
13
INTEGRATING DATA AND TASK

PARALLELISM IN SCIENTIFIC
PROGRAMS

�

Ewa Deelman, Wesley K. Kaplow,
Boleslaw K. Szymanski, Peter Tannenbaum, Louis Ziantz

Department of Computer Science,
Rensselaer Polytechnic Institute,

Troy, NY 12180 USA

ABSTRACT

Functional languages attract the attention of developers of parallelizing compilers because of
the implicit parallelism of functional programs and the simplified data dependence analysis of
functional statements. A major drawback of functional languages is that naive translation of
functional programs results in code that requires excessive memory. In this paper we explore the
connection between the memory optimization and communication optimization of parallel codes
generated from functional languages. We also show how a functional language can be used as
an intermediate form in the translation from FORTRAN to customized, architecture-specific
parallel code.

1 INTRODUCTION

FORTRAN is a common language used in engineering and scientific computing. Re-
cent versions of the language (e.g., Fortran90 and High Performance Fortran) allow
programmers to embed special directives for running their programs in parallel. How-
ever, many currently used programs are written in older dialects of FORTRAN and
cannot benefit from faster parallel computers; these programs run strictly sequentially.

We are developing a system that automatically transforms serial FORTRAN into
parallel C, performing memory optimization and introducing data and task parallelism
(see Figure 1). The core of the system is a new version of the EPL compiler (the original
version of EPL is described in [12]) with a FORTRAN front-end. EPL is a functional
language and therefore obeys the single-assignment rule. As such, data dependencies
in EPL are readily visible. We exploit this characteristic in the construction of a
detailed data-dependency graph called an array graph. The array graph represents

�
This work was partially supported by ONR Grant N00014-93-1-0076 and NSF Grant CCR-9216053.

169

Bolek
Text Box
Languages, Compilers and Run-Time Systems for Scalable Computers,
Kluwer Academic Publishers, Reading, MA, 1996, pp. 169-184

170 ���������
	���
��

both data and control flow in a single structure. From the array graph we generate
a schedule graph that represents the minimal constraints on the execution order of a
computation.

Optimized Data
Code

Generation

FORTRAN
Serial

Memory
Optimization

Translate
To SAF

FORTRAN

Generate

Array Graph
Generate

SAF

Serial FORTRAN

Array Graph

EPL

Schedule GraphSchedule Graph

Task Graph

Optimized Data

Architectural
Parameters

Code
Generation Parallel CParallel FORTRAN

Schedule Graph

Task Graph

Parallel
FORTRAN Code

Parallel C

FORTRAN
Code

Generate

Code
EPL

Parameters

Figure 1 Overview of EPL System

The scheduled program is then optimized for memory usage and communication by
finding optimal loop arrangements and variable representations. The schedule graph
defines an initial task parallelism. Architectural parameters of the target machine are
used both to tune the task parallelism and to extract data parallelism from the program.
The new parallel schedule, called a task graph, is finally sent to the code generator.

Many scientific computations include iterative solvers, where an approximate result
is repeatedly refined. In FORTRAN, each iteration writes the new values over the
previous result. When such a solver is converted to a single assignment form, each
successive result must be written to a new data location. This is one example of the
excessive memory requirements inherent in functional languages.

Fortunately, analysis of array assignments and references can often show that each
iteration step through a loop uses only a fixed number of adjacent elements of a data
structure. This allows the object code to allocate a “window” large enough for only
this fixed number of elements, not the entire dimension of the structure[13]. As with
the original FORTRAN, the elements in the window are overwritten in each iteration. �
Programmers use variable windows intuitively, often with the intension of maintaining
code readability. This approach may discount several more efficient (but counter-
intuitive) windowing opportunities. Likewise, loops are the main source of task
�
There is no reason for the optimized code to obey the single-assignment rule.

Integrating Data and Task Parallelism in Scientific Programs 171

partitioning that enables data or pipeline parallelism. The scope of loops and their
arrangements are crucial for parallelization of a program. We employ a systematic
approach to windowing and parallelization in order to find an efficient solution. In
general, new windows are formed by merging two or more loops found in the schedule
graph. Large mergers, incorporating many loops, can potentially provide several
windowing and pipelining opportunities. However, special care must be taken to
preserve data dependencies.

In this paper we briefly present the major steps of FORTRAN to parallel C transfor-
mation and focus on loop transformations for both memory optimization and data and
pipeline parallelization for distributed memory machines.

2 FORTRAN FRONT-END

The FORTRAN front-end is a procedural to functional language converter. Its purpose
is to rename variables such that each variable is assigned exactly once. The result of this
transformation is Single Assignment Fortran (SAF). SAF is still valid FORTRAN, but,
as with EPL, the single-assignment rule exposes data dependencies. (Each assignment
statement in SAF uniquely defines a variable, and so we will refer to EPL and SAF
statements as equations.) A correct translation from FORTRAN into SAF centers
on two major issues. First, each translated assignment must be guaranteed to bind
a value to a unique variable. This requires a renaming scheme for variables that are
multiply-assigned. The second issue is to ensure that every reference actually refers
to the proper (renamed) variable. These two problems are intimately related, and are
best addressed simultaneously.

As a first step in renaming, the line number of each assignment is appended to each as-
signed variable. FORTRAN allows only one assignment per line, and so the appended
numbers are guaranteed to be unique. To find and rename variable references, we use
def-use chaining: for each assignment, we find all uses of the renamed variable and
rename the references accordingly. As a result of this first step, each basic block in the
program, when considered independently, is in SAF. Any variable that was assigned
repeatedly inside a basic block is now represented by new assignments, differentiated
by line number.

The second step in renaming translates basic blocks from loops and subroutines; these
blocks are executed iteratively. Each multiply-assigned variable assigned in these
blocks is promoted in dimension: scalars become one dimensional arrays; one dimen-
sional arrays become two dimensional arrays, etc. This new dimension, sometimes
called a “temporal” dimension, is guaranteed to have a unique value for each iteration
through the basic block. An iteration through a basic block that would have reassigned
a variable in the original code will now make an assignment to a unique element in
that variable’s array. Note that assignments to two distinct array elements are valid
in SAF; repeated assignments to the same array element are not valid. To determine
whether assignments are made to the same array elements, we use various dependence

172 ���������
	���
��

tests (cf. [6, 7]). If the results of the dependence tests are negative within a loop, then
no two elements are reassigned in the loop, and no temporal dimension is needed.

The temporal dimension is so named because it represents a time-stamp for each it-
eration. In the case of loops, its value can be simply the loop control variable. In
subroutines, it can be an activation counter, automatically incremented each time the
subroutine is called. � This additional dimension means that SAF programs require sig-
nificantly more memory to execute than the original FORTRAN. Fortunately, memory
optimization can reclaim this added space.

3 INTERNAL DATA STRUCTURES

Array Graph The array graph is one of the fundamental structures used by the
EPL compiler. It represents control-flow and data dependence constraints on program
execution in the form of dependencies between data elements in the program. The basic
components of the array graph are nodes, edges, and edge attributes. The nodes of the
graph represent different activities associated with the data elements and equations of
a program. Data nodes indicate that a variable should receive its value, and equation
nodes imply that an equation should be evaluated. The array graph has one node for
each variable that is not a subscript and one for each equation.

�
The edges in the

graph indicate dependencies between nodes, and paths through the graph show an
implied partial ordering of the computations associated with the equation nodes. Edge
attributes list subscripting expressions and other information related to a particular
dependency.

Formally, the array graph is defined as: �������
	���
������ where 	����������������������!
is a set of nodes,
�"#	%$&	 is a set of edges, and �('*)��+��,-�.����������,0/1 324	+51
 is
a labeling function.
 � represents the standard transitive closure of the edge relation

 . The labeling function � defines a label for each node and edge in the graph.
The node label ,768�9�9�7�:6;� includes information on the type and class of the node,
its dimensionality, ranges of the dimensions, and subscripts associated with these
dimensions. The edge label ,
67< =��>�9�@?�67< =A� includes the type of the dependence and
subscripting information.

A list of trees is created representing the equations in a program, and from this list
the subgraphs for the equations are built. Each equation node is augmented with a
list of the subscripts used in the corresponding equation — this is referred to as the
node subscript list and is used in code generation. A dimension attribute node list is
a sequence of indexing expressions associated with a dependency. One such list is
attached to each edge based upon the array access that generated the edge. These lists
are used in scheduling the computation.

�
Strictly speaking, these counters do not obey the Single Assignment rule, and therefore they behave

like subscripts in EPL. However, all other variables in the program are in SAF.B
A variable of type subscript in EPL would correspond to a loop-control variable in an SAF program.

Integrating Data and Task Parallelism in Scientific Programs 173

interface input {
[integer A[150], B[250], C[250]]

};
interface output {

[integer E[150]]
};
subscript i,j,k;
integer D[150];

a3:C[k] = C[k-1] + 1;

a1:D[i] = if (i == 2*j/3) then
A[i] + B[j] endif;

a2:E[i] = if (i == 2*k/3) then
D[i] + C[k] endif;

a1

BA

D

(i)

<i,j>

(k)

C

a3

(k)
(k-1)

<k>

(i)

(j)
(i)

(i)

a2

E

<i,k>

Figure 2 Example EPL code and corresponding Array Graph

Figure 2 shows an example array graph. The circles represent data nodes, and equation
nodes are represented by ovals. The bracketed variables correspond to node subscript
lists, and the variables enclosed by parentheses are dimension attribute node lists.
Note that equation one (a1) represents the assignment of values to D, equation two
(a2) represents the assignment to E, and equation three (a3) represents the assignment
to C. The dotted line in Figure 2 encloses a strongly connected component (SCC). �
Schedule Graph The scheduler recursively traverses the array graph, storing a
feasible program ordering in the (directed,acyclic) schedule graph. Nodes in the sched-
ule graph represent loops, assignments, and I/O. One edge class represents temporal
dependence: the action at the source of the edge must complete before the action at
the destination begins execution. The other edge class, called a zoom edge, represents
a loop nesting: the source of a zoom edge is always a loop node, and the subgraph at
the destination is nested inside the loop. This subgraph can itself contain loop nodes
and zoom edges, representing multiply nested loops.

Formally, the schedule graph is a refinement of the array graph in which nodes represent
disjoint subsets of array graph nodes and edges include the additional class of zoom
edges.

A major function of the scheduler is to find and break SCCs in the array graph. (Cycles
in the array graph occur when variables are defined recursively.) If a component

�
An SCC is a maximal subgraph of the array graph with the property that for any pair of its vertices �����

there are directed paths in the SCC from � to � and from � to � .

174 ���������
	���
��

contains more than one node, it will be scheduled inside a loop. The components
are then interconnected based on the dependencies present in the array graph. Each
SCC is searched for cycles formed by edges containing the same subscript. Under
certain conditions, the scheduler can form a loop over that subscript and mark the
edges forming a subscript as resolved. For example, if a cycle contains edges labeled
with indexing expressions � and ����� , then scheduling a loop over � will enforce a
dependency represented by the edge labeled ������� � . � This edge is redundant and can
be removed, thus breaking the cycle and decomposing the SCC.

Each newly formed loop has associated with it a direction: ascending, descending,
or either. In the case above, the dependencies dictate that the loop over � must be
ascending. A loop that calculates 	�
 �
� ����
 �
� could proceed in either direction.

Code Generation The C code generator traverses the task graph in a topological
order. For each loop node, a corresponding C for loop is formed. Then all the zoom
edges emerging from the loop node are traversed, and the code generation is performed
on the subgraph. As the zoom edge is traversed, the loop subscript is remembered by
placing it into an active subscript list. The code for an equation node is constructed
as follows: first the loops for the subscripts present in the equation and not present in
the active subscript list are formed, and then the code for the equation itself is emitted.
After the code for all the subgraphs reachable via the zoom edges has been generated,
other nodes dependent on the loop node are generated. If an equation is not reached via
some zoom edge, loops will be emitted for all the subscripts present in the equation’s
node subscript list.

4 MEMORY OPTIMIZATION

The scheduler produces loops with the smallest possible scope for a correct schedule.
This means that each loop defines a minimal number of variables. Loop merging
expands the scope of loops to define several variables at once. As a simplification, we
only consider merging loops that iterate over equivalent ranges. (An alternative would
be to consider merging a loop over range � with a loop over range ����� ; this would
require special guards to avoid defining or referencing invalid values. For a special
class of subscripts, called sublinear subscripts in EPL [12], this is a straightforward
extension and it will be included in the next version of the EPL compiler.) Variable
definitions are characterized by their range-sets.

Definition 4.1 A range-set defines the iteration space for a single dimension of a
variable’s defining equation. An � -dimensional variable will thus have � (possibly
distinct) range-sets. Two range-sets are equivalent if they define the same iteration
space.

To illustrate our algorithm for merging loops, we use a refined version of the schedule
graph, called a variable graph (see Figure 3): ��� � �
	���
������ where 	 �

�
The value of the ��������� �"! iteration will be preserved for the �#!%$ iteration.

Integrating Data and Task Parallelism in Scientific Programs 175

������������� � ��� is a set of nodes,
 " 	 $#	 is a set of edges, and � ') �
� ,
��������� ��,0/& 2 	 5
 is a labeling function. Here, the defining node for each
variable (called the equation node) is shown explicitly in the graph only when the
defined variable has a lower dimensionality than any of its constituent variables. If the
defined variable has at least as many dimensions as its constituents, then the equation
node is merged with the data node. This distinction is useful in defining loops as
described below. Edges in the graph point to nodes in which variables are referenced.
The edge label ,767< =1� �9�@?�67< =A� includes a dependence bound.

BeqnA

C
B

B = A[rnd * A.range];
C[i] = B + A[i];

Figure 3 Example of EPL equations and resulting variable graph. Note that B is a scalar,
but its assignment requires iterating through potentially all elements of A.

The dependence bound gives an indication of how many new elements of a variable
are created before the current element is used. It is calculated for each variable graph
edge as follows:

Let an edge ?��
 correspond to an equation of the form,

	
 ��������� ?��*������� � ��� ����
 ��������� ?A��������� �;������� � ��
 ��������� ? = ������� �0�
where each ��?	� is a sub-expression on
 . The bound on the range-set
 for this edge is
given by: �
���

��� 6 � 6�� ���������
�
���
��� /�� = � ? � ��� ? /

For the current version of the EPL compiler, we assume that the bound is the full range
of
 except when � ?�� ��
 and all � ? � have the form
��! , where is a constant. If the
bound is a compile-time constant, then
 is written as
#" for an ascending loop and
�$
for a descending loop. If the bound is not known at compile time, or is known to be
the full range of
 , then
 is written as
&% . Future versions will include deeper subscript
analysis.

Two sets are easily built from the variable graph: the set of windowable variables and
the set of distinct range-sets. From these, four more sets are also easily created: the
set of variables referenced and/or defined in each node, the set of nodes in which each
variable appears, the range-sets associated with each node, and the nodes associated
with each given range-set.

Definition 4.2 Let ' � �	(� �)(�* ������� �&(,+� be the set of all variables in the variable
graph that are potentially windowable. A variable is potentially windowable iff:

176 ���������
	���
��

1. For at least one dimension, its dependence bound is defined at compile-time and
is known to be less than the full range of that dimension.

2. All its successors in the variable graph have at least one range-set in common.

Definition 4.3 Let � � ��� � ���	* ������� ����� be the set of all range-sets in the variable
graph.

Definition 4.4 For each � 6 � 	 let � �	� ����
 � ��
 **����������
 � be the set of variables
associated with ��6 , and � �	� � �
� � ����**�����������	�. be the set of range-sets associated with
� 6 . For each (6 � ' let ����� ����� � � 	 ' (6 ��� ��� . ����� is the set of all nodes in
the variable graph that are associated with variable (6 . For each range-set � ��� ,
let � � � ��� = �#	 '�� ��� ��� . � � is the set of all nodes that are associated with
range-set � .

The objective of merging loops is to create valid windowing opportunities. A variable
window is valid only when the definition and all references to the variable are enclosed
in the same loop. To see this, consider a one-dimensional variable �
 � � . If � is
windowed, then in the
���� iteration of its loop ��

 � will be defined and referenced. In
a later iteration, the same memory location will be re-defined. If a reference to �

 �
appears outside the loop, the resulting value will be undetermined.

Another concern in merging loops is the preservation of data dependencies. Consider
the EPL equation 	�

 � � �

 � . If � is windowed, then each iteration through the loop
will assign an element of � and then will reference that element in the assignment
to the corresponding element of 	 . However, consider the slightly modified equation
	�

�� � �

 �"! � � ,�# ��$ (where � � ,�# ��$ refers to the final element of the array �). The
value of �&� ,%# ��$ depends on the array � . If � is windowed, then the first iteration
through its loop will define an element of � and will try to assign it, plus � � ,�# ��$, to the
corresponding element of 	 . But, � � ,�# ��$ will not be defined until the final iteration of
the loop. This is an instance where merging loops violates dependencies.

4.1 Well-Formed Loops

To address these three considerations: existence of a common range-set, presence
of completely enclosed variables, and preservation of data-dependencies, we have
developed the concept of well-formed loops. A well-formed loop is a subset of
variable graph nodes with certain properties. Informally, nodes in the loop must all
have at least one range-set in common (i.e., they must all share at least one range-set
in the source program). For at least one variable, the loop must contain all nodes
associated with that variable. If any node inside the well-formed loop is dependent
upon a node outside the loop, then the outside node cannot be dependent upon any
nodes inside the loop. Finally, the loop cannot contain nodes that are not needed to
satisfy the above constraints.

&
This element can come from an equation or be read from an input port.

Integrating Data and Task Parallelism in Scientific Programs 177

These properties can be defined in terms of functions over subsets of nodes in the
variable graph.

Definition 4.5 Let the iterators of a set of nodes in a variable graph, denoted ����� � ,
be defined as: ����� � ��� ����� � �
Definition 4.6 Let the core of � over � , denoted 	 �
� ���A� , where �4" 	 , and � � � ,
be defined as: 	 ��� ���.� � ��� � � ��
 ������� ��������� ���.��� � � � ��� '�� ��� ��� � �7� � ����� �

�2 � � � �� and the bound of �7� ��� � �"! �.� ��#!�$# ?* .�

Definition 4.7 Let the closure of a set of nodes in a variable graph, denoted 	 , �
� � ,
be defined as:
	 , ��� � �%�%5 ��� ��	 ' �'&)(� �*� ' �+(� � � � ��
 ���-, �.&�(� �*� ' �7� �
(� � ��
 ���
Iterators are similar to loop control variables in FORTRAN, with the associated loop
direction; the core represents the minimal subset of variable graph nodes needed
to completely enclose a windowable variable; the closure enforces preservation of
dependencies. The following definition formalizes the concept of a well-formed loop:

Definition 4.8 A non-empty subset)�"�	 of nodes in a variable graph is called a
well-formed loop iff:

1. The set of iterators over) is non-empty. �.� �@) �0/�21*�
2. The closure of the core of) is equal to) . �.	 , �'	 �
) � � �) �

The algorithm for finding well-formed loops uses a slightly different definition: � �

Definition 4.9 A non-empty subset)>"�	 of nodes in a schedule graph is called a
well-formed loop iff: ���
) �0/�21 , 	 , �@) � �) , and 	 , �'	 �
) � �43) .

4.2 Generating and Merging Well-Formed Loops

Well-formed loops are constructed and merged one range-set at a time. The first step
in the algorithm creates the lowest rank well-formed loops for each variable in the
range-set; rank refers to the number of variables enclosed in a loop. Then, where
possible, the loops are iteratively merged. For � variables in a given range-set, there
are potentially 5 � loop mergers. Fortunately, certain loops will be incompatible with
other loops; this feature can greatly reduce the algorithm’s search space. A loop is
incompatible with another loop, for example, if it is only partially enclosed in the
second loop. (A similar rule applies to loops in procedural languages.)
� �

The proof that the two definitions are equivalent is straightforward but somewhat lengthy, and is not
included here.

178 ���������
	���
��

As the algorithm merges loops, it stores its results in a loop graph. Nodes in this graph
represent well-formed loops, and edges (called exclusion edges) connect pair-wise
incompatible loops. In addition to the rule above, two loops are marked incompatible
if they are mutually dominated by a third loop. A loop dominates two other loops if it
has a higher rank than the two smaller loops and its set of exclusion edges is the union
of the exclusion edges of the smaller loops. When two loops are found to be dominated
by a third, the two loops are removed from the list of loops to use in future mergers;
only the dominator is retained. In this way, each domination reduces the search space
by one.

Once the loop graph is fully constructed, the final step is to choose the most memory
efficient, feasible (i.e., compatible) set of well-formed loops. Memory efficiency is
based on the window sizes for each loop as calculated in [9]. The results of the memory
optimization are either read by the code generator for serial output, or parallelized as
described in the next section.

Definition 4.10 For the pair consisting of the subset of nodes � " 	 and a range-
set ��� � ���1� , the loop over � generated by � , designated) ��� ���A� , is defined as
) ��� ���A� �2	 , �.	 ���1� � if 	 ,��.	 ���1� � " � � and) ��� ���A� � 1 otherwise.

Definition 4.11 The rank of a loop) ��� ���A� is defined as:� ��(� � ' ' ��� � ") ��� ���.� � .

The construction incorporates the three rules in the definition of well-formed loops.
Recall the distinction between the schedule graph and the variable graph. In the
example shown in Figure 3, a well-formed loop containing the three nodes �&��	 �)+ � ,
and 	 will be augmented to contain 	 by the closure requirement. However, 	 does
not share a range-set with the other three nodes, and therefore the loop containing all
four nodes is not a well-formed loop. If 	 did share a common range-set with the
other nodes, then this would not be an issue, and there would be no reason to treat 	 ’s
data node separately from its equation node. The general algorithm for generating the
loop graph is then:

1. � � � � :

(a) ��(�� � ' ' � � � " � � , create) � ��?	(��. ���A� , where ?�(�� is the equation node
that defines (�� . This creates the initial set of seed loops.

(b) Loops are iteratively joined as follows:
For any two seed loops) ��� � ���A� and) ��� = ���.� , if 	 , �.	 ��� � 5�� = � � /�21 then
create) ��� � 5�� = ���A� . If) ��� � 5�� = ���A� dominates) ��� � ���A� and) ��� = ���A� , draw
an exclusion edge from) ��� �A���A� to) ��� =!���A� , remove the two dominated
loops from the set of seeds, and replace them with the dominator.

2. For all pairs of loops,) ��� � �&
 � and) ��� = ��,-� , if) ��� � �)
 � �) ��� = ��,@� /� 1 and
) ��� � �)
 � /3) ��� = ��,-� and) ��� � �&
 � /") ��� = ��,@� then draw an exclusion edge

Integrating Data and Task Parallelism in Scientific Programs 179

from) ��� � �&
 � to) ��� = ��,@� . In other words, draw an exclusion between any two
overlapping loops where one loop is not completely enclosed in the other. � �

5 PARALLELIZATION

The semantics of EPL allow for a trivial parallelization of an EPL program on a
dataflow machine. Every instance of each equation could be a separate thread enabled
for execution when the data it requires becomes available [14, 1, 4]. Such synchro-
nization would enforce a valid order of EPL program execution. However, this form of
parallelization is not efficient on current dataflow machines, such as the Monsoon[5],
because all synchronization is done at run-time, increasing the overhead incurred by
token communication and matching.

A more efficient approach is to recognize at compile time which threads must execute
sequentially relative to each other and then to merge them. This is the motivation
behind creating the EPL schedule graph, introduced earlier, in which equations that
are cyclically dependent on each other are clustered together. The nodes of the schedule
graph constitute the smallest unbreakable tasks of computation in EPL parallelization.

The schedule graph nodes that are data dependent are clustered further at the time of
memory optimization when the well-formed loops (WFL) are created. As discussed
below, to explore pipeline parallelism such clustering can be extended beyond the
boundaries of the well formed loops. An essential observation motivating this cluster-
ing is that the bodies of the pipeline loops can be parallelized in two ways. If the input
to the pipeline loop can be provided in parallel, a data parallelization can be used in
which an instance (or a range of instances) of the loop body is assigned to a separate
processor. Regardless of the way the input arrives, the loop body can be pipelined,
i.e., several processors can be assigned to different parts of the loop body. The second
method, pipelining of EPL programs, is discussed below. It should be noted that the
object code created by pipelining invokes different parallel tasks executing together,
and therefore such parallelization reaches beyond the SPMD model.

The goal of pipeline loop optimization is to enable the compiler to adjust the granu-
larity [3] of the resulting computation to match the architectural parameters of a target
architecture. This can be done by first adjusting the size of the pipeline stages to
balance the computational load of each resulting cluster. Then, the pipeline commu-
nication message size can be selected to reduce the overhead incurred by inter-cluster
communication based on the communications performance of the target.

5.1 Creation of Pipeline Loops

The objective of this stage of EPL parallelization is to create the largest clusters of
schedule graph nodes that are amenable to pipelining. We refer to those clusters as
Pipeline Loops (PLs). As in the case of well-formed loops (WFLs), nodes in such

� �
Note that these exclusion edges go both within and across range-sets.

180 ���������
	���
��

clusters must share the same or equivalent range set
� �

and the closure of the cluster
must be equal to itself. Unlike the well-formed loops, there is no need for a PL to
cover all references to variables associated with the nodes. As a result, for each PL
there is a WFL such that PL 3 WFL, so WFLs are a good starting point for building
PLs. Because of this looser restriction on the variable coverage, several well-formed
loops can be clustered together into a pipeline loop.

Definition 5.1 A non-empty subset)�"�	 of nodes in a variable graph is called a
pipeline loop iff:

1. The set of iterators over) is non-empty. �.� �@) �0/�21*�
2. The closure of) is equal to) . �.	 , �@) � �) �

Any clustering of the schedule graph nodes defines an equivalence relation between
those nodes. Therefore, there exists a corresponding refinement graph which we will
refer to as a Clustered Schedule Graph (CSG). To determine the largest pipeline loops
of a computation, we will consider only maximal clusterings and their corresponding
graphs. Initially, each node of the CSG is a well-formed loop, and each edge describes
the communication requirements between each pair of well-formed loops. Using
this information we are able to enumerate all of the pipelines of a computation.
Figure 4 shows an example CSG, illustrating the two possible maximal pipeline loop
arrangements.

WFL A

WFL B WFL C

WFL D

WFL B

WFL A

WFL D

WFL C

(<,>)

(<)

(<)

(<,>)

(<,>)

(<,>) (<)

(<)

Figure 4 Two Candidate Dominant Pipeline Loop CSGs

In a CSG, each node is labeled with its directed iterators. The edges are labeled with
the minimum delay.
B B

Equivalence is defined over the relation in terms of subscript sublinearity (see [12]).

Integrating Data and Task Parallelism in Scientific Programs 181

The graph in Figure 5 is a CSG where each node represents a well-formed loop, except
for WFL C which also exposes its component schedule graph nodes. For example,
consider WFL C and WFL E; the latter depends on values created by T ordered by
the range set
 in ascending order. We can easily see why a component of WFL E
could not be merged into WFL C. This is due to the fact that WFL G uses the same
values from T, but in a different order (descending). Thus, the windowing could not be
extended. However, this does not mean that a pipeline loop could not be extended. In
particular the pipeline loop could be extended to include both WFL E and WFL F. In
the backward direction, we could extend the pipeline loop to include WFL A as well.

<
(i)

(i ,i)
< >

(i ,i)
< >

(i) (i)
< (i)

< >
(i)

WFL C

WFL D

WFL B

WFL A

S

R

T

WFL FWFL E WFL G

Sink

So
ur

ce

Sink

So
ur

ce

Sink

So
ur

ce

Ascending (<)

Descending (>)

Run-Time ()

d

d
d

d

d

Figure 5 Example of a Clustered Schedule Graph

In our example CSG, WFL A and WFL C are labeled with
 " �)
 $, indicating that the
nodes are pipelineable in either direction. Therefore, another pipeline can be formed,
one that includes WFL A, WFL C and WFL G. However, this is an exclusive-or in
that it excludes the previously formed pipeline loop (i.e., WFL A, WFL C, WFL E,
and WFL F). To determine the compatibility for each node in the CSG we will use an
algorithm described in [10], for internal data dependency propagation.

5.2 Optimizing Pipelines for Target Architectures

Pipeline Optimization Process The following steps are used to optimize the exe-
cution of pipeline loops on a given target architecture:

1. Apply algorithm in Section 4.2, replacing Definition 4.8 with Definition 5.1. This
creates an exclusion graph of the dominant pipeline loops.

2. For each candidate dominant pipeline loop CSG, optimize for a given architecture:

182 ���������
	���
��

(a) Determine the number of processors that can be effectively used for each
dominant pipeline loop.

(b) Determine the optimal pipeline communication size.

3. Cluster dependent pipeline loops.

The first step is performed by the process described in the previous section. Figure 4
shows a CSG with the two possible pipeline loop configurations where optimization
can be explored.

For parallelization and pipeline optimization, only the boundaries of the pipeline loops
are significant. Thus, each schedule graph node in a pipeline loop can potentially be
scheduled on a separate processor as a pipeline stage. However, as shown in [8, 3]
this may lead to a parallelization with too fine a granularity. Moreover, a pipeline’s
throughput is limited by its worst stage. Because of the regular communication
patterns within a pipeline loop, Step 2a in the process is free to cluster, or internalize
the communication between stages in the pipeline to increase the granularity to match
target architecture parameters, while not reducing the potential speedup due to pipeline
execution. Thus, Steps 2a and 2b are executed iteratively. Starting with � processors,
Step 2a partitions the pipeline into � equal pipeline stages. Once this is done, the
optimal block size (discussed in the next subsection) is chosen. If the resultant
efficiency is lower than a serial execution, then the number of processors is decreased,
and the pipeline is again repartitioned and communication optimized. If a binary
search method is used, then the execution time is � �@	 ,�� # ��� � � � where 	 is the
number of schedule graph nodes in the pipeline loop, and � � is the maximum number
of processors that can be assigned.

For the final step, we are investigating how known clustering techniques, e.g., reducing
the makespan [2], or increasing throughput [11], apply to this environment.

Determining the Pipeline Parameters The following is a simple analytical model
that is used to illustrate how optimal parameters of a pipeline can be determined. The
base case of the model assumes that we have a pipeline loop which consists of a
sending node
3� with 	 � instructions executing on processor with � � instruction
rate, and a receiving node,
 * , with 	 * and � * defined similarly. For simplicity, we
assume a linear cost model for inter-processor communications, 	 ��� ! � $�� ,
where � is the startup message overhead, � is the time to transfer one element over the
communication channel, and � is the number of elements to transfer. The minimum
number of elements required for a pipeline stage is given by � .
The cost of executing the pipeline loop with blocking factor � is:

�	��� 	 � ! �7��
 ��� � � � #
��� �	� � 	 �.� �	� * 	 * ��� ! ������� !�� ! ����� ! �	� * 	 *
If we assume that the computation of the pipeline can be balanced, that is: � ��� � 	 � �
� * 	 * , then to find � that minimizes the cost, consider two cases: ������
 ����������� ,
so ������� !���
 � , and therefore, � ����
 � � ������� , is the minimum. In the opposite

Integrating Data and Task Parallelism in Scientific Programs 183

case: � ! ��
 ����������� , and therefore ��!���� !���
 � , so the derivative of the cost is:
5 � � �7� � �
 � * , and ��� � � ��
 5 � , hence,

��� � � � �
;����� � �5 � � �
��� ���	�

We can further observe that,

��
���
�� ����
 ��� � � � �
�������

In fact, if

� � 5 � �
����������� *�� 5 �� , then ���;� � � ��

This formula helps to define the proper granularity for the pipeline for a given archi-
tecture. As long as the pipeline executes more than � repetitions, then it achieves
optimum performance. Also, for a given � and latency � , the granularity of � can be
adjusted by clustering.

6 CONCLUSIONS

This work shows how a uniform representation of fine-grain parallelism can be used
for both the memory optimization and parallelization processes. We have presented a
common formal basis for memory optimization and task creation. This method can
be incorporated into a compiler to determine optimum pipelines based on a model of
target architecture parameters. Much research remains, and we intend to incorporate
these ideas into the EPL compilation system.

REFERENCES

[1] J. L. Gaudiot and L. Bic. Advanced topics in dataflow computing. Prentice Hall, New
Jersey, 1991.

[2] A. Gerasoulis and T. Yang. Comparison of clustering heuristics for scheduling directed
acyclic graphs on multiprocessors. Journal of Parallel and Distributed Computing,
(16):276–291, 1992.

[3] A. Gerasoulis and T. Yang. On the granularity and clustering of directed acyclic task
graphs. IEEE Transactions on Parallel and Distributed Systems, 4(6):686–701, 1993.

[4] B. Lee and A. R. Hurston. Dataflow architectures and multithreading. IEEE Computer,
pages 27–39, August 1994.

[5] G. M. Papadopoulos. Implementation of a general-purpose dataflow multiprocessor.
Research Monographs in Parallel and Distributed Computing. MIT Press, 1991.

[6] K. Psarris, X. Kong, and D. Klappholz. The direction vector I test. IEEE Transactions
on Parallel and Distributed Systems, 11(4), November 1993.

184 ���������
	���
��

[7] W. Pugh and D. Wonnacott. Nonlinear array dependence analysis. In B. K. Szyman-
ski and B. Sinharoy, editors, Languages, Compilers and Run-Time Systems for Scalable
Computers, pages 1–14. Kluwer Academic Publishers, Boston, 1995.

[8] V. Sarkar. Partitioning and scheduling parallel programs for multiprocessors. Research
monographs in parallel and distributed computing. MIT Press, Cambridge, MA., 1989.

[9] B. Sinharoy and B. K. Szymanski. Memory optimization for parallel functional pro-
grams. Computer Systems in Engineering. To appear; abstract published in “Abstracts:
International Meeting on Vector and Parallel Processing,” CICA, Porto, Portugal, 1993, p.
36.).

[10] K. L. Spier and B. K. Szymanski. Interprocess analysis and optimization in the equational
language compiler. In Burkhart, editor, CONPAR 90-VAPP, Joint International Confer-
ence on Vector and Parallel Processing, Zurich, Switzerland, Lecture Notes In Computer
Science. Springer-Verlag, September 1990.

[11] J. Subhlok, D. R. O’Hallaron, T. Gross, P. A. Dinda, and J. Webb. Communication
and memory requirements as the basis for mapping task and data parallel programs. In
Proceedings of SuperComputing 1994. ACM, 1994.

[12] B. K. Szymanski. EPL–parallel programming with recurrent equations. In B.K. Szyman-
ski, editor, Parallel Functional Languages and Compilers. ACM Press/Addison Wesley,
New York, 1991.

[13] B. K. Szymanski and N. S. Prywes. Efficient handling of data structures in definitional
languages. Science of Computer Programming, 10(3):221–245, 1988.

[14] A. H. Veen. Dataflow machine architecture. ACM Computing Surveys, 18(4), 1986.

