusters its sampled measurements using a fixed-

width clustering algorithm, then extracts statistics of the clusters (i.e., the centroid

and number of contained data vectors) and then sends them its parent node. The

parent uses its children’s cluster statistics to form a merged cluster. The parent then

transmits that cluster to its own parent. This process continues recursively until the

base station receives all clusters, after which it will perform anomaly detection to

identify all outliers. While this approach supports energy-efficiency by distributing the

clustering operation throughout the network, anomaly detection is only performed at

the base station. Our approach differs in that it distributes the anomaly detection

process itself throughout the network, quickly enabling nodes to identify outliers and

autonomously make further data processing decisions. Nor does our approach rely on

the use and maintenance of a routing tree; hence it smoothly adjusts to changes in the

underlying network topology.

Adam et al. [1] address the issue of accounting for spatially neighboring peers

when detecting outliers in sensor networks. However, they assume the sensor datasets

are centralized and the outlier processing is carried out at the central processing node.

They do not consider the problem of carrying out the outlier detection in-network as

we do.

Palpanas et al. [51] propose a technique for distributed deviation detection using a

network hierarchy of low and high capacity sensors that are differentiated with respect

to processing power and communication range. Here, low capacity sensors aim to detect

local outliers while high capacity sensors detect more spatially dispersed outliers using

an aggregation of low capacity sensors’ data. Kernel density estimators are used to

model the distribution of data values reported by sensors and distance-based detection

techniques are used for identifying outliers. The authors present no formal evaluation

of the proposed technique. Our approach differs in that it does not rely on a hierarchy

of device capabilities.

Radivojac et al. [53] address the process of sensors learning data distributions from

class-imbalanced data. Here, sensors send data points to a central base station which

generates a classification model from class-imbalanced data (i.e., having abundant neg-

ative samples and few positives). the total cost of detection and classification (e.g., costs

of transmitting false positives and false negatives). In contrast, our framework operates

in-network.
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This paper is an extension of our preliminary work appearing in conference pro-

ceedings [17]. In the extended version we provide complete correctness proofs for the

global outlier detection algorithm along with improved experimental analysis. We have

also added a localized outlier detection algorithm and experimental analysis of it.

3.3 Distributed data mining

Distributed Data Mining (DDM) has recently emerged as an important area of re-

search. DDM is concerned with analysis of data in distributed environments, while pay-

ing careful attention to computation, communication, storage, and human-computer

interaction. Detailed surveys of Distributed Data Mining algorithms and techniques

have been presented in [38], [39], [40]. Some of the common data-analysis tasks include

association rule mining, clustering, classification, kernel density estimation, and so on.

Recently, researchers have started to consider data analysis and data mining in

large-scale dynamic networks with the goal of developing techniques that are highly

asynchronous, scalable, and robust to network changes. Efficient data analysis algo-

rithms often rely on efficient primitives, so researchers have developed several differ-

ent approaches to computing basic operations (e.g., average, sum, max, or random

sampling) on dynamic networks. Mehyar et al. [48] have developed an asynchronous,

deterministic technique for computing an average over a large, dynamic network. Boyd

et al. [15] and Kempe et al. [41] have investigated gossip based randomized algorithms.

Jelasity and Eiben [43] develop the “newscast model.” Bawa et al. [10] have developed

an approach in which similar primitives are evaluated to within an error margin. Wolff

et al. [67] develop a local algorithm for majority voting. Datta and Kargupta [26] have

developed a technique for uniformly sampling data distributed over a large-scale peer-

to-peer network. Bhaduri et al. [13], Sharfman et al. [57], and Wolff et al. [69] have

developed techniques for threshold monitoring over a large, distributed set of data

streams.

Finally, some work has gone into more complex data mining tasks: association rule

mining [67], facility location [44], decision tree induction [14], classification through

meta-learning [46] (all four based on local majority voting), genetic algorithms [23],

k-means clustering [27] [68], Web user community formation [25], hidden variable distri-

bution estimation in a wireless sensor network [49], and outlier detection in distributed

data streams [50] [62].

In the last two papers, Otey et al. [50] and Su et al. [62] address outlier detection

over multiple data streams and wireless sensor networks in particular. Otey et al.

agree with our analysis of two of the main challenges in computing outliers in a sensor

network: The impracticality of collecting all the data to one site and the dynamic nature

of the data. But their work differs from ours in that it ignores the problems associated

with partial message loss and possible sensor failure during the computation. Therefore,

the algorithms they describe use complete passes over all the (distributed) data. Such

passes require that the sensors remain active during every execution of an algorithm

and are sensitive to the dropping of even a few messages. Furthermore, the algorithms

require some form of synchronization between all sensors (in order to move from one

pass to the next) whereas ours only require the minimal level of synchronization –

between the transmitter of a message and its nearby receivers. Achieving global near-

synchronization in a wireless sensor network is not a trivial task. Finally, Otey et al.

focus on their own definition of an outlier, links-based. While this semantic may be
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suitable for some applications, we choose to focus on implementing more standard

definitions of an outlier.

Su et al. take a very different approach. They employ a more standard definition

of an outlier, kernel based density estimation, which is an approximation for distance

based density. Their work differs from ours and that of Otey at el. mainly in its as-

sumption of a hierarchical sensor network architecture in which leaders collect data

from their subject nodes. While a hierarchical architecture greatly simplifies many al-

gorithms, it is often unsuitable for real deployments of wireless sensor networks. The

leaders, almost by definition, require many more resources than their subjects and

therefore quickly deplete their power or suffer from communication congestion. When

that happens, new leaders have to be selected; much system time is thus invested in

maintaining the computational architecture. Therefore, the work of Su et al. might

be better than ours for hybrid scenarios in which some sensors (e.g., those with fixed

power connections) are naturally the leaders. Our work, in comparison, might be more

suitable for the classic scenario in which identical sensors are randomly deployed and

must self-organize to form a network.

4 Preliminaries

4.1 Outlier detection defined

Let D be a data space. Following a common approach, our outlier detection method

relies on a ranking function, R. This function maps x ∈ D and finite D ⊆ D to a

non-negative real number R(x,D), indicating the degree to which x can be regarded

as an outlier with respect to a dataset D. Some common examples of R include the

density metrics mentioned in the previous section. We assume that a fixed total linear

order, ≺, on D is used as a tie-breaking mechanism to ensure that R(., Q) creates a

total linear ordering on D for any finite Q ⊆ D.

R is assumed to satisfy the following two axioms. Given x ∈ D, for all finite

Q1 ⊆ Q2 ⊆ D: anti-monotonicity, R(x,Q1) ≥ R(x,Q2); smoothness, if R(x,Q1) >

R(x,Q2), then there exists z ∈ Q2\Q1, such that R(x,Q1) > R(x,Q1∪{z}). The anti-

monotonicity axiom is similar to the a-priori rule in frequent itemset mining [2]. The

smoothness axiom expresses the intuition that R changes gradually. As more points

are added to Q1, the rating function changes gradually to R(x,Q2). Of the examples

in the previous paragraph, all but LOF satisfy these assumptions, assuming, as we do,

the use of a tie-breaking mechanism as described in the previous paragraph.

Given n, a user-defined parameter, and a finite dataset D ⊆ D, the outliers of D

are denoted On(D) and are defined to be the top n points in D with respect to R(., D)

(if |D| < n, then On(D) is defined to be D).

4.2 Distributed system set-up

The distributed system architecture we assume consists of a collection of sensors, pi,

each producing a finite dataset Di ⊆ D. Di only contains points that originated at

sensor pi, for example, a data point associated with a measurement made by pi. Sensors

communicate by exchanging messages with their immediate neighbors as defined by

an undirected graph. We assume that messages are reliable, i.e., the sender will be
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informed if a message is not received, and each sensor pi can accurately maintain the

list of its immediate neighbors, Γi, in the graph. Our algorithms work as long as there

exists a path, possibly unknown, from each sensor to every other sensor. Note that

message reliability is difficult to fully maintain in a WSN – some message dropping is

expected. While our algorithm assumes no message dropping, the WSN simulator we

used in our experiments realistically includes message dropping. We used an end-to-

end acknowledgement mechanism to largely mitigate the effect of message dropping.

A small number of messages are still lost, but the algorithm achieves 99% accuracy.

4.3 Notation Summary

Table 1 is provided as an aid to understanding the notation we use throughout the

paper. A summarized definition is provided with each symbol listed, as well as, the

subsection where a complete definition can be found. Note that some of the symbols

listed in the table, e.g., Di
i,j , are only fully defined later in this paper.

D Space from which all data points are drawn.
R(., .) Outlier ranking function for a data point (first Section 4.1.

argument) with respect to a set of points (second).
On(.) Top n outliers in a set of data points

with respect to R(., .).

pi The ith sensor.
Γi The immediate neighbors of pi in the Section 4.2.

communication graph.
Di The data points produced by pi.
D All data points in the network.
Di

i,j The data points pi is holding that

pi sent to pj .
Di

j,i The data points pi is holding that Section 5

pj sent to pi. before 5.1.
P i All the data points pi is holding.
N(., .) The nearest neighbor of a data point (first Section 5.1.

argument) among a set of points (second).
[.|.] The support set of a data point or set of Section 5.2.

points (second argument) with respect to another
set of points (first).

⋃

j Dj [hops to i ≤ d] The union of all Dj

where the hop distance between pj and pi ≤ d.
x.hop An addition field on data point x to account

for hop distance.
x.rest The remaining fields on data point x. Section 6

before 6.1.
Q≤h The subset of data points in Q with

hop field ≤ h.
[Q]min The result of replacing all points in Q

that differ only in their hop field by
the point with the smallest hop field.

Table 1 Notation table: symbol, summarized definition, and section where complete definition
appears.
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5 Global distributed outlier detection algorithm

In this section, we describe a distributed algorithm by which sensors, each assumed

to know R and n, compute On(D) where D =
⋃

i Di (global outlier detection). In a

wireless sensor network, it can be desirable for sensors to find outliers only with respect

to the data contained in nearby sensors, rather than in the entire network (semi-global

outlier detection). In section 6, we describe how to modify the global outlier detection

algorithm to act in a semi-global manner.

At any point in time, pi keeps track of the data points it has sent to or received

from its neighbor pj at some past time. Let Di
i,j denote the set of points sent from pi

to pj , and, Di
j,i denote the set of points sent from pj to pi. Importantly, (Di

i,j ∪ Di
j,i)

denotes the data points that pi can be sure are commonly held with pj (there may

be more). Let Pi denote Di

⋃

j∈Γi
Di

j,i, the set of points pi is holding at the current

time.2 pi uses Pi to compute an estimate of the overall correct answer, On(D). The

estimate of pi is On(Pi), the set of outliers based on all the information available to pi

at the current time.

The algorithm does not assume any special sensors. Each sensor, pi, asynchronously

waits for an event to occur: (i) the algorithm is initialized, (ii) Di changes, (iii) a

message is received from a neighbor, or (iv) a link goes up/down, causing the immediate

neighborhood of pi to change (however, algorithm correctness requires that we assume

the network remain connected). Note that events for pi are entirely local and can be

detected without the aid of any other sensors beyond the immediate neighborhood.

Once pi detects an event, it will decide which of the points it is currently holding (Pi),

if sent, could cause its neighbor, pj , to change its estimate. pi then sends these points

and adds them to Di
i,j (pi carries out this process separately for all of its neighbors).

Gradually, the set of points held by each sensor becomes large enough to obtain

overlap so that each sensor’s estimate is the correct answer, On(D). This will be guar-

anteed to occur once each sensor, individually, decides that none of the points it is

currently holding need be sent to its neighbors. At this point, the algorithm is termi-

nated. To see how all of this works, consider an example.

5.1 Example

Let R be the distance to the nearest neighbor and, given x ∈ D and finite P ⊆ D,

let N(x, P ) denote the nearest neighbor of x among points in P . Given finite Q ⊆ D,

let N(Q, P ) denote
⋃

x∈Q N(x, P ). Let n = 1 and consider a network of two sensors,

pi and pj , each initially holding the following one-dimensional datasets. The correct

answer the algorithm will compute is On(D) = {0.5}.

– Di = {0.5, 3, 6, 10, 11, . . . , a}.

– Dj = {4, 5, 7, 8, 9, a + 1, a + 2, . . . , a + b}.
– D = Di ∪ Dj = {0.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, . . . , a, a + 1, . . . , a + b}.

Initially, Pi = Di, Pj = Dj , and Di
i,j = Di

j,i = D
j
i,j = D

j
j,i = ∅. For simplicity, we will

describe the algorithm in synchronous fashion starting with pi. But the ideas extend

nicely to asynchronous operation.

2 Note the distinction between Di and Pi. Di is the set of points that originated at sensor
pi, while Pi is the set of all points that pi is holding including Di and those originating at
other sensors but propagated to sensor pi through message passing.
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1. pi computes its estimate as On(Pi) = {6} and then must compute the set of its

data points that might cause pj to change its estimate if sent. We call these the

sufficient points from Pi for sensor pj . Formally, we define a set Zj ⊆ Pi to be

sufficient for pj if

[On(Pi) ∪ N(On(Pi), Pi)] ∪
[

N(On(Di
i,j ∪ D

i
j,i ∪ Zj), Pi)

]

⊆ Zj . (1)

The rationale for the first part is simple. On(Pi) is necessary for pj , because if pi is

right in its estimate, then pj ought to know about it. Moreover, pi must also send

N(On(Pi), Pi), because this allows pj to determine if any of its points can cause

the ranking of the points in On(Pi) to change.

The rationale for the second part is somewhat more complex. In brief, if pi were

to send Z ⊆ Pi to pj , then pi would also need to send N(On(Di
i,j ∪ Di

j,i ∪Z), Pi).

To avoid re-sending, pi requires that N(On(Di
i,j ∪ Di

j,i ∪ Z), Pi) be contained in

Z. To understand the reasoning for all of this, consider that (Di
i,j ∪ Di

j,i ∪ Z) is

the total set of points pi knows pj would have if Z had been sent to pj . Thus,

On(Di
i,j ∪ Di

j,i ∪Z) is the best approximation pi would have to the estimate of pj

if Z were sent to pj . Hence, pi computes its nearest neighbors to these, because, if

pi is right in its approximation, it must ensure that pj have these neighbors since

they could cause pj to change its estimate.

Getting back to our example, observe that On(Pi) ∪ N(On(Pi), Pi) = {3, 6}. More-

over, N(On(Di
i,j ∪ Di

j,i ∪ {3, 6}), Pi) = N(On({3, 6}), Pi) = {3} ⊆ {3, 6}. Hence,

Zj = {3, 6}, as this satisfies (1) above. So, pi sends {3, 6} \ (Di
i,j ∪ Di

j,i) = {3, 6}

and updates Di
i,j to {3, 6}.

2. pj will receive these points and update D
j
i,j to {3, 6} (currently D

j
j,i = ∅). It is thus

implicit that Pj now denotes Dj ∪D
j
i,j = {3, 4, 5, 6, 7, 8, 9, a+1, a+2, . . . , a+b}. pj

computes On(Pj) ∪ N(On(Pj), Pj) = {3, 4} (assuming appropriate tie-breaking).

Moreover, it can be seen that this satisfies (1). So, pj sends {3, 4} \ (Dj
i,j ∪ D

j
j,i)

= {3, 4} \ {3, 6} = {4} and updates D
j
j,i to {4}.

3. pi receives these points and updates Di
j,i to {4} (currently Di

i,j = {3, 6}). It is thus

implicit that Pi now denotes Di ∪ Di
j,i = {0.5, 3, 4, 6, 10, 11, . . . , a}. pi computes

On(Pi) ∪ N(On(Pi), Pi) = {0.5, 3}. Moreover, it can be seen that this satisfies (1).

So, pi sends {0.5, 3} \ (Di
i,j ∪Di

j,i) = {0.5, 3} \ {3, 4, 6} = {0.5} and updates Di
i,j

to {0.5, 3, 6}.
4. pj will receive these points and update D

j
i,j to {0.5, 3, 6} (currently D

j
j,i = {4}).

It is now implicit that Pj now denotes Dj ∪ D
j
j,i = {0.5, 3, 4, 5, 6, 7, 8, 9, a + 1, a +

2, . . . , a + b}. pj computes On(Pj) ∪ N(On(Pj), Pj) = {0.5, 3}. Moreover, it can

be seen that this satisfies (1). So, pj sends {0.5, 3} \ (Dj
i,j ∪ D

j
j,i) = {0.5, 3} \

{0.5, 3, 4, 6} = ∅. In other words, nothing is sent.

At this point the algorithm has terminated, both sensors are waiting for an event to

occur, and there are no messages in flight. Pi and Pj denote {0.5, 3, 4, 6, 10, 11, . . . , a}
and {0.5, 3, 4, 5, 6, 7, 8, 9, a + 1, a + 2, . . . , a + b}, respectively. Therefore On(Pi) =

{0.5} = On(Pj), which in turn, equals the correct answer On(D). Observe that the

total amount of communication (data points sent) was 4. The naive approach, which

centralized all the data on either pi or pj , requires min{a−6, b+5} communication.

For large min{a, b}, the distributed algorithm requires much less communication.
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5.2 The algorithm

To translate the previous example into a formal algorithm for general R (satisfying the

anti-monotonicity and smoothness axioms), we must provide some definitions general-

izing the role of N(., .). Given x ∈ D and finite P ⊆ D, Q1 ⊆ P is called a support set

of x ∈ D over P if R(x, P ) = R(x,Q1). Intuitively, we can see that all other points

from P can be discarded without affecting the rank of x. Using cardinality and the

tie-breaking mechanism discussed earlier (≺ a total linear order on D), we can define a

unique, smallest support set of x with respect to P , denoted [P |x].3 Given Q ⊆ P , let

[P |Q] denote
⋃

x∈Q[P |x]. In the previous example, R was the distance to the nearest

neighbor, so, [P |x] equaled N(x, P ) using ≺ to break ties.

With these more general definitions, we define a set Zj ⊆ Pi to be sufficient for pj

if

(On(Pi) ∪ [Pi|On(Pi)]) ∪
(

[Pi|On(Di
i,j ∪ D

i
j,i ∪ Zj)]

)

⊆ Zj . (2)

Due to the broadcast nature of wireless sensor network communication, pi cannot send

points to one immediate neighbor without the other neighbors receiving them as well.

In light of this, the algorithm accumulates all points (tagged with recipient IDs) to be

sent to all immediate neighbors in a single packet, M . When an immediate neighbor,

pj , receives M , the neighbor extracts those points that are tagged with ID j. If no

points are tagged as such, pj does not regard receipt of M as an event.

pi detects an event if one of the following occurs: (i) the algorithm is initialized,

(ii) Di changes, (iii) M is received and contains points tagged with i (i.e., points

are received from a neighbor), or (iv) a link goes up/down, causing pi’s immediate

neighborhood to change (however, algorithm correctness requires that we assume the

network remain connected). In response, pi carries out the following algorithm whose

pseudo-code is given in the “Global Outlier Detection” Figure. First, Pi is updated to

account for all pj from which points were received in M . Only points not already in

Pi are added to Di
j,i. The first two steps in the main for-loop (“For each j ∈ Γi, do”)

compute a Zj satisfying Equation (2), although the result is not guaranteed to be the

smallest set to do so. The “If....then” in the main for-loop tests whether there are any

points found sufficient for pj that pi cannot already be sure pj has, i.e., points in Zj

but not in Di
j,i ∪ Di

i,j . If any such points are found, they are added to M along with

their recipient ID j.

5.3 Streaming data and peer addition/deletion

We now extend the algorithm to one supporting a sliding window over a stream of

data sampled at each sensor. To support this, we assume each point is time-stamped

when it is sampled. We further assume that sensor clocks are synchronized to the extent

required by the application for whom outlier detection is a preceding step. Thus, sensor

pi can delete all points in Pi (regardless of where they were originally sampled) once

their time-stamp indicates they have expired.

The algorithm still needs to be modified to accommodate the addition of sensors

during operation. All that is required is to treat the arrival of a new sensor as an event

3 Formally, given Q1, Q2 ⊆ P support sets of x with respect to P , Q1 is smaller than Q2 if
|Q1| < |Q2| or (|Q1| = |Q2| and Q1 is lexicographically smaller than Q2 with respect to ≺).



13

Fig. 2 Global Outlier Detection
Algorithm 1

– Set M = ∅, and, update Pi accounting for all neighbors pj from which points were
received. For each point x received from pj , do the following. If x is not already Pi, then
add x to Di

i,j .

– For each j ∈ Γi, do
– – Set Zj = On(Pi) ∪ [Pi|On(Pi)].
– – Repeat until no change: Zj = Zj ∪ [Pi|On(Di

i,j ∪ Di
j,i ∪ Zj)].

– – If Zj \ (Di
i,j ∪ Di

j,i) is non-empty, then

– – – Append 〈j, Zj \ (Di
i,j ∪ Di

j,i)〉 to M .

– – – Add points in Zj \ (Di
i,j ∪ Di

j,i) to Di
i,j .

– – End If.
– End For.
– If M is non-empty, broadcast it to all sensors in Γi.

end

for the new sensor and for all its immediate neighbors. The algorithm can also be

modified to accommodate the removal of sensors (e.g., when their battery is depleted),

assuming that the network remains connected. In the sliding window model, a simple

strategy is to merely allow points that originated with the removed sensor to age out

of the window. The consequence of that would be that the result would not be the

same as would be computed from the data of all active sensors. This usually poses no

practical problem. A more general and complex solution is to propagate messages into

the network, causing sensors to explicitly delete those points that originated with the

removed sensor. We leave the details of this approach to future work.

5.4 Algorithm correctness

The correctness of the algorithm can be proved in the following sense: if the data and

network links remain static (and the network is connected), then communication will

eventually stop, at which point all the sensors’ outlier estimates will equal On(D). This

does not mean that the algorithm cannot handle dynamic changes or network links; it

merely means that the algorithm will respond to such changes or links by converging

to the correct answer. Since convergence takes time, and since during that time further

changes are possible convergence to a globally correct value is only assured on the

condition that the data and network remain unchanged long enough.

It is easy to see that, barring changes in the data or network, the algorithm will

always terminate. So, the proof proceeds in two steps. First, upon termination, all sen-

sors have the same outlier estimates and support (Theorem 1). Second, the consistent

estimates shared by all sensors are indeed the correct ones (Theorem 2). Proofs of

Theorems 1 and 2 are provided in Appendix A.

Theorem 1 Assuming a connected network, if for all sensors pi, Di and Γi do not

change, then upon termination of the algorithm, all sensors’ outlier estimates and sup-

ports agree. I.e., for all pi, pj , On(Pi) = On(Pj) and [Pi|On(Pi)] = [Pj |On(Pj)].

Theorem 2 Assuming a connected network, if for all sensors pi, Di and Γi do not

change, then upon termination of the algorithm, all sensors’ outlier estimate will be

correct. I.e., for all pi, On(Pi) = On(D).
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Comments: 1) Theorem 1 holds without the smoothness axiom; hence, for any anti-

monotonic R, upon convergence, all sensors will agree on their outlier estimate and

support. However, without the smoothness axiom, Theorem 2 does not hold, i.e., the

consistent outlier estimates might not be the correct ones. Counter-examples exist

showing how an anti-monotonic but not smooth R causes the algorithm to terminate

without all sensors agreeing upon the correct set of outliers.

2) For an arbitrary R, it is not clear how to efficiently compute [P |x] and we do

not address the issue. However, efficient computation is straightforward for the R we

consider in our experiments: average distance to the kth nearest neighbor.

3) The correctness proof requires reliable communication, e.g., no message drop-

ping. The WSN simulator we used in our experiments includes message dropping. We

used an end-to-end acknowledgement mechanism to largely mitigate the effect of mes-

sage dropping, and the algorithm achieved 99% accuracy.

6 Semi-Global Distributed Outlier Detection Algorithm

For many applications, computation only takes into account samples which were taken

close to one another. In such applications outliers should also be computed respective

to the data sampled by nearby sensors, rather than by the entire network. In this

section, we describe how to modify the global outlier detection algorithm to act in

a semi-global manner. Under this approach, each sensor computes outliers only from

within those points sampled in its spatial proximity.

To account for spatial locality, we use hop distance: the number of hops between

two sensors along their shortest path in the underlying communication network. Given

integer d and sensor pi, let
⋃

j Dj [hops to i ≤ d] denote the union of all Dj such that pj

and pi have hop distance no greater than d. The semi-global outlier detection problem

requires each pi to compute On(
⋃

j Dj [hops to i ≤ d]). Setting d to infinity yields the

global outlier detection problem discussed earlier.

To account for hop distance, each data point x has an additional field x.hop (at

birth x.hop is set to zero). Let x.rest denote all the remaining fields – these are the

ones used by the rating function R. Given a set of points Q, for 0 ≤ h ≤ d, let Q≤h

be the set of points x ∈ Q with x.hop ≤ h. Let [Q]min be the result of replacing all

points that differ only in their hop field by the point with the smallest hop field. For

example, consider Q = {w, v, x, y, z} where w.rest = v.rest, x.rest = y.rest = z.rest,

and v.rest 6= x.rest. If w.hop < v.hop and x.hop < y.hop, z.hop, then [Q]min = {w, x}.

6.1 Semi-global outlier detection algorithm

The basic idea of the semi-global outlier detection algorithm is that each sensor pi

will run the global outlier detection algorithm over only those points arising on sensors

within d hops. At first glance, the following simple modification of the global algorithm

seems adequate. Before pi sends a copy of a point, x, to its neighbors, it first increments

x.hop and sends only if x.hop ≤ d. Unfortunately, such a simple modification will

not work. It does not take into account the fact that x must not have any effect on

the outlier determination process of sensors pj whose distance from pi is more than

d − x.hop. Examples can be demonstrated wherein this omission causes an incorrect

overall result.
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Fig. 3 Semi-Global Outlier Detection
Algorithm 2

– Set M = ∅, and, update Pi accounting for all neighbors pj from which points were
received. For each point x received from pj , do the following. If there does not exist y in
Pi with x.rest = y.rest, then add x to Pi (and update Di

i,j), otherwise if x.hop < y.hop,

then replace y with x in Pi (updating as needed Di and Di
f,i

for each f ∈ Γi).

– For each j ∈ Γi, do
– – For h = 0 to d − 1
– – – Set Zh

j = On(P≤h
i ) ∪ [P≤h

i |On(P≤h
i )].

– – – Repeat until no change: Zh
j = Zh

j ∪ [P≤h
i |On(Di,≤h

i,j ∪ D
i,≤h
j,i ∪ Zh

j )].

– – – Increment the hop field for each point in Zh
j .

– – End For.

– – Set Zj =
[

⋃d−1

h=0
Zh

j

]min
.

– – Remove points x from Zj such that there exists y ∈ (Di
i,j ∪Di

j,i) with x.rest = y.rest

and y.hop ≤ x.hop.
– – If Zj is non-empty, then
– – – Append 〈j, Zj〉 to M .
– – – Update Di

i,j by adding the points in Zj .

– – End If.
– End For.
– If M is non-empty, broadcast it to all sensors in Γi.

end

To avoid this problem, pi must partition Pi into d parts: P
≤h
i for 0 ≤ h ≤ d − 1.

For each of these parts, the global outlier detection algorithm is applied independently.

Upon detecting an event (defined as before), pi executes the algorithm whose pseudo-

code is given in Figure 2.

First, Pi is updated to account for all pj from which points were received in M .

Because of the hop fields, the update step is somewhat more complicated than that

of the global outlier detection algorithm. A point x from pj is added to Di
j,i if there

does not exist y ∈ Pi with x.rest = y.rest (x does not already appear in Pi). Or, if

there does exist y ∈ Pi with x.rest = y.rest, but x.hop < y.hop, then x replaces y in

Pi (updating as needed Di and Di
f,i for each f ∈ Γi). Note that there cannot be more

than one y with the same rest fields as x since all but the point with the smallest hop

would have been removed earlier.

Next, for each neighbor pj and each 0 ≤ h ≤ d − 1, a set Zh
j is computed which

satisfies (2) with Zj , Pi, Di
i,j , and Di

j,i replaced by Zh
j , P

≤h
i , D

i,≤h
i,j , and D

i,≤h
j,i ,

respectively. This computation is done by the first steps inside the nested for loops.

Then, the hop field for each point in Zh
j is incremented in preparation for sending to

pj .

Once all 0 ≤ h ≤ d − 1 have been processed for pj (the inner for loop completes),

Z1

j · · ·Zd−1

j are unioned and redundancies are eliminated. For any pair of points x, y

in
⋃d−1

h=0
Zh

j , if x.rest = y.rest and x.hop < y.hop, then y is dropped (this action

is signified by the ‘min’ superscript in the step immediately after the inner for loop).

Then, all points x are removed from Zj if there exists a point y in (Di
i,j ∪Di

j,i) with the

same rest fields but y.hop ≤ x.hop. If the resulting Zj is non-empty, then these points

are added to M (along with ID j) for broadcast to neighbors, and Di
i,j is updated by

adding the points in Zj .
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7 Performance Evaluation

7.1 Experimental setup

We used the SENSE wireless sensor network simulator [20] to evaluate the performance

of the global and semi-global outlier detection algorithms. Specifically, we analyzed

the following metrics: (1) the accuracy of the algorithms in detecting outliers; (2) the

average energy consumption per node per sampling period, as well as its breakdown

to transmission related, and reception related consumption; and (3) the minimum and

maximum energy consumption in the network. We observed both the global and semi-

global outlier detection algorithms to be highly accurate; nodes converged upon the

correct results approximately 99% of the time. We attribute any detection error to

dropped packets (despite the ”end-to-end” acknowledgement mechanism being used).

Since average detection accuracy was consistent across all simulation parameters, we

did not include any accuracy-related plots.

Various scenarios were used to analyze the performance of our algorithms. First,

we compared our algorithms’ energy consumption to that of a purely centralized out-

lier detection algorithm. Here, all nodes periodically sent their sliding window contents

to a central node, which detected outliers using the unioned data sets and returned

the outliers back to the nodes. For simplicity, we configured the centralized algorithm

to calculate only global outliers because for this algorithm, energy consumption is in-

dependent of whether global or semi-global outliers are detected. Also, all algorithms

(including the centralized solution) were evaluated using the following two outlier rank-

ing functions (R, in our terminology): distance to nearest neighbor (NN) and average

distance to k nearest neighbors (KNN).

We chose a centralized algorithm for our comparison because, to the best of our

knowledge, there exist no comparable distributed solutions for WSN outlier detection.

We find such a comparison to still be valid as many WSN deployments continue to

employ centralized configurations, citing ease of administration as well as maintenance

of a single (and ”standard”) point of interface with the growing number of applications

and systems in the sense-and-respond computing domain. Such reasons, however, do

not preclude the utility of a distributed algorithm such as ours, since it remains very

useful as a general data processing solution for a wide range of applications, centralized

are not.

For our data sets, we used real-world recorded sensor data streams from [35], in

which distributed data samples are both spatially and temporally correlated. The data

set is composed of a series of data samples describing environmental phenomena such as

heat, light, and temperature from 53 sensors which periodically transmitted individual

data samples to a central base station. The data set has some missing data points, which

to the best of our knowledge is largely due to packet loss. Following accepted practices,

we replaced missing data points with the average values of the data points within the

sliding windows that preceded the missing points. This helped retain the temporal

trends of the data streams. The data points contained the following features: (1) ID of

the sensor that produced the data point; (2) epoch (sequential number denoting the

data point’s position in the sensor’s entire stream); (3) data value (we specifically used

temperature); and (4) x,y location coordinates. We used the data points’ temperature

value and location coordinates as inputs into the outlier rating functions. The location

coordinates can represent the place where the measurements were taken or an estimate

of a target’s position or some other spatial information. It is important to note that
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Fig. 4 53 node network topology (from [35]) used in all simulations reported.

these coordinates are attributes of the data on which our algorithm works in the exam-

ple. They might become erroneous or anomalous just like any other data attribute, due

to inaccurate initialization, power degradation, or a transmission error. The algorithm

itself, however, would work the same regardless of whether such coordinates are given.

We originally simulated two networks, one containing all of the 53 nodes, with each

node placed according to the coordinates in the data (thus matching the real topology

from [35]), and the other containing 32 randomly selected nodes. By comparing the two

networks we intended to study the scale-up properties of the algorithms. However, since

the simulations revealed no real performance difference between the two networks, we

eventually chose to only include results from the simulation of the full, 53 node network.

The topology of the network is shown in Figure 4.

The terrain dimensions in our network simulation are 50m×50m. Most hardware

specifications claim that a sensor node’s transmission range typically reaches up to ap-

proximately 250m, when properly elevated. However, when placed on the ground the

reported ranges are much smaller [73] and, for reliable indoor communication using

Crossbow motes, the effective range drops to a few meters [66]. Therefore, we con-

figured all nodes to have a uniform transmission range of approximately 6.77m. We

also used the hardware energy model based on the Crossbow mote specifications [24],

with a transmit/receive/idle power setting of 0.0159W/0.021W/3e-6W (assuming a 3V

power source). We simulated the wireless transport medium using the free-space signal

propagation model.

Two protocols were used for routing. For the distributed algorithms, we used simple

broadcast (as opposed to unicast) transmission with promiscuous listening that allowed

all nodes to send data points to all their adjacent neighbors using one transmission.

For the centralized algorithm, we used the well-accepted AODV [52] wireless routing

protocol for multi-hop communication. We note that a simple end-to-end acknowledg-

ment mechanism was also used to reinforce reliable communication. While alternative

protocols do exist for more data-centric and energy-efficient communication, our main

goal was straightforward comparison of the algorithms without having to balance the

various advantages of each.
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All simulations were run for 1000 seconds of simulated time and were repeated up

to 12 times using different random number generator seed values to obtain averaged

results (most results are based on 12 simulation runs, some were based on 6). Error bars

are included with each point in each plot showing 95%, Student’s T, confidence intervals

(some bars are very small and appear not to be present). As shown in the following plots

(and the tables in Appendix B), we collected results for different values of the following

algorithm parameters: (1) the length of the node’s sliding window, w ; and (2) the

number of outliers to be reported, n. Additionally, for the distributed localized outlier

detection algorithm, the hop diameter was varied from one to three. Plot data are

labeled as follows: (1) Centralized for results obtained with the centralized algorithm;

(2) Global−NN and Global−KNN for results obtained using distributed global outlier

detection with NN and KNN outlier detection ranking functions (R), respectively; and

(3) Semi−global, epsilon = x for all results obtained using distributed localized outlier

detection with hop diameter x. For brevity, we will often refer to the different algorithms

by these labels.

7.2 Experimental results

The numbers (averages, confidence intervals) from all of the following plots are dis-

played in tables in Appendix B.

7.2.1 Effect of sliding window size

Figure 5 compares network energy consumption per sampling interval with increasing

w but n and k fixed at 4. Here, we show separate plots for transmission (TX) and

reception (RX) energy for the reader who is interested in the disparity between the

energy consumption due to different radio operations. We note that data points are

missing for Global-KNN at w=40, due to a computational limitation of our simulator.

However, preliminary results based on similar simulations and statistics are shown

in [17]. Since the trends between both sets of results are nearly identical for the non-

missing data points, it is reasonable to extrapolate the values of the missing points

here.

Both figures show that as w increases, Global-NN is the only algorithm that reduces

its energy consumption. Figure 5 shows that Global-NN eventually becomes the most

energy-efficient solution given the domain of w. We attribute Global-NN’s reduction

in energy consumption to an increase in incoming data redundancy as the size of the

sliding window increases. Since Global-NN only uses one supporting point to determine

an outlier, the probability of finding new outliers or supports with this scheme in each

new time interval as the sliding window increases is low.

Global-KNN and Centralized consume, as can be seen in Figure 5, more energy as

w increases. However, given comparable results in [17], we can extrapolate that Global-

KNN’s energy consumption is a concave increasing function of w, whereas Centralized’s

is a convex increasing function, which makes the latter comparatively less energy-

efficient in that it approaches a point of network failure at a higher rate. By contrast,

the energy trend for Global-KNN for this data set indicates that when global outliers

are defined by multiple supporting points (in this case 4), the increasing time interval

from which the points are chosen has a less drastic effect on the number of messages

required for the algorithm to converge. Overall, in cases where a user prefers to use a
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Fig. 5 Average transmission and reception energy consumption per node per sample interval
vs. w (n=4, k=4) for global outlier detection.

higher number of supporting points and a larger sliding window to define outliers, the

energy consumption of Global-KNN will be higher, but it is still more energy efficient

than Centralized.

Balanced energy consumption is important for the longevity of a sensor network

as an operating system. Figure 6 compares the minimum, average, and maximum

energy consumption for a sensor node as w increases. This view further accentuates

the advantage of using the Global-NN outlier detection solution over Centralized for

large window sizes. In Centralized, some motes consume by far more energy than others.

This would lead, in a real application to the quick depletion of their energy. Since those

motes usually consume that much energy because they are critical to the algorithm, this

would endanger the livelihood of the system. Another observation is that the range of

energy consumption for different motes running the same detection algorithm is larger

for the centralized solution than for the distributed solution. Figure 7 illustrates this

clearly by showing the values from Figure 6, normalized with respect to the average

energy consumption. For w=10, the most energy consuming node consumed nearly

three times more energy than the average node in a centralized algorithm and less

than twice the energy of the average node in both distributed algorithms.

For the partial information for w=40, the normalized range of energy consumption

is actually lower for the centralized algorithm than for the distributed one. However,

referring back to Figure 6, we see that the average energy consumption for a node in
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Fig. 6 Average, minimum, and maximum energy consumption of a node for global outlier
detection.

the centralized case is much higher than for the distributed case. Hence, in this case,

the normalized maximum value does not convey the full picture of energy quality of

the compared algorithms.

The plots in Figure 8 compare energy consumption rates for the centralized and

distributed localized outlier detection algorithms. Since the results of using NN and

KNN outlier detection methods are nearly identical, only results for the former are

shown. Again, the centralized algorithm consumes much more energy per sample in-

terval than the distributed algorithms. For the distributed localized algorithms, the
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Fig. 7 Normalized average, minimum, and maximum amount of energy consumed by a node
for global outlier detection.

rate of energy consumption increases along with the values of epsilon (the hop range).

This is expected because, as epsilon increases, so does the message passing overhead

as data points travel farther from their place of origin. The behavior of the distributed

algorithm in the localized case for nearest neighbor outlier detection is similar to that

of global case for the same detection method. Energy consumption generally decreases

as w increases. As before, we attribute this behavior to the increased data redundancy

as the size of the sliding window increases. In general, the extent of the spatial area
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Fig. 8 Average transmission and reception energy consumed per node per sample interval vs.
w (n=4) for localized outlier detection using nearest neighbor outlier detection.

over which outliers are defined affects the energy consumption trends of the algorithm,

but not notably.

7.2.2 Effect of the number of reported outliers

We now investigate how the number of outliers produced affects energy consumption.

Figure 9 illustrates the performance of the localized outlier detection algorithms under

increasing values for n for KNN outlier detection. Similar plots for NN detection are

omitted due to space restrictions and similarity of results; NN detection is negligibly less

energy efficient most likely due to a lower rate of convergence. The energy consumption

trends for these algorithms are straightforward and expected. Energy consumption

increases along with both n and epsilon, which both cause more message passing

overhead with increasing value. We also noticed that the rate of increase was related

to epsilon. This is expected since the effects of larger epsilon and n values on energy

consumption compound one another.
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Fig. 9 Average transmission and reception energy consumption per node per sample interval
vs. n (w=20, k=4) for localized outlier detection using k nearest neighbor outlier detection.

8 Conclusions

We addressed the problem of unsupervised outlier detection in WSNs. Our solution

offers flexibility in the heuristic used to define outliers and computes the results in-

network to reduce bandwidth and energy consumption. Its use of single-hop commu-

nication permits very simple node failure detection and message reliability assurance

mechanisms. Dynamic data updates are also seamlessly accommodated by our method.

We evaluated the outlier detection algorithm’s behavior on real-world sensor data

using a simulated wireless sensor network. These initial results show promise for our

algorithm in that it outperforms a strictly centralized approach under some very im-

portant circumstances. When the unabridged data from the entire sensor network are

sent to a single location, the node collecting this data as well as its nearest neighbors

become a bottleneck of the entire system. Indeed, the density of traffic in this region

is proportional to the area of coverage of the entire network while the average node

has traffic density proportional to the area covered by its communication range. In

the example simulated in the paper, the traffic in the area of the collecting node was

about 50 times more dense than in the other parts of the network. The immediate

consequence can be shorter system lifetime, as the battery operated nodes closest to

the collection point will die of energy exhaustion while the nodes farthest from the

collection point will still have a lot of energy left. This is simply the result of uneven
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spatial distribution of paths through which data are collected. If all nodes, except the

central node, are battery operated, the least used nodes will have only 2% of energy

used when the most used nodes will start dying. The second consequence of the im-

balance is traffic congestion, which leads to interferences and message-collision. Fewer

messages are accepted the first time they are transmitted and the algorithm will either

degrade the quality of the outcome or would be forced to expand greater effort, costlier

protocols, and more energy, to make sure messages are eventually delivered. In short,

using the centralized algorithm with its inordinately imbalanced traffic density will

put even the best routing protocols under severe stress. Our distributed and localized

outlier detection algorithms avoid these difficulties.

Our approach is well suited for applications in which the confidence of an outlier

rating may be calculated by either an adjustment of sliding window size or by the

number of neighbors used in a distance-based outlier detection technique. These ap-

plications are critical for resource-constrained sensor networks for two reasons. First,

communication is a costly activity: only the most accurate data should be transmitted

to a client application. Second, emerging safety-critical applications that utilize wire-

less sensor networks will require the most accurate data, including outliers. This work

represents our contribution toward enabling efficient data cleaning solutions for these

types of applications.
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A Appendix: Correctness Proofs for the Global Outlier Detection

Algorithm

In this section, we provide detailed proofs of Theorems 1 and 2. Before doing so, a few technical
lemmas are needed. The first two isolate a couple of useful properties following from the axioms
of R.
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Lemma 1 For any P ⊆ Q ⊆ D where |P | ≥ n, if On(P ) 6= On(Q), then there exists x ∈
On(P ) such that R(x, P ) > R(x, Q).

Proof Assume On(P ) 6= On(Q). Since |On(P )| = |On(Q)| = n, then there exists x ∈ (On(P )\
On(Q)) and y ∈ (On(Q) \On(P )). Recall that we assume a tie-breaking mechanism is used to
ensure R(.P ) and R(., Q) are one-to-one. Thus, by definition of On(.) it follows that R(x, P )
> R(y, P ) and R(y, Q) > R(x, Q). The anti-monotonicity axiom implies R(y, P ) ≥ R(y, Q),
yielding the desired result. ut

Lemma 2 For any P ⊆ D, x ∈ On(P ), and z ∈ P , we have R(x, P ) = R(x, [P |On(P )]) =
R(x, [P |On(P )] ∪ {z}).

Proof Since, by definition, [P |x] ⊆ [P |On(P )] ⊆ ([P |On(P )] ∪ {z}) ⊆ P , then by the anti-
monotonicity axiom it follows that

R(x, P ) = R(x, [P |x])

≥ R(x, [P |On(P )])

≥ R(x, [P |On(P )] ∪ {z})

≥ R(x, P ).

ut

The last technical lemma shows that once a sensor pi completes its local computation, then
(Di

i,j ∪ Di
j,i) contains a particular crucial set of points (among others) needed for consistency

among sensors’ outlier estimates.

Lemma 3 For any pi, once the main for-loop in the algorithm completes, [Pi|On(Di
i,j∪Di

j,i)]

⊆ (Di
i,j ∪ Di

j,i).

Proof Let Di
i,j(before) denote the set of points held by pi and sent from pi to pj immediately

before the execution of the “Repeat until no change: ...” step in the main for loop for j ∈ Γi.
For ` ≥ 1, let Zj(`) denote Zj immediately before the `th iteration in the execution of the
“Repeat until no change ...” step in the main for loop for j ∈ Γi, e.g., Zj(1) = On(Pi) ∪
[Pi|On(Pi)].

By definition, Zj(`) ⊆ Zj(` + 1) ⊆ Pi and Pi is finite. Thus, let `∗ denote the smallest
integer such that Zj(`∗ −1) = Zj(`∗). Hence, the “Repeat until no change ...” step terminates
at the end of iteration `∗ and Zj = Zj(`∗) in the remainder of the main for loop. Therefore,

Zj(`
∗) = Zj(`

∗) ∪ [Pi|On(Di
i,j(before) ∪ Di

j,i ∪ Zj(`
∗))]

and

Di
i,j ∪ Di

j,i = Di
i,j(before) ∪ Di

j,i ∪ Zj(`
∗).

It follows that [Pi|On(Di
i,j ∪ Di

j,i)] ⊆ Zj(`∗) ⊆ (Di
i,j ∪ Di

j,i). ut

Now we prove that upon termination of the algorithm, the sensors’ estimates are consistent.
Theorem1 Assuming a connected network, if for all sensors pi, Di and Γi do not change,

then upon termination of the algorithm all sensors’ outlier estimates and supports agree. I.e.,
for all pi, pj , (i) On(Pi) = On(Pj) and (ii) [Pi|On(Pi)] = [Pj |On(Pj)].

Proof Since the network is connected, we may assume, without loss of generality, that pi and pj

are neighbors. To prove part (i), we will show that On(Pi) = On(Di
i,j ∪Di

j,i) = On(Dj
i,j ∪D

j
j,i)

= On(Pj). The middle equality follows from the fact that (Di
i,j ∪ Di

j,i) = (Dj
i,j ∪ D

j
j,i). By

symmetry, it suffices to show the first equality.
Suppose On(Pi) 6= On(Di

i,j ∪ Di
j,i). The following contradiction is reached. There exists

x ∈ On(Di
i,j ∪ Di

j,i) such that
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R(x, Di
i,j ∪ Di

j,i) > R(x, Pi)

= R(x, [Pi|x])

≥ R(x, [Pi|On(Di
i,j ∪ Di

j,i)])

≥ R(x, Di
i,j ∪ Di

j,i).

The first inequality follows from Lemma 1 (with P = (Di
i,j ∪Di

j,i) and Q = Pi). The equality

follows from the definition of support [.|.]. The last two inequalities follow from the anti-
monotonicity of R and Lemma 3.

To prove part (ii) [Pi|On(Pi)] = [Pj |On(Pj)], it suffices to show that for any x ∈ On(Di
i,j ∪

Di
j,i), it is the case that [Pi|x] = [Pj |x]. This is because On(Pi) = On(Di

i,j ∪Di
j,i) = On(Pj).

We will prove that [Pi|x] = [Pi ∩ Pj |x] = [Pj |x]. By symmetry it is enough to show the first
equality.

From Lemma 3 it follows that

[Pi|x] ⊆ [Pi|On(Di
i,j ∪ Di

j,i)]

⊆ (Di
i,j ∪ Di

j,i)

⊆ (Pi ∩ Pj).

Thus, anti-monotonicity implies R(x, Pi) ≥ R(x, [Pi|x]) ≥ R(x, Pi ∩ Pj) ≥ R(x, Pi), and so,

R(x, Pi) = R(x, [Pi|x]) = R(x, Pi ∩ Pj).

Therefore, [Pi|x], [Pi ∩ Pj |x] are support sets of x with respect to Pi ∩ Pj and Pi. Since
[Pi|x] ([Pi ∩ Pj |x]) is the unique smallest support set for x with respect to Pi (Pi ∩ Pj), then
it follows that [Pi|x] = [Pi ∩ Pj |x]. ut

Finally, we prove that upon termination the sensors’ estimates are equal to the correct answer.
Theorem2 Assuming a connected network, if for all sensors pi, Di and Γi do not change,

then upon termination of the algorithm, all sensors’ outlier estimate will be correct. I.e., for
all pi, On(Pi) = On(D).

Proof Suppose there exists a sensor pi such that On(Pi) 6= On(D). By Lemma 1 (with P =
Pi and Q = D), there exists x ∈ On(Pi) such that R(x, Pi) > R(x, D). Moreover, the first
equality in Lemma 2 (with P = Pi) implies that R(x, [Pi|On(Pi)]) = R(Pi, x).

Since R(x, [Pi|On(Pi)]) > R(x, D), then the smoothness axiom (with Q1 = [Pi|On(Pi)]
and Q2 = D), implies there exists z ∈ (D \ [Pi|On(Pi)]) such that

R(x, [Pi|On(Pi)]) > R(x, [Pi|On(Pi)]) ∪ {z}).

This point z must be contained in Pj for some sensor pj . Hence, the following inequality
is reached.

R(x, [Pi|On(Pi)]) > R(x, [Pi|On(Pi)] ∪ {z})

= R(x, [Pi|On(Pj)] ∪ {z})

= R(x, [Pj |On(Pj)])

= R(x, [Pi|On(Pi)]).

The inequality above leads to a contradiction: The first equality follows from Theorem 1 part
(i). The middle equality follows from the second equality of Lemma 2 (with P = Pj and noting
that On(Pj) = On(Pi) by Theorem 1 part (i)). The last equality follows from Theorem 1 part
(ii). ut
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B Appendix: Experimenatal Results Tables

.
The numbers (averages, confidence intervals) that were used to generate the experimental

results plots shown earlier are contained in the following tables.
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