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Recently, there has been a tremendous increase in mo-
bile data usage with the wide-spread proliferation of
smartphone like devices. However, this increased de-
mand from users has caused severe traffic overload-
ing in cellular networks. Offloading the traffic through
several other devices (femtocells, WiFi access points)
have been considered to be immediate remedy for
such a problem. Thus, in this paper, we study the de-
ployment of WiFi access points (AP) in a metropoli-
tan area for efficient offloading of mobile data traffic.
We analyze a large scale real user mobility traces and
propose a deployment algorithm based on the den-
sity of user data request frequency. In simulations,
we present offloading ratio that our algorithm can ac-
complish with different number of APs. The results
demonstrate that our algorithm can achieve close to
optimal offloading ratio that is higher than offload-
ing ratios that existing algorithms can achieve with the
same number of APs.

I. Introduction

Mobile data usage is rapidly growing due to increas-
ing ubiquity of various mobile devices (i.e., smart-
phones, laptops) among users as well as the increasing
demand of mobile data usage by each subscriber. Peo-
ple are using these devices for different activities such
as web browsing, video/audio downloading and photo
sharing. As Cisco recently announced in [1] that,
global mobile data traffic will grow 18-fold from 2011
to 2016, reaching 10.8 exabytes per month. About
71% of this traffic will be mobile video traffic. Also
4G connections will account for 36% of all mobile
data traffic.

Having such mobile data explosion, it is inevitable
that in the near future cellular networks will be over-
loaded and congested. Currently, this problem has al-
ready been experienced by subscribers of multiple op-
erators in urban areas. Especially during the peak data

usage times (rush hours etc.) breaks in the user calls
occur due to the insufficient network bandwidth. Cel-
lular operators need to provide solutions to this prob-
lem quickly because they can lose their subscribers
feeling unsatisfied with the access quality and avail-
ability.

Recently, the network research community initiated
some efforts to solve this challenging problem. Basi-
cally, there have been four types of solutions consid-
ered:

1. Increasing the number of radio base stations or
selectively improving some of them [2].

2. Increasing network coverage through some small
scale base stations (i.e. femtocells [3]) that are
usually deployed at homes.

3. Upgrading cellular radio access technology to
advanced next generation technologies (such as
High Speed Packet Access (HSPA) and Long
Term Evaluation (LTE)) to increase the band-
width.

4. Utilizing WiFi networks for offloading the bur-
den of cellular network [4, 5, 6].

Even though all the above solutions can help in mit-
igating this problem, each one has unique advantages
and disadvantages compared to the others. The first
and the third solutions may require high financial in-
vestment and a long process of deployment. More-
over, they may bring low return gains especially with
the current flat price policy. There have been some
tiered pricing mechanisms adopted by operators in an
attempt to slow the increase in demand but as the users
are willing to pay even the high prices, tiered pric-
ing solution will eventually become ineffective. Some
providers even engaged in an equally futile attempt to
educate their users about what each megabyte repre-
sents in terms of data and ask them for responsible and
unwasteful access.
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Femtocells can be considered a good way offload-
ing but they are somewhat new compared to WiFi APs
which are already deployed in many places. They are
deployed mostly for coverage extension but they can
also provide indoor offloading. They operate on the
same licensed spectrum as macrocells of the cellu-
lar network, so they do not require special hardware
support on mobile phones. Yet, they come with some
disadvantages like one-time cost of buying a new de-
vice which carry the price ranging from $100 to $200.
However, their use can still be considered a good of-
floading strategy as long as users are willing to pay
for the necessary devices. Good surveys on femtocells
and their deployment are presented in [3, 8].

In summary, utilizing WiFi networks for cellu-
lar traffic offloading currently seems to be the most
promising solution1 that can offer an immediate rem-
edy to this problem. There are many WiFi access
points available at many user locations such as homes,
shops and universities. In addition to them, operators
can also deploy their own APs at the locations where
the access demand is high. Since these devices oper-
ate in different spectrum than the base stations, they
also do not cause interference. Moreover, the band-
width offered by WiFi is much higher than the band-
width of cellular access.

In this paper, we focus on the problem of WiFi ac-
cess point (AP) deployment for efficient mobile data
offloading. To this end, we analyze a city wide real
user mobility traces and propose an efficient AP de-
ployment. We measure how much offloading can
be achieved with different numbers of APs. More-
over, we look at the offloading efficiency of proposed
deployment for future data usage by network users.
We also find the optimal deployment by modeling
the problem as an Integer Linear Programming (ILP)
(see [14]) problem and solving it using the IBM ILOG
CPLEX software [15]. The results indicate that pro-
posed greedy heuristic based algorithm produces re-
sults that are close to the optimal solution.

The rest of the paper is organized as follows. In
Section II, we talk about related work. In Section III,
we present the details of proposed greedy heuristic
based algorithm. In Section IV, we model the prob-
lem as an ILP problem and solve it exactly using the
IBM ILOG CPLEX package. In Section V, we give
the details of our simulation setting and present the

1This is also in agreement with the results of a recent sur-
vey [7] done by WBA/ITM among the world wide operator lead-
ers who think WiFi offloading will be the most significant strategy
in managing mobile network volume and rank this solution higher
than femtocell deployment and upgrade to HSPA and LTE tech-
nologies.

simulation results. Finally, we end up with conclusion
in Section VI.

II. Related Work

There are some previous studies that focus on an inter-
esting type of offloading strategy called delay tolerant
offloading. The idea behind the applicability of such
strategy is that there is a remarkable amount of mo-
bile data content (such as photo uploads to Flickr [5])
which are uploaded by users much later than their gen-
eration time at the mobile devices. Thus, in such situa-
tions, user devices can delay the upload of this kind of
data up to some threshold and offload them automati-
cally to WiFi access points [11] once they get into the
range of them. If the opportunity to connect to a WiFi
access point does not arise before the end of tolera-
ble delay duration, regular cellular connection is used
for uploading. A similar approach is proposed in [2]
but the offloading is suggested to be done via some
top base stations through which most of the content of
users are uploaded.

This type of delayed offloading strategy is further
justified by growing popularity of DTN type message
exchanges among users (via Bluetooth or WiFi con-
nections). Such exchanges increase the chance of of-
floading in the given time constraint by routing the
data towards users which contact with offloading re-
gions more frequently than others. In [9], Han et. al
propose to select a set of most active users (using so-
cial relations [10]) through which the maximum of-
floading of all user data traffic will happen. Simi-
larly, in MixZones algorithm in [11], opportunistic ex-
changes between users together with caching the pop-
ular content at users is proposed to achieve more effi-
cient offloading.

Even though this type of delayed offloading strate-
gies can relieve the burden of cellular network, they
cannot be applied to users requesting real time data
downloading, which forms the biggest portion (80%-
90%) of today’s mobile data traffic. Thus, their ef-
fective overall impact on offloading might be small.
Moreover they also raise several user related concerns,
such as passing of other users’ data via some popu-
lar user devices, causing extra power consumption at
such devices without benefits to their users. These
concerns can be addressed through some incentive
mechanisms [12], but a complete solution together
with methods to address its risks has to be provided.

In this paper, we focus on an offloading solution
using WiFi access points (Figure 1). An important
benefit of WiFi networks is that they operate on unli-
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Figure 1: Mobile data offloading via Wifi APs

censed frequency bands, thus they do not cause inter-
ference with cellular networks. They also offer more
bandwidth than what current cellular networks pro-
vide. Moreover, user mobile devices are already ca-
pable of communicating using WiFi. Capabilities of
WiFi networks for traffic offloading have already been
demonstrated in some studies like [5]. Moreover, op-
erators have already been deploying their own WiFi
APs to some points of interests (such as malls, mar-
kets etc.).

Despite the advances described above, the deploy-
ment of such WiFi APs has not been studied yet in
large scale using real mobility traces. The works that
are closest to the approach presented in this paper are
[6] and [11]. They both propose algorithms for the
deployment of WiFi APs for cellular traffic offload-
ing. However, in [6], the AP locations are decided
in a sequential manner without considering the effi-
ciency of deployment. Similarly, the HotZones algo-
rithm in [11] proposes to deploy APs to cover the ar-
eas of most used cell towers. Even though it deploys
the APs to the area of most used macrocells (i.e. base
stations), it does not consider the internal differences
of subregions in the area of a macrocell in terms of
user content generation density. A subregion inside
a dense macrocell may not generate as much data as
a subregion of another macrocell which is used less
frequently. Moreover, the algorithm does not mention
exactly how the APs are deployed in the areas of se-
lected macrocells.

In this paper, we use fine grid cells in a city wide
user area and propose to deploy the APs to the most
dense grid cells in terms of user data request fre-
quency using a greedy-based fast heuristic. We also
show how close the results of this greedy approach are
to the optimal solution. Moreover, in simulation sec-
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Figure 2: Deployment with AP size grid cells

tion, we compare our algorithm with the algorithms
presented in [6] and [11].

Apart from the AP deployment for offloading pur-
poses, there are also some studies that propose al-
gorithms for deploying APs for different reasons.
For example, in [13], Liao et al. propose an algo-
rithm to deploy minimum number of APs that provide
full communication coverage while at the same time
achieving the ability to locate a mobile device within
a certain area no larger than a given accuracy param-
eter. Our work differs from such studies since we aim
to do efficient offloading through a better deployment
of APs.

III. Greedy Heuristic Approach

To increase the offloading efficiency, AP locations
need to coincide with the popular mobile data request
locations. For this reason, some operators have started
to deploy WiFi APs in places like malls, markets and
coffee shops where there might be a high population
of their users. However, this type of deployment of
APs to some limited number of user populated areas
has to be extended to outdoor locations for a large
scale offloading strategy.

Let’s consider a city-wide area in several parts of
which users often use their mobile devices to access
Internet. Moreover, those users move around, thus,
their locations and therefore the points from which the
user data access requests come from change. More-
over, users sometimes turn their devices off. Also,
they often use them for Internet access only during
certain times. For example, it is expected to be more
likely for people to use their phone while they are trav-
eling in a taxi or using public transport rather than
when they are driving themselves.

Having the mobility traces of people who are able
to use mobile data, we need to deploy the APs where



the presence of such users is high. Assuming that an
AP can cover a circular range with radius R, the ques-
tion is how to deploy APs in such a way that the of-
floading is maximized and consequently the deployed
APs are used efficiently.

Let < = {(r1, w1), (r2, w2), . . . (rm, wm)} be the
list of pairs with each pair representing a location from
which users make mobile data access requests and the
corresponding weights of these accesses. Let APD

= {a1, a2, . . . aK} be the candidate deployment of
K AP’s (each with communication range of R), that
is the list of locations in which WiFi APs are to be
deployed. Let ID = {i ∈ [1.m] | ∃j ∈ [1,K] :
|ri − aj | ≤ R} be the set of indexes of data access re-
quest locations covered by the candidate deployment
APD.The goal is to maximize the following sum over
all possible candidate deployments (APD’s):∑

i∈ID

wiri

Since this problem is similar to maximum coverage
problem, it is likely NP-hard. Hence, we propose here
to use the greedy heuristic approach to solve it.

We start by dividing the entire region into equal size
grid cells such that each cell represents the coverage
of a single AP deployed at its center. Since an AP has
an effective range of R, the side of each cell is equal
to

√
2R, i.e. the side of the biggest square that will

fit inside a circular AP range with radius R. Figure
2 illustrates the greedy approach. Then, we find, one
by one, the most dense locations in terms of user mo-
bile data request frequency denoting their locations by
mi,mj .

Since this approach assumes that APs will only be
deployed at the centers of grid cells, some most dense
areas may be covered by neighbor cells partially. To
mitigate this drawback, we propose an extended ap-
proach shown in Algorithm 1 in which AP centers are
allowed to be in any corner of a cell in nxn sub-grid
put over each grid cell representing an AP (see Fig-
ure 2). This extended version first divides the area into
SxS grid and then further divides each of the resulting
grid cells into nxn sub-grid. The algorithm then finds
the possible AP location that gives the highest offload-
ing ratio (i.e., which has the maximum data request
frequency) under its coverage. Then, the other APs
(with total AP count of K) are found similarly one-
by-one, with each step removing the already covered
areas by deployed APs. Here note that the disadvan-
tage of introducing nxn subgrid is that the complexity
of the algorithm increases as n increases, but as we
will show in simulation section, the advantage is that
the results of heuristic get closer to the optimum.

Algorithm 1 Greedy Solver (S, n, K)
1: Find densities for (nxS) x (nxS) grid
2: for each possible AP location (i,j) do
3: AP[i][j]=total covered density under nxn sub-

grid centered at (i,j)
4: end for
5: c=0
6: while c < K do
7: (mi, mj)= argmax{AP[i][j]} ∀ i j
8: set covered[x][y]=1 ∀ x y under nxn grid cen-

tered at (mi,mj)
9: update AP[i][j] ∀ i j by taking out the densities

of all cells with covered[x][y]=1
10: c=c+1
11: end while

IV. ILP Solution

To see how close the results of the greedy approach
are to the optimum, we also formulate and solve ex-
actly the problem of deploying APs using Integer Lin-
ear Programming (ILP) approach [14]. We first di-
vided the entire area into very small cells and obtained
an N by N grid. Then, representing an AP as an nxn
small frame, we find the optimum deployment of K
APs that maximizes the offloading ratio.

In the ILP model, the goal is to find the optimal
placement of K small frames to grid locations, where
placement of all small frames is defined by a pair of
integer vectors I = [i1, . . . , iK ] and J = [j1, . . . , jK ],
each of size K such that for any 1 ≤ k ≤ K the pair
1 ≤ ik ≤ N −n+1, 1 ≤ jk ≤ N −n+1 defines the
location of the North West corner of the small frame
k. Let IJ denote the set of all possible vectors I, J
with their values integers from the interval [1, N−n+
1]. We used the following notation (in x-y coordinate
system):

Sk,i,j =

{
1 if ik ≤ i+ n and jk ≤ j + n
0 otherwise

yi,j =

{
1 if

∑K
k=1 Sk,i,j > 0

0 otherwise

wi,j = weight (i.e., data request frequency)) of cell (i,j)

The binary variable yi,j indicates if cell (i, j) is cov-
ered by any small frame. Given the above variables,
the objective function is:

max
I,J∈IJ

N∑
i=1

N∑
j=1

wi,jyi,j
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Figure 3: Distribution of occupancy durations.

Here, to compare optimal results with greedy re-
sults, we set N=(nxS) in simulations and solve it us-
ing IBM ILOG CPLEX [15] software.

V. Simulations

To evaluate the performance of proposed deployment
strategy, we have built an event driven simulator that
uses the real mobility traces. We used a taxi data set,
which is publicly available [16], and determined the
mobility of the users accordingly. The dataset consists
of the traces of 536 taxis that operate in the city of San
Francisco. For each taxi, the mobility trace records
include the GPS location and the occupancy over a
30 day period. There are some discrepancies in the
recording intervals. Thus, to make the evaluation with
a data set that is less likely to include measurement er-
rors, we pruned the dataset as in [6] by excluding the
data about all taxis with the average sampling inter-
val larger than 100 sec and standard deviation bigger
than 1000 sec. After this initial process, we obtained
a set of data about 343 taxis. Moreover, we also ex-
trapolated the locations of each of these taxis between
the recorded two consecutive locations using available
data.

Similar to [6], we generated the user data traf-
fic (i.e., download requests) during the times taxis
were occupied. This is justified by the fact that it is
more reasonable to find a person using mobile devices
(iPhone, iPad, vehicle’s GPS etc.) to access Internet
when traveling by taxi (as passenger) rather than in the
case when driving a car or a taxi. We refer to a taxi
occupancy duration as a journey. During each jour-
ney, we assume the user initiates a download request
every 5 sec. If there is a WiFi access point located in
the range of the location from which the download re-

quest is initiated by the user, the download of the file
is achieved via that AP2, offloading the correspond-
ing traffic. Otherwise, download of the requested file
is achieved through cellular network. In Figure 3, we
show the distribution and the cumulative distribution
function (cdf) of journey durations in all dataset. As
the figure shows, the majority (about 86%) of journey
durations (and the corresponding sequence of down-
load requests) last between 100 and 1000 sec, with
an average of 612 sec. Considering that these jour-
neys indeed are the taxi occupancy durations in San
Francisco, the journey statistical characteristics seem
reasonable.

We assume that at the beginning of the simulation
there are no WiFi APs deployed in the area. Then,
using each algorithm, we find the minimum number
of APs that can guarantee the desired offloading ratio
from cellular network. We compare our greedy al-
gorithm and optimal results (from ILP solution) with
the two previously introduced algorithms. In the first
one [6], the AP locations are decided sequentially, one
by one (we refer to it as “Sequential” in the discus-
sion of results). That is, if a download request cannot
be offloaded through a WiFi AP, the algorithm puts an
AP there, and considers that the other download re-
quests that fall in the range of this AP will also be of-
floaded through it. Then, the number of APs that will
be deployed increases in this manner until allowed AP
count is reached. The second algorithm is called Hot-
Zones [11] where APs are deployed to cover the areas
of mostly used cell towers. Since, we simulate a user
area which can be covered by several towers, we used
four cell towers to get the results for this algorithm.

In outdoor environment, the effective WiFi range
can vary from 5m to 75m [6]. Thus, for the greedy
approach, we used two different AP ranges, R (70m,
35m), yielding the side of a grid cell, Gs, 100m and
50m, respectively. The area we work on is 70 km by
70 km, thus when Gs = 100m, S = 700. Figure 4 and
Figure 5 show the number of APs that needs to be de-
ployed to achieve a given offloading ratio for all four
algorithms with different grid sizes (so with different
AP ranges). First of all, it is easy to observe that our
greedy approach (without extension) provides results
closer to the optimal solution than other algorithms.
It can provide up to 13% and 24% higher offloading

2The download requests happening every 5 sec during a jour-
ney can be considered as a request for downloading a small por-
tion of a large file. Thus, currently, we assume that the small data
portion of each download request can be downloaded within the
time the user is in the range of AP. In future work, with continu-
ous data access requests, we will study the impact of limited time
of staying in the range of a WiFi AP on the results.
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Figure 5: Number of APs vs. Offloading ratio when
Gs=50 m.

ratio with the same AP count than the ratios achieved
by the Sequential [6] and HotZones [11] algorithms,
respectively. Moreover, looking at AP counts required
to achieve a given offloading ratio shows that greedy
algorithm sometimes needs only 65% and 45% of
what Sequential and HotZones algorithms need, re-
spectively. This clearly shows that greedy approach
can provide the operators remarkable savings. More-
over, as Figure 6 shows, if the number of APs (K) is
small and we let the AP centers to be placed more ar-
bitrarily within each grid cell, then greedy approach
can give results much closer to optimal solution than
the solution with placement of APs at the center of
grid cells.

The above results consider the user data requests
from all dataset and computes the offloading ratio if
there were APs deployed in advance. To see the im-
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Figure 6: Results with greedy extensions.

pact of variance in the user behavior on the offloading
strategy, as well as to see if this type of deployment
works for future download requests, we also looked
at the predictability of future node behavior and used
only x% of the data3 to decide where to deploy the
APs. Then, to measure the offloading ratio, we used
the user requests that come from the rest of the data4.
In Figure 7, we show the effect of the size of the train-
ing data used on the offloading ratio achieved by the
heuristic. We used 25%, 50% and 100% of the data
to find locations with the highest density of user de-
mands for mobile bandwidth and deployed the APs
accordingly. As the graph demonstrates, the offload-
ing ratios achieved with deployment after using 25%,
50% and 100% of data are very close to each other.
This clearly shows that user behavior is more or less
the same and deploying the APs to locations with the
highest density of user requests for mobile data in
greedy manner is a promising solution even for future
mobile data offloading.

VI. Conclusion and Future Work

In this paper, we studied WiFi access point (AP) de-
ployment problem for efficient mobile data offload-
ing. Analyzing user mobility traces, we proposed
to deploy the APs to the locations with the highest
density of user data access requests. We also found
the optimal deployment by formulating the problem
as an Integer Linear Programming problem and solv-
ing it using IBM ILOG CPLEX package. In simu-
lation results, we showed that our algorithm achieves

3Since the processed data covers 576 hours of data after prun-
ing, x% of the data refers to the first 5.76x hours of user data.

4At 100% we used all data both for training and evaluation.
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Figure 7: Effect of training data on offloading ratio of
Greedy Algorithm (Gs=100 m).

higher efficiency than efficiency yielded by the previ-
ous algorithms and gives results closer to optimal so-
lution. Moreover, we demonstrated that our approach
is also beneficial in offloading the future data requests
of users.

In future work, we will take into account different
parameters (different size of downloaded data, band-
width limitations etc.) in our simulations. More-
over, we will work on market based incentive mecha-
nisms [17] to motivate users to participate in offload-
ing, so both users and operators can benefit together.
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