
Parallel Logic Simulation of Million-Gate VLSI Circuits

Lijuan Zhu, Gilbert Chen, and Boleslaw K. Szymanski
Rensselaer Polytechnic Institute, Computer Science Department

zhul4,cheng3,szymansk@cs.rpi.edu

Carl Tropper
McGill University, School of Computer Science

carl@cs.mcgill.ca

Tong Zhang
Rensselaer Polytechnic Institute, ECSE

tzhang@ecse.rpi.edu

Abstract

The complexity of today’s VLSI chip designs makes ver-
ification a necessary step before fabrication. As a result,
gate-level logic simulation has became an integral compo-
nent of the VLSI circuit design process which verifies the
design and analyzes its behavior. Since the designs con-
stantly grow in size and complexity, there is a need for ever
more efficient simulations to keep the gate-level logic veri-
fication time acceptably small.

The focus of this paper is an efficient simulation of large
chip designs. We present the design and implementation
of a new parallel simulator, called DSIM, and demonstrate
DSIM’s efficiency and speed by simulating a million gate
circuit using different numbers of processors.

1. Introduction and background

The development process of a hardware unit may take
several months or even years, and the costs of instrumenta-
tion needed for its fabrication may reach several billions of
dollars. Therefore circuit simulations done before fabrica-
tion have became an important and necessary step to avoid
design errors.

Hardware designs are supported by hardware descrip-
tion languages, or HDLs, such as VHDL (Very High Speed
IC Hardware Description Languages) [10] and Verilog [2].
By using a HDL, one can describe arbitrary digital hard-
ware at any level. Chips are designed either in bottom-up
or top-down fashion. The preferred style of most Verilog
based designs is top-down. HDLs support different ways of
describing a chip. Verilog, for example, provides three lev-
els of abstraction: behavioral level, register-transfer level
and gate level. Accordingly, circuit simulation can be clas-
sified into four groups [13]: behavioral or functional simu-
lation in which circuit elements are modeled as functional

blocks, gate-level logic simulation in which a circuit is
modeled as a collection of logic gates, switch-level simu-
lation in which circuit elements are modeled as transistors,
and circuit level simulation in which resistors and wires
with propagation delays are also represented.

Gate-level simulations can be classified into two cate-
gories: oblivious and event-driven [13]. In the former, ev-
ery gate is evaluated once at each simulation cycle, while
in the latter, a gate is evaluated only when any of its in-
puts has changed. For large circuits, event-driven simula-
tion is more efficient because fewer logic gates are evalu-
ated at any instant of the simulated time. Still, very large
and complex systems take substantial amounts of time to
simulate, even utilizing event-driven simulators [5]. Con-
sequently, parallel simulation has become a necessity for
such circuits.

1.1. A Viterbi decoder design

As our benchmark, we selected the circuits implement-
ing a state-parallel RE Viterbi decoder whose block dia-
gram is shown in Figure 1(a). The decoder contains three
functional blocks: branch metric unit (BMU) which cal-
culates all the branch metrics; add-compare-select (ACS)
units which update the accumulative survivor path metrics;
and a survivor memory unit (SMU) which stores the sur-
vivor paths and generate the decoder output. For a trellis
with N states, a state-parallel decoder implements N ACS
units that operate in parallel.

As extensively discussed in the literature (e.g., [6, 7]),
the SMU is conventionally designed in two different styles,
register exchange (RE) and trace back (TB), targeting dif-
ferent power/complexity versus throughput trade-offs. Ba-
sically speaking, RE can easily support very high decoding
throughput (e.g., hundreds Mbps or even several Gbps) but
requires a large number of transistors and consumes a lot
of power. TB decreases implementation complexity and is

Bolek
Text Box
Proc. 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and       Telecommunication Systems, MASCOTS05, Atlanta, GA, September, 2005, pp. 521-524



Figure 1. (a) The block diagram of a state-parallel Viterbi decoder, and (b) a sample four-state register
exchange structure for SMU

quite power-efficient but cannot support very high decod-
ing throughput. In the RE Viterbi decoder, as illustrated in
Figure 1, the decoder output is obtained by a simple register
shift operation and the critical path typically lies in ACS re-
cursion. On the other hand, in the TB Viterbi decoder, cer-
tain number of memory accesses are required to obtain each
decoder output, which often results in the trace back being
the critical path. One important parameter in both RE and
TB Viterbi decoders is the decoding decision depth, which
is the length of the memory path. For convolutional codes,
the decision depth selection has been well discussed [3].
We simulate an RE Viterbi decoder with a constraint length
of 11, corresponding to 1.2 million NAND gates.

1.2. Parallel Discrete Event-driven Simulation

To speed up simulations, parallel discrete event simu-
lation (PDES) for large circuits has been advocated and
used. In this approach, the model is composed of some
disjoint submodels [16], each represented by the so-called
Logical Process (LP). Each processor takes charge of sim-
ulating one or more LPs, and each LP interacts with all
of the LPs which are influenced by the given LP’s local
changes. These interactions are enforced by messages car-
rying events between LPs. Each message is timestamped
with the simulation time at which its event should execute.
In parallel simulation of circuits, each gate is modeled as
an LP. A gate propagates its output signals to the connected
gates. If the LP of a connected gate resides on a different
processor, the output generates a messages sent to that pro-
cessor. Each processor maintains a future event queue from
which events are selected for execution. To achieve a cor-
rect simulation, the order of the final execution of events
must preserve causality in the simulated process. This is
the main challenge in parallel simulation. Two major tech-
niques were developed to address this challenge: conserva-
tive and optimistic [9]. We focus on optimistic protocols in

this paper.
Many researchers have developed parallel simulators to

speed up logic simulation. Meister gave a good albeit bit
dated review of parallel logic simulation in [16].

Lungeanu and Shi [17] developed a parallel simulator
for VHDL designs, using both a conservative and an opti-
mistic protocols. Williams [18] developed Icarus Verilog,
an open-source Electronic Design Automation (EDA) se-
quential Verilog simulator. In [14, 15], Li et al designed
and implemented DVS, an objected-oriented framework for
distributed Verilog simulation. The distributed simulation
engine is based on the Clustered Time Warp (CTW) [4].

All these parallel logic simulators simulated circuits of
quite modest size of about several thousands gates. The
simulator described in this paper has been developed with
the explicit goal of simulating large circuits, having mil-
lions of gates.

The rest of the paper is organized as follows. Section
2 contains a description of our circuit simulator. Section
3 provides performance results for our simulations of the
Viterbi decoder. The final section contains our concluding
remarks and plans for future work.

2. Verilog Simulation

The simulator which we have designed and imple-
mented consists of a translator, a parser and a simulator
proper.

To enhance the design’s modularity and encapsulation,
Verilog defines modules in a hierarchical structure. How-
ever, this structure is difficult to process by a simulator. The
goal of the translator is to flatten the hierarchical modules
into a netlist without a hierarchical structure, and to gen-
erate/output the source file of the netlist with the flattened
structure. It is composed of the following components:

• Parsing: The translator first reads in the source file



in Verilog format, performing the syntax and seman-
tic checking as well as storing each module in lists of
gates, wires, inputs, and outputs.

• Flattening: The translator parses the source file again,
but now, each time there is a module instantiation, the
translator expands it with the original module defini-
tion, renaming all of the gates and wires.

• Outputting: Using the information stored for the root
module (normally, the last module processed), the
translator outputs the netlist of this module.

For simulation proper, we use DSIM, a new genera-
tion Time Warp simulator developed to support efficient
parallel simulations on distributed clusters with thousands
of processors [8]. DSIM features an efficient and scal-
able GVT (Global Virtual Time) algorithm, referred to as
the Time Quantum GVT (TQ-GVT) algorithm, which does
not require message acknowledgments and relies on short
messages with constant length as oppose to using variable
length messages with vectors.

In addition to the new GVT algorithm, DSIM uses a
modified fossil collection mechanism called Local Fossil
Collection, in which fossil collection is done separately by
each LP individually, right before an LP attempts to process
a new event. DSIM also employs an efficient event man-
agement system. For each type of event, it pre-allocates a
memory buffer, whose size can be dynamically increased.
As a result, the event allocation is a constant complexity
operation.

On 1024 processors, DSIM achieved a 379 speedup on
a simulation of a quarter million spiking neurons, yielding
an event processing rate of 351 million events per second.

2.1. Building a circuit simulation in DSIM

In our gate-level circuit simulation, gates, primary in-
puts, and clocks are modeled as individual Logical Pro-
cesses (LPs). A primary input as well as a clock can be
considered as a gate, in which the output replicates the in-
put. Primary inputs to the simulator, are in the form of a list
of vector (in hex format, with digits of 0-9 and letters a/A-
f/F). Decomposing a vector into bits can produce individual
bits for each primary input.

The simulation starts with the LP that models the pri-
mary input. It recursively reads a vector from the input list
and decomposes it to get the corresponding bits as its own
input (we model it as a gate replicating its input). The time
interval to read the vector is either the time interval of the
data supplied, referred to as the data interval or is defined
as a parameter of the simulator. The LP which models a
clock works similarly to the one that models the primary
input. The clock LP inputs a 0 or 1 bit alternately each
clock interval.

LPs which model gates execute the gate behavior and
schedule new events according to their outputs. An event
consists of three items: the identifier of the LP to which the
event is sent, the bit (0 or 1) representing the output of the
gate (LP) sending this event, and the index of the port in
the receiving gate (that is the port that is directly connected
with the gate sending the event). Each event is also times-
tamped with the simulation time at which the event should
be executed.

At the start of the simulation, an initialization stage ac-
tivates the primary input LPs that initialize events (with the
current simulation time) at its subordinate LPs from the first
input vector in the list. They also schedule events destined
to themselves with a time-stamp equal to the current sim-
ulation time plus the input data interval. The latter events,
when executed, will simulate the arrival of the next input
vector from the input list.

After the initialization stage, the simulator enters the
main simulation loop. In the body of this loop, messages
from other processors are received, if any, and the received
events are placed in the future event queue. If there are
stragglers, a rollback will occur, otherwise the first event at
the head of the future event queue is dequeued. The time-
stamp of this event becomes the current simulation time
and the event is executed, potentially generating new events
which are added to the queue. If the current simulated time
reaches the predefined total simulation time or there is no
more input vector (end of the list), the simulation stops.
Otherwise, if the time quantum is reached, the TQ-GVT al-
gorithm is invoked. If this is not the case, the the simulation
loop body is executed again.

For circuit partitioning, we use a tool called hMeTiS de-
veloped at the University of Minnesota [11]. hMeTiS is
a tool for partitioning large hypergraphs, especially those
used in circuit design. The algorithms used by hMeTiS
are based on multilevel hypergraph partitioning described
in [12].

3. Simulation experiments and their results

We used the synthesized netlist of the Viterbi decoder
obtained through the Synopsys [1] design compiler, which
converts a design source code to a netlist file. The simula-
tions were executed on a cluster. Each node of this cluster
has 2 800-MHz Intel Pentium III processors with 512 MB
memory, connected by a fast Ethernet. The Viterbi decoder
circuit that we simulated consists of about 1.2M gates, with
6 primary inputs. The input supplied to our simulation is a
list with 500 or 1500 vectors.

There are three factors affecting the simulation time: the
total number of events committed, the percentage of the
inter-processor events, and the ratio of rollbacks.



A sequential simulation of this circuit was not done, be-
cause none of the cluster nodes had sufficient memory for
such a run. However, in parallel simulations, the memory
usage is distributed to all of the nodes. Hence a node needs
less memory than that in sequential simulation. In DSIM,
one processor is used as the GVT master, so the results
(averaged over 3 consecutive runs and shown in Figure 2)
are for 2, 4, 8, 16, and 32 processors. Since the sequen-
tial simulation was not run, we calculated the speedup with
2 processors. We observed superlinear speedup when the
number of processors changed from 3 to 5, from 5 to 9, and
from 9 to 17. These speedups are attributed to a decrease
in memory and cache required by the simulation at each
processor as the number of processors increases. When the
available memory and cache exceeds the needs, this effects
disappears, so there is no superlinear speedup between 17
and 33 processors. The speedup between 17 processors and
33 processors is 1.80 for simulations with 1500 input vec-
tors, and 1.63 for simulations with 500 input vectors. How-
ever the speedup between 3 processors and 33 processors is
as high as 27.84 and 22.63 for 1500 and 500 input vectors,
respectively. Hence, by increasing the number of proces-
sors by the factor of 11, we speed up the computation by
the factor of 27 (or 22), a clear sign of a superlinear speedup
resulting from improved memory system performance.

Figure 2. Simulation speedups

4. Conclusions and future research

In this paper, we presented a parallel logic simulator of
a million-gate VLSI circuit using a new simulation engine
called DSIM. Results show that this simulator is capable
of efficiently simulating a synthesized netlist of 1.2 million
gates circuit with a high speedup. Superlinear speedup is
achieved for up to 17 processors. The speedup achieved
when the number of processors is increased from 3 to 33 is
about 28.

A good partitioning algorithm is central to the success
of distributed circuit simulation, as witnessed by our own
(and others) experiments. Iterative exchange algorithms
such as hMeTiS, used in this paper, while effective, can
become costly as circuits increase in size. Hence heuristics
to decrease their execution time or the use of dynamic load
balancing [4] provide important venues for our continued
research.

Acknowledgment. This work was partially supported
by the NSF Grant NGS-0103708. The authors thank
Fei Sun for providing them with the Viterbi decoder gate
netlist.

References

[1] www.synopsys.com.
[2] Verilog hardware description language standard. IEEE

1364-2001, 2001.
[3] J. B. Anderson and K. Balachandran. Decision depths of

convolutional codes. In IEEE Transactions on Information
Theory, volume 35, pages 455–459, March 1989.

[4] H. Avril and C. Tropper. Scalable clustered time warp and
logic simulation. In VLSI design, pages 1–23, 1998.

[5] M. L. Bailey, J. Jack V. Briner, and R. D. Chamberlain. Par-
allel logic simulation of vlsi systems. In ACM Computing
Surveys, volume 26, September 1994.

[6] P. J. Black and T. H. Meng. Hybrid survivor path archi-
tectures for viterbi decoders. In Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing,
pages 433–436, April 1993.

[7] E. Boutillon and N. Demassieux. High speed low power ar-
chitecture for memory management in a viterbi decoder. In
Proc. IEEE International Symposium on Circuits and Sys-
tems, pages 284–287, May 1996.

[8] G. Chen and B. Szymanski. Dsim: Scaling time warp to
1,033. In Proc. Winter Simulation Conference, WSC05,
2005.

[9] R. M. Fujimoto. Parallel discrete event simulation. In Com-
munications of the ACM, volume 33, pages 30–53, 1990.

[10] IEEE Std. 1076-2002. IEEE Standard VHDL Language
Reference Manual, 2002 edition.

[11] G. Karypis and V. Kumar. Hmetis, a hypergraph partition-
ing package.

[12] G. Karypis and V. Kumar. Multilevel k-way hypergraph
partitioning.

[13] H. K. Kim. Parallel Logic Simulation of Digital Circuits.
Phd thesis, Wright State University, 1998.

[14] L. Li, H. Huang, and C. Tropper. Towards distributed ver-
ilog simulation. I.J. of SIMULATION, 4(3–4):44–54.

[15] L. Li, H. Huang, and C. Tropper. Dvs: An object-oriented
framework for distributed verilog simulation. In Proc. Sev-
enteenth Workshop on Parallel and Distributed Simulation
(PADS’03), 2003.

[16] G. Meister. A survey on parallel logic simulation. Techni-
cal report, Department of Computer Science, University of
Saarland, 1993.

[17] D. L. Richard. Parallel and distributed vhdl simulation.
[18] S. Williams. Icarus verilog. Http://icarus.com/eda/verilog.




