
Improving Spatial Locality of Programs via Data Mining ∗

Karlton Sequeira, Mohammed Zaki, Boleslaw Szymanski, Christopher Carothers
Computer Science Department, Rensselaer Polytechnic Institute, Troy, NY, USA

{sequek,zaki,szymansk,chrisc}@cs.rpi.edu

ABSTRACT
In most computer systems, page fault rate is currently min-
imized by generic page replacement algorithms which try to
model the temporal locality inherent in programs. In this
paper, we propose two algorithms, one greedy and the other
stochastic, designed for program specific code restructuring
as a means of increasing spatial locality within a program.
Both algorithms effectively decrease average working set size
and hence the page fault rate. Our methods are more effec-
tive than traditional approaches due to use of domain in-
formation. We illustrate the efficacy of our algorithms on
actual data mining algorithms.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining

Keywords
Program Locality, Code Restructuring, Page Clustering

1. INTRODUCTION
A computer has fast, relatively small (expensive) main

memory (RAM), and slow, relatively large secondary mem-
ory (hard disk). A large program may thus not completely
fit into RAM. To remedy this, a program is considered to
be made up of fixed-size blocks of memory called pages. To
execute an instruction the page containing that instruction
must reside in RAM. If it does not, a page fault is said to
occur. If RAM is currently completely occupied, a page may
be selected from those resident in RAM for replacement and
sent to disk, and the desired page will occupy its position
in RAM. The page is then referenced and the instruction is
executed. The fraction of times a page fault accompanies a
page reference is called the page fault rate (pfr). Program
execution time is governed by a number of factors, among

∗This work was supported under NSF NGSP grant EIA-
0103708. Zaki was also supported by NSF CAREER Award
IIS-0092978 and DOE Career Award DE-FG02-02ER25538.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD ’03, August 24-27, 2003, Washington, DC, USA
Copyright 2003 ACM 1-58113-737-0/03/0008 ...$5.00.

which pfr plays a prominent role. While pfr can be reduced
by a number of operating system and hardware techniques,
specialized software-based techniques, which exploit locality
specific to a program are yet to be widely used.

Although the cost of main memory has been continually
decreasing, the resulting gains have been mitigated by the
continual rise in program memory requirements (by as large
a factor as 2 per year [14]). Also, due to fields like sensor net-
works [2], there remains a need for programs to run in small
amounts of memory (for energy efficiency). A well-known
rule of thumb is that a program spends approximately 90%
of its execution time in 10% of the code [14]. This is a
manifestation of the principle of temporal locality. Since
this 10% of code is not necessarily contiguous in memory, a
program spends that 90% of its execution time requesting
considerably more than 10% of its total number of pages.
One of the key program-specific ideas is to utilize the tem-
poral locality to optimize program spatial locality, i.e., the
portions of a program’s code segment are reordered in the
pages of the executable to increase spatial locality. In do-
ing so, a fewer number of pages are requested more often,
thereby decreasing the average working set size correspond-
ing to the program and hence decreasing the pfr.

Program spatial locality optimization is the specific prob-
lem we seek to solve. It is related to the constrained clus-
tering problem. Several challenges to cope with include:
determining what data to collect, selecting the data model
to represent it, dealing with an unknown distribution of in-
put parameters and making the solution applicable to the
widest possible range of programs (which means that heuris-
tics used should not be program-specific).

1.1 Related Work
The early work done on program restructuring concen-

trated on sector-level traces. Hatfield and Gerald [8] achieved
paging performance improvements in the range of 2 to 10
times by relocating sectors (subroutine and data modules)
of compilers, editors and assemblers. Johnson [11], provided
an array of clustering algorithms and inter-sector reference
models. He also formally analyzed the impact of the struc-
tural ordering of a program’s relocatable sectors on the pro-
gram’s pfr.

Procedural-level program restructuring targets reduction
of cache conflict misses rather than page faults. The former
are easier to avoid if the architecture uses a separate in-
struction cache. It is also known that compiler optimization-
invoked code reordering sometimes unintentionally increases
cache misses [7]. Pettis and Hansen [15] used greedy clus-
tering algorithms similar to those described by Johnson, but
with the additional goal of arranging procedures within code
blocks relative to each other. Gloy and Smith [7] proposed

Bolek
Text Box
Proc. 9th International Conference on Knowledge Discovery and Data Mining Washington, D.C., August 2003, pp. 649-654

using temporal information, in a manner similar to our ap-
proach, for improving paging and demonstrated its advan-
tage over the Pettis Hansen procedure placement algorithm.

Recently, Batchu and Levy [3], showed that an average
working set containing 20% of the program’s functions is
sufficient to ensure a pfr of less than 2%. Our approach uses
function-level program restructuring as well.

To model the data, Hatfield and Gerald [8] (HG model)
suggested using a transformation of the sector trace into
a “nearness matrix” to represent inter-sector reference be-
havior. However, they only capture associations between
adjacent sector references. To counter this deficiency, John-
son [11], proposed an LRU (least recently used) stack based
inter-sector model (LRU STACK MODEL). Gloy and Smith
[7], used a temporal relationship graph (TRG) to represent
relationships between procedures. Each edge of TRG has
a weight equal to the number of times that two successive
references to any procedure are interleaved with at least one
reference to the other.

Constrained clustering is a semi-supervised learning tech-
nique, in which data is partitioned into meaningful sub-
groups called clusters, based on some similarity measure and
subject to some a priori known constraints. Considerable
work has been done in this field [4, 16]. Wagstaff et al. [16]
have shown that domain-based heuristics contribute signifi-
cantly to improving the resulting clustering. We utilize this
idea in our approach.

1.2 Contributions
Our work introduces a new domain to which data mining

can be applied. There is currently very little effort to solve
such system-related problems using data mining.

We experimentally show that paging performance varies
with the code structure. We demonstrate the effect of using
domain information while determining an assignment of pro-
gram functions to pages. We develop two algorithms to the
program restructuring problem, by formulating it first as a
constrained clustering problem and then as a stochastic op-
timization problem. We compare the resulting assignments
to select the best assignment of code to pages. We apply
our techniques on data mining problems.

We have profiled data mining programs for three reasons.
Firstly, there is a strong trend towards reducing disk i/o re-
quirements of data mining systems. Secondly, the predom-
inantly combinatorial nature of data mining makes these
programs highly compute-intensive. Finally, data mining
programs often have code segments spanning a number of
pages. Such programs benefit considerably from lower pfrs.

2. FORMULATION
We now formally describe the problem. Let the program

be made up of a set F = {f1, f2, ..., f|F |} of functions and let
there exist a mapping Size : F → Z which gives the size of
each function (note: Z denotes the set of positive integers).
Consider the virtual address trace V T = a1, . . . , ai, . . . aT

of virtual addresses invoked during a program execution.
There are two mappings defined by the memory system for
each program: f : A → F and p : A → P , where A is the
set of all virtual addresses of the program and P is the set
of all program pages. These two mappings define a function
trace FT = f(V T) (so FT = f(a1), f(a2), . . . f(aT)) and a
page trace PT = p(V T) (which is a sequence of pages, each
of size PageSize, referenced during execution).

We assume that functions fi are constrained to not cross
page boundaries, so there is a many-to-one mapping from
functions to the pages of a program. Most functions are

smaller than the default page size and large functions can be
split up to ensure that they do not cross page boundaries,
so this assumption does not restrict the generality of our
approach. Let A denote the set of all mappings Assign :
F → P . Our goal is to find an assignment Assigno ∈ A,
such that

• the sum of sizes of functions assigned to a single page
does not exceed PageSize (An assignment satisfying
this condition is called a legitimate assignment), and

• the pfr invoked by Assigno is the smallest among all
legitimate assignments of functions onto pages.

For each page pi ∈ P , there is an inverse mapping πi =
Assign−1(pi) of all functions assigned to it. Hence, each le-
gitimate assignment induces a partitioning Π of the function
set F , into |Π| disjoint clusters. Each cluster (page) πi is
constrained in that the sum of sizes of all its functions does
not exceed the page size. Thus, the problem is formulated
as one of constrained clustering.

We illustrate our solutions using the following program as
an example (showing function definitions):
1. f2() { f1() } //means that f2 invokes f1

2. f3() {}
3. f4() {}
4. f5() { f1() f2() }
5. f1() {}
6. main (int i) {
7. if (i ≥ 20) f3() else f4()
9. while (i −−) f5()
10. }
where main, f1, f2, f3, f4, f5 occupy say 3KB, 1KB, 2KB,
2KB, 2KB, 2KB respectively and the page size is 4KB. The
default assignment places the functions as per their order
of definition in the program. So, page 1 contains f2, f3,
page 2 contains f4, f5, and page 3 contains f1, main. This
legitimate assignment is written as a clustering of functions
as follows: {(f2, f3), (f4, f5), (f1, main)}.

Our method involves three stages,

1. Instrumentation: Using the symbol table of the pro-
gram executable to be optimized, we determine the
set of functions and the size of each function. Using
Instrumentation Database IDB [13], we insert instru-
mentation code at the start of each function to produce
an instrumented executable. This executable is run
with a variety of input parameters to produce a set of
function traces, which are partitioned into a training
set and a test set of function traces. For the sample
program above, the trace would be:
< main ∧ (f3 ∨ f4) ∧ (f5 ∧ f1 ∧ f2 ∧ f1)

i >.

2. Mining: We then use our algorithms GreedyCluster-
ing and MCA to mine the Assign function assigning
functions to pages of the code segment using the train-
ing set. We test the model on the test set.

3. Reordering: Based on the Assign function mined, we
remove instrumentation code and reorder the functions
in the executable via an object code editor.

By dealing with the executable at the time of instrumen-
tation, one can account for compiler optimizations like inlin-
ing, template instantiations, etc. This paper concentrates on
the mining stage. As an example for the trace above, one in-
tuitively better assignment is {(f2, f5), (f4, f3), (f1, main)}.
If the sample program above, is allocated only 2 pages, a

simple analysis shows that LRU replacement [14], incurs at
least (1 + 2i) page faults i.e. pfr ≈ 0.5, for the default as-
signment and no more than 4 page faults for the better one.
We aim to find good assignments automatically via mining.

3. ALGORITHM
We devised two algorithms. The first is a greedy clustering

algorithm which uses domain-specific heuristics to give an
ordering of the functions in memory. The second algorithm
recasts the problem as one of stochastic optimization.

To convert temporal locality into spatial locality, it is
necessary to model the temporal locality first. We use a
weighted graph G = (F, E), to represent the temporal as-
sociations between the different functions to be ordered.
Each vertex of G corresponds to a function and the weight
w(fi, fj) on each edge (fi, fj) in F × F , corresponds to the
strength of the temporal association between the functions
connected by the edge. The edge (fi, fj) is akin to an associ-
ation rule fi → fj with confidence proportional to w(fi, fj).
The higher the weight, the stronger the temporal associa-
tion, and the higher the probability of page faults if fi and
fj are assigned to different pages.

The graph is created by streaming through the trace, cre-
ating a node for every new function in the trace and updat-
ing the weights on edges as described below.

3.1 Weight function
We now define the weight function w : F × F → Z for

the trace graph. Johnson [11], suggested the use of a sector
replacement stack to simulate the overlapping page stack.
Analogously, we use a function replacement stack to simu-
late the overlapping page stack. If Kp pages are allocated to
the program code segment, then it is highly probable that
at least Kp functions will fit into memory, as most functions
are smaller than a page. Given a function trace FT of length
T and a function stack of size Kf = Kp,

w(fi, fj) =
T−1�
t=1

Iw(fi, fj , t)

Accordingly, Iw is defined as:

Iw(fi, fj , t) =

����� ����
p(fi, fj , t) if (f t+1 = fj) ∧

(∆t
f (fi) ≤ Lf) ∧

(∆t
f (fj) > Kf)

0 otherwise

(1)

where ∆t
f (fi) gives the height of function fi in the function

replacement stack at time t, p(fi, fj , t) is the penalty func-
tion determining the increment to the weight on edge (fi, fj)
due to a function fault at time t and Lf is the number of
functions at the top of the stack whose edges with fj are
incremented.

The higher the function fi in the replacement stack, the
more closely temporally associated, it is with the faulting
function fj . Eq. 1 makes it explicit that the replacement
algorithm and parameters must be incorporated into the
function w, unlike the HG-model [8]. For p(fi, fj , t)=1 and
Lf=1, Iw denotes the number of times fi calls fj . We have
tested three penalty functions applied to all function stack
members, i.e. Lf = Kf , to approximate the temporal asso-
ciations between the functions:

LRU STACK MODEL(LSM) [11]: Johnson suggested equal
penalties for all stack members, i.e.,

pLSM (fi, fj , t) = 1 (2)

The disadvantage of using this method of weighting the
graph is that all functions in the function stack are incre-
mented uniformly for a function fault. Thus each function in
the stack is equally responsible for assigning the function for
which the fault occurred, to its page. This model can pro-
mote pages in which functions having larger inter-reference
times are equally probably adjacent as those having smaller
inter-reference times. Thus LSM converts temporal local-
ity into spatial locality in a manner that we expect would
perform poorly. In Fig. 1, we show the graph produced for
sample program in Sec. 2 using the LSM weighting function,
Kf = 2 and i ≥ 20. w(main, f3) = 1 due to the cold start.
w(f5, f2) = w(f1, f2) = i because f2 is referenced i times
and each reference results in a fault since f5 and f1 are on
the stack. Similarly, w(f1, f5) = w(f2, f5) = i − 1 because
f2 is referenced i − 1 times after stack contents are (f2, f1).

Figure 1: Graph for sample program and pLSM

PENALTY BASED MODEL(PBM): To remedy the prob-
lem above, we penalize functions in the function stack for
function faults, with increments proportional to their dis-
tance in the trace from the function for which the function
fault occurred. Alternatively, from a stack-based viewpoint,
we penalize them with increments inversely proportional to
their probability of replacement from the function stack,
which depends upon the replacement algorithm. For LRU,

pPBM (fi, fj , t) = Kf − ∆t
f (fi) (3)

GDS BASED MODEL(GBM): GDS is a cache replace-
ment algorithm used for replacing cached files at proxy servers [5].
To optimize cache hit rate, GDS uses time of last refer-
ence and the size of the file as input while replacing files.
Analogously, to better model the associations between the
functions, we incorporate the size of the function into the
increments.

pGBM (fi, fj , t) =
Kf − ∆t

f (fi)

Size(fj)
(4)

Thus a function suffers a lesser increment if the function
temporally closely associated with it is large in size, because
proximity is normalized by function size.

3.2 GreedyClustering
This algorithm is similar to the greedy fractional knap-

sack algorithm [10]. In the fractional knapsack problem, we
greedily choose items based on the expected gain in opti-
mization per unit quantity of the item. Similarly, we choose
functions to fill the pages based on the expected contribution
towards minimization of page faults per unit byte occupied
by the function in the page. We present the algorithm below:

GreedyClustering(G, P):
// G is the graph produced by function traces
// P is the set of pages to be filled
// Pl is the current page to be filled

//FuncList is the list of functions to be assigned
1. FuncList = V (G), AssignCurrent = φ
2. while(FuncList not empty)
3. ft=pickFunction(G,AssignCurrent, FuncList, P, Pl)
4. update AssignCurrent, FuncList, P
5. compact AssignCurrent

Initially none of the functions are assigned to pages (line
1). Until all functions are assigned, we continue to select
functions from the unassigned list using pickFunction and
update the assignment. If there exist partially filled pages
which may be packed together, we use a bin packing algo-
rithm (line 5), since doing so implies no higher a pfr.

The pickFunction routine is shown below. It evaluates
all candidates in FuncList for a fit into the space available
in the current page Pl. It picks candidates based on their
CScore (lines 1-3). If no function, which fits in the space on
the current page, is temporally associated with the functions
already on this page (line 4), the algorithm starts filling a
new page (lines 5-8). Thus, it can assign fi to Pl, even if
fi has a stronger temporal association with fj , not assigned
to Pl. Thus, this method differs from agglomerative hier-
archical clustering, since it does not always assign the two
most temporally associated groups of functions to the same
page [15].

pickFunction(G, FuncList, P, Pl):
// Space : P → Z gives the space available in a page
1. ∀fi ∈ FuncList,
2. compute CScore(fi, Pl)
3. choose ft ∈ FuncList based on CScore(ft, Pl)
4. if � fi ∈ FuncList such that
4. Size(fi) ≤ Space(Pl) and CScore(fi, Pl) > 0
5. increment Pl

6. ∀fi ∈ FuncList,
7. compute CScore(fi, FuncList)
8. choose ft ∈ FuncList based on CScore(ft, FuncList)
9. return ft

The algorithm selects the function to place next in the
current page based on the score computed by Eq. (6).

CScore(fi, Pl) ∝
�

fj∈Pl

w(fi, fj) + w(fj , fi)

Size(fi) + � fk∈Pl
Size(fk)

(5)

CScore(fi, FuncList) ∝ max
fj∈FuncList

w(fi, fj) + w(fj , fi)

Size(fi) + Size(fj)
(6)

Since, the number of functions assignable to Pl is bounded
above by the page size which is constant, it is easy to see
that pickFunction has complexity O(|E|). Thus, Greedy-
Clustering has complexity O(|F ||E|).

3.3 Stochastic Optimization
For a number of NP-hard problems, stochastic optimiza-

tion has provided solutions which considerably outperform
non-heuristic classical algorithms like gradient descent, etc.
It is our goal to determine if stochastic optimization can use
the domain-specific knowledge incorporated into the graph
to outperform GreedyClustering.

Objective Function: In stochastic minimization, we pro-
duce a number of solutions, whose goodness is based on how
much they minimize the pfr. Estimating the pfr by simula-
tion on test traces is not practical, as the function traces are

generally very long. There is a need for an objective function
that is computationally inexpensive to evaluate, yet accu-
rate in measuring the pfr due to an assignment Assign ∈ A.
We define the objective function (also known as the energy
function) to be the sum of weights over all edges, such that
the vertices of each such edge are assigned to different par-
titions, i.e.,

Energy(Assign,G) =
�

Assign(fi)6=Assign(fj)

w(fi, fj) (7)

where w is described in Sec. 3.1. This heuristic approxi-
mation permits calculation of change in energy caused by a
system perturbation in time O(F).

MCA (ConvergeCriterion,G, AssignCurrent, BunchSize):
// ConvergeCriterion: determines if system has converged
// G: the weighted directed graph corresponding to {FT}
// AssignCurrent: current assignment of functions to pages
// BunchSize: the number of functions reassigned at a time
1. AssignBest = AssignCurrent

2. eDemon = 0
3. while (notConverged(ConvergeCriterion))
4. Shuffle order in which functions are reassigned
5. for each bunch of functions
6. AssignNew = AssignCurrent

7. for all functions in the bunch
8. remove them from the current page
9. for all functions in the bunch
10. for each page visited in random order
11. if function fits in page
12. update AssignNew

13. eDiff = Energy(AssignNew, G)
− Energy(AssignCurrent, G)

14. if eDemon > eDiff
15. eDemon = eDemon − eDiff
16. AssignCurrent = AssignNew

17. if Energy(AssignCurrent, G) < Energy(AssignBest, G)
18. AssignBest = AssignCurrent

19. eDemon = eDemon ∗ DecayRate

Microcanonical Annealing (MCA): Microcanonical an-
nealing [6], shown above, is a particle physics-based algo-
rithm for the simulation of statistical systems. The system
consists of a large number of particles which are in different
configurations, i.e., have different position and momentum
coordinates. The system as a whole is believed to be isolated
and hence it has a constant total energy. Statistical physics
states that in such an equilibrium, all states are equally
likely [9]. A particle which loses kinetic energy by chang-
ing its momentum coordinates, contributes to the potential
energy in the system, allowing another particle to use it to
increase its kinetic energy (line 12). Creutz [6], assumes the
existence of a demon that is in charge of transferring energy
from particles giving up energy, to those consuming it. The
procedure produces a random walk through configurations.
At the end of each such random walk, the demon decays the
energy that it holds (line 18), cooling the system and hence
the system converges (line 3). Decay rate governs the rate
of convergence (we use a decay rate of 0.99).

MCA is similar to simulated annealing in that, unlike
other Markov Chain Monte Carlo simulation algorithms [9],
transition probabilities change as demon energy decays. It
differs in that, unlike simulated annealing, we do not have to
compute the probability of a configuration change being ac-
cepted or not. We simply see if the demon can accommodate
the loss in energy (lines 13-14), if any. Hence, it is compu-

tationally cheaper. Also, we can use a number of demons in
parallel, each having their own demon energy, to speed up
convergence. In our formulation, the functions correspond
to particles, and the position coordinates to their assigned
pages. Initially, each function is assigned to a unique page,
i.e., the assignment for the program in Sec. 2 would be
{(f1), (f2), (f3), (f4), (f5), (main)}. This is a very high en-
ergy state, resulting in the early transitions contributing to
the demon energy, thus avoiding local minima. For example,
consider the transition of f1 from its current page to that of
f3 to produce legitimate assignment
{(φ), (f2), (f3, f1), (f4), (f5), (main)}. A subsequent random
transition is that of f4 to the earlier page of f1 resulting in
{(f4), (f2), (f3, f1), (φ), (f5), (main)}. Then, f5 may transi-
tion to the page of f2 resulting in
{(f4), (f2, f5), (f3, f1), (φ), (φ), (main)} raising the demon en-
ergy significantly, allowing further transitions. We assume
convergence when demon energy is less than 100 and after
500 iterations during which no functions make transitions to
lower energy states.

4. EXPERIMENTS
We evaluate our algorithms using two metrics:

1. Page Fault Ratio (PFR): If y is the fraction of code
segment in main memory,

PFR(y) =
pfrAssigndefault

(y)

pfroptimized(y)
, y ∈ [0, 1] (8)

2. Approximate Working Set Size Ratio (AWSSR): Let
γ(x) be a function, which returns the minimum num-
ber of pages, whose cumulative references account for
(1 − x) of the total references. As x → 0, γ(x) is an
approximation to the working set size.

AWSSR(x) =
γAssigndefault

(x)

γoptimized(x)
, x ∈ [0, 1] (9)

A high PFR implies that the optimized assignment has a
considerably lower pfr and a high AWSSR implies that the
optimized assignment has a smaller approximate working set
than the default assignment. The “amortized” PFR is the
ratio of the sum of the page faults over all test traces, prior
to and after optimization.

In our experiments, we used function traces for two data
mining algorithms viz. SPADE [17] and K-metis [12]. Both
programs were compiled using g++ with O3 optimization.
Table 1 shows the characteristics of the two programs. Out
of the set of traces from each program, we use 5 for testing
and the remaining for training.

Table 1: Experimental Program Characteristics
Characteristic SPADE[17] K-metis[12]
Functionality Freq Seq Miner Graph Partitioning

Parameters data-file minsup graph-file #(parts)
#(functions) 98 230

#(4KB Pages) 11 43
#(Traces) 20 20

µ(Trace length) 3,227,499 1,781,648
σ(Trace length) 3,322,530 2,679,482

Instrumented SPADE was run on data produced by the
IBM data generator [1]. A number of input files for SPADE
were generated by varying the parameters determining the
number of items in each transaction, the length of the pat-
terns interspersed and the correlation between patterns. These

files were fed with different minsup parameters to SPADE
and the corresponding function traces were used as input to
our program. For K-metis, we created a number of random
graphs spanning a range of connectivities and types, i.e.,
weighted, unweighted, with vertex weights, etc., and varied
the number of partitions to split them into and fed these as
input to K-metis.

The output of the instrumented code is a sequence of
program-specific function identification names/numbers, i.e.,
FT . The page size is assumed to be 4,096 bytes. By de-
fault, we use GreedyClustering to produce the assignment
and weight the edges of the graph using LSM and use three
demons, i.e. BunchSize = 3, for MCA.

4.1 Effect of domain knowledge on PFR

 1

 10

 100

 1000

 10000

 100000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
m

or
tiz

ed
 P

F
R

Fraction of code segment in main memory

LSM K-metis
PBM K-metis
GBM K-metis
LSM SPADE
PBM SPADE
GBM SPADE

Figure 2: Effect of domain knowledge for K-metis

In Fig. 2, we examine the variation of amortized PFR (Y-
axis) as the amount of main memory available to the code
segment (X-axis) increases. We examine the effect of the
weight function for each of the studied programs. We ob-
serve that the three weight functions are not that different.
For SPADE, GBM does not have the same peak as the oth-
ers. Nonetheless, it marginally outperforms LSM and PBM
for other fractions of the code segment in main memory.

4.2 GreedyClustering versus MCA

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
m

or
tiz

ed
 P

F
R

Fraction of code segment in main memory

K-metis: GreedyClustering
K-metis: MCA

SPADE: GreedyClustering
SPADE: MCA

Figure 3: GreedyClustering v/s MCA on PFR

Effect on PFR: In Fig. 3, the amortized PFR obtained
as a result of using the two algorithms are compared. It
is evident that GreedyClustering outperforms MCA for

the K-metis program. In fact, the performance of MCA
is worse than the default assignment for some fractions of
the code segment in main memory, as it fails to converge for
the parameters provided. For the SPADE program, MCA
and GreedyClustering outperform each other for different
fractions of the code segment in main memory. Also note
that the PFR peaks and dips for significantly different frac-
tions of the code segment in memory for the two programs.

Effect on AWSSR: In Fig. 4, we have plotted the varia-
tion of AWSSR as a function of the fraction of the total refer-
ences to pages outside the approximate working set, for the
different algorithms and programs. For example the bottom-
most right-most point has coordinates (5 × 10−4, 1.2). This
means that the SPADE program, when provided an assign-
ment by MCA, yields an approximate working set of size 1.2
times smaller than that of the default assignment, where an
approximate working set is defined as the minimum number
of pages which account for (1−5×10−4), i.e. 99.95% of the
total references. It is evident that MCA is outperformed
by GreedyClustering. AWSSR ≥ 1 implies that code re-
structuring does decrease the approximate working set size.
Experiments were carried out with the code segments being
allocated half the number of main memory pages required
by them to completely fit in main memory.

10
−6

10
−5

10
−4

10
−3

1

1.5

2

2.5

fraction of references to pages outside the working set

AW
SS

R

K−metis: GreedyClustering
SPADE: GreedyClustering
K−metis: MCA
SPADE: MCA

Figure 4: GreedyClustering v/s MCA on AWSSR

5. DISCUSSION
The work presented in this paper is conducted under the

PerfMiner project at RPI which aims at developing the Perf-
Miner engine for performance mining of large-scale data-
intensive next generation distributed object applications.
The problem of improving the spatial locality of programs
via data mining (and other problems in computer systems)
opens a new domain for application of data mining tech-
niques. It has a number of interesting aspects to it. The
probability distribution of input parameters can evolve, e.g.,
high compute programs may receive inputs with increasing
size over time. Also, unlike a number of other domains, the
optimal objective function for assessing the quality of a clus-
tering is known viz., the pfr, and hence efficacy of clustering
algorithms for this problem can be compared. Solutions to
many optimization problems lie in using a greedy algorithm
to locate a subspace of interest and then using stochastic
refinement. The difficulty in accurately and efficiently mod-
elling pfr (Sec. 3.3) makes application of such an approach
to this domain hard. Finally, most of the constrained clus-
tering results that we have seen pertain to inter-instance
level constraints. However, in our problem, constraints are

imposed on the cluster characteristics, i.e., PageSize con-
strains the sum of the sizes of the functions assigned to a
cluster.

Fig. 3 and Fig. 4 imply that the MCA and Greedy-
Clustering do not have the same relative effect on program
locality optimization on both SPADE and K-metis data.
GreedyClustering generally outperforms MCA; the per-
formance is also program specific.

In future work, we intend using domain knowledge influ-
enced techniques to determine better ways to organize sec-
ondary memory to minimize page fault cost, and new ways
of prefetching to minimize latency and network traffic using
proxy servers.

6. REFERENCES
[1] R. Agrawal, R. Srikant. Mining sequential patterns.

11th Intl. Conf. on Data Engingering, 1995.
[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E.

Cyirci. Wireless Sensor Networks: A Survey.
Computer Networks, 38(4):393-422, 2002.

[3] R. Batchu, S. Levy. Working Sets at Function Level.
Rutgers University, Computer Science Dept.,
Technical Report (DCS TR-480), 1998.

[4] P. S. Bradley, K. P. Bennett, A. Demiriz. Constrained
K-means clustering. Technical Report
MSR-TR-2000-65, Microsoft Research, 2000.

[5] P. Cao, S. Irani. Cost-Aware WWW Proxy Caching
Algs. USENIX Symp. on Internet Tech. and Sys.,
1997.

[6] M. Creutz. Microcanonical Monte Carlo Simulation.
Physical Review Letters, 50(19):1411-1414, 1983.

[7] N. Gloy, M. D. Smith. Procedure Placement using
Temporal-Ordering information. ACM Trans. on Prog.
Languages and Systems, 21(5):977-1027, 1999.

[8] D. J. Hatfield, J. Gerald. Program Restructuring for
Virtual Memory. IBM Systems Journal, 10(3):168-192,
1971.

[9] L. Herault, R. Horaud. Figure-ground discrimination:
Combinatorial Optimization Approach. IEEE Trans.
on Pattern Anal. & Machine Intelligence,
15(9):899-914, 1993.

[10] E. Horowitz, S. Sahni, S. Rajasekeran. Computer
Algorithms. W. H. Freeman. NY 1998.

[11] J. W. Johnson. Program Restructuring for Virtual
Memory Systems. Project MAC TR-148, MIT, 1975.

[12] G. Karypis, V. Kumar. Multilevel k-way Hypergraph
Partitioning. Design Automation Conference, 1999.

[13] J. Nesheiwat, B.K. Szymanski. Instrumentation
Database System for Performance Analysis of Parallel
Scientific Applications. Parallel Computing,
28(10):1409-1449, 2002.

[14] D. Patterson, J. Hennessy. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 1990.

[15] K. Pettis, R. Hensen. Profile-guided code positioning.
In Conf. on Programming Language Design and
Implementation, 1990.

[16] K. Wagstaff, C. Cardie, S. Rogers, S. Schroedl.
Constrained K-means clustering with Background
Knowledge. Int’l Conf. on Machine Learning, 2001.

[17] M. J. Zaki. SPADE: An Efficient Algorithm for
Mining Frequent Sequences. Machine Learning
Journal, 42(1/2):31-60, 2001.

