
Contents

1 BSP-Based Adaptive Parallel Processing 1

1.1 Introduction 1

1.2 The Bulk-Synchronous Parallel Model 1

1.2.1 Cluster of Workstations as a BSP Computer 3

1.2.2 Program Reorganization for Parallel Computing on Dedicated
Clusters: Plasma Simulation 4

1.3 Parallel Computing on Nondedicated Workstations 4

1.3.1 Nondedicated Workstations as Transient Processors 5

1.3.2 Approaches to Adaptive Parallelism 5

1.4 Adaptive Parallelism in the BSP Model 7

1.4.1 Protocol for Replication and Recovery 7

1.4.2 Performance of Adaptive Replication 9

1.5 A Programming Environment for Adaptive BSP 9

1.5.1 Dynamic Extensions to the Oxford BSP Library 10

1.5.2 The Replication Layer 10

1.5.3 The User Layer 11

1.6 Application of A-BSP to Parallel Computations 13

1.6.1 Maximum Independent Set 13

1.6.2 Plasma Simulation 14

1.6.3 Results 15

1.7 Application of A-BSP to Nondedicated Workstations 17

1.8 Conclusions 18

1.9 Bibliography 19

Index 21

i

Bolek
Text Box
High Performance Cluster Computing, vol. I, Architectures and Systems, Prentice Hall, New York, 1999, pp. 702-721

Chapter 1

BSP-Based Adaptive Parallel

Processing

Mohan Nibhanupudi and Boleslaw Szymanski

Rensselaer Polytechnic Institute, Troy, New York

Email: {nibhanum, szymansk}@cs.rpi.edu

1.1 Introduction

In this chapter, we focus on clusters consisting of a group of workstations con-
nected through a local area network, often run under a single administration. In
particular, we target clusters with fast communication network achieved thanks
to low-overhead protocols and use of switched networks that allow bandwidth to
scale with the number of processors. Message passing libraries such as PVM [17],
MPI [10] and BSP Oxford Library [9] allow for portable parallel programs. The
SPMD (Single Program Multiple Data) paradigm lends the programmer flexibility
in structuring parallel applications with varying degrees of granularity. Accordingly,
we explore parallel processing on clusters of nondedicated workstations using the
Bulk-Synchronous Parallel model. We extend the BSP model to enable the BSP
computation to adapt to the changing degree of parallelism available on clusters of
nondedicated workstations and demonstrate its use for efficient parallel program-
ming.

1.2 The Bulk-Synchronous Parallel Model

The Bulk-Synchronous Parallel model [18] defines an abstract parallel computer in
terms of the following primitives:

• components (processors) which execute programs

• a router that provides point-to-point communication between pairs of compo-
nents, and

1

2 BSP-Based Adaptive Parallel Processing Chapter 1

• a synchronization mechanism to synchronize all or a subset of the components
at regular intervals. The periodicity parameter L represents the minimum time
between synchronizations.

A computation consists of a sequence of supersteps. In each superstep, a com-
ponent performs some local computation and/or communicates with other compo-
nents. The data communicated is not guaranteed to be available at the destination
until the end of the superstep in which the communication was initiated.

In analyzing the performance of a BSP computer, a time step is defined as the
time required for a component to perform an operation on data available in the
local memory. The performance of a BSP computer is characterized by the fol-
lowing parameters: number of processors (p), processor speed (s), synchronization
periodicity (L), and a parameter to indicate the global computation to communi-
cation balance (g). The processor speed is measured in the number of time steps
executed per second. L is the minimal number of time steps between successive
synchronization operations. g is the ratio of the total number of local operations
performed by all processors in one second to the total number of words delivered
by the communication network in one second. It should be noted that the param-
eters L and g are dependent on the number of processors p. This dependency is
defined by the network architecture and the implementation of the communication
and synchronization primitives.

For example, consider a cluster of workstations interconnected by a fixed band-
width communication medium such as an Ethernet. Communicating large amounts
of data using a fixed bandwidth communication medium will cause the intercon-
nection network to sequentialize message flow from/to the active processors. Under
this assumption, the parameter g can be expressed as follows: g(p) = g0p, where g0

is a constant. If we assume that the synchronization mechanism is implemented in
software using a tree structure for the participating processors, the parameter L is
defined as L = L0 log(p), where L0 is a constant.

BSP parameters allow the user to analyze the complexity of a BSP algorithm in
a simple and convenient way. The complexity of a superstep, S in a BSP algorithm
is determined as follows. Let w be the maximum number of local computation
steps executed by any processor during the superstep. Let hs be the maximum
number of messages sent by any processor and let hr be the maximum number
of messages received by any processor during the superstep. In the original BSP
model, the cost of S is given by max{l, w, ghs, ghr} time steps. An alternative
formula for the complexity of a superstep [5] is to charge max{l, w + ghs, w + ghr}
time steps for the superstep. Yet another definition [2] charges l+w+gmax{gs, gr}.
Different cost definitions reflect different assumptions about the implementation
of the supersteps, in particular about which operations can be done in parallel
and which ones must be done in sequence. The last formula assumes that the
local computation, communication and synchronization are done in sequence. The
difference is not crucial, since the asymptotic costs of a BSP superstep computed
according to the above formulae are of the same complexity. The cost of the entire

Section 1.2 The Bulk-Synchronous Parallel Model 3

BSP algorithm is just the sum of the costs of its supersteps.
By designing algorithms that are characterized by the size of the problem (n), the

number of processors (p) and the two parameters that characterize the performance
of the communication network (l and g), we can ensure that the algorithms can
be efficiently implemented on a range of BSP architectures. Such a design leads to
architecture independent BSP algorithms [2].

1.2.1 Cluster of Workstations as a BSP Computer

In terms of the BSP parameters, parallel computers are often characterized by large
values of s (fast processors) and low values of L and g (a communication network
with low latency and large bandwidth). A general-purpose cluster of workstations,
on the other hand, is characterized by values of s that are somewhat lower and values
of L and g that are much larger than the corresponding values for the parallel
machines (high latency and low bandwidth of local area networks in comparison
with the custom-design switching networks of parallel architectures). As a result
clusters of workstations may not efficiently execute algorithms designed for parallel
computers. For example, to mask high value of g, every non-local memory access
should perform approximately g operations per local data.

As an example, consider the task of broadcasting data from a single processor to
all other processors using the point-to-point communication primitives. In a parallel
computer, broadcasting of data is often performed by organizing the participating
processors into a (binary) tree with the processor initiating the broadcast at the
root of the tree and the other processors occupying the other nodes. In the first
superstep, the processor at the root communicates the data to the processors at its
child nodes. In each subsequent step, processors at nodes in the currently active
level communicate the data to processors at their child nodes in the next higher level.
The communication is increasingly parallel as data move from the root of this tree
to the leaves. We refer to this scheme as logarithmic broadcast. The communication
in the opposite direction (from the leaves to the root) implements data gathering.
Both operations take a number of steps proportional to the logarithm of the number
of processors involved. The cost of logarithmic broadcast of h units of data on a
cluster is

L log(p) + g(p − 1)h = L0 log2(p) + g0(p − 1)h (1.2.1)

In the linear broadcast, the broadcasting node simply communicates the data to
all other nodes in a single superstep. Hence, the cost of the linear broadcast of h

units of data is

L + g(p − 1)h = L0 log(p) + g0(p − 1)h (1.2.2)

Comparing 1.2.1 and 1.2.2 shows that, unlike in a parallel computer environ-
ment, linear broadcast is always faster in a cluster environment. However, when
logarithmic gather is used, computations can be performed on the data being broad-
cast in parallel at the nodes of the tree, whereas linear gather forces computations
to be delayed until all of the data arrives at a processor. This feature may make

4 BSP-Based Adaptive Parallel Processing Chapter 1

logarithmic gather more attractive than linear gather under some circumstances.
For example, using logarithmic gather, summation can be performed on the data
being gathered.

1.2.2 Program Reorganization for Parallel Computing on Dedi-

cated Clusters: Plasma Simulation

The Particle-in-Cell (PIC) method simulates the trajectories of millions of parti-
cles in their self-induced fields. The interactions between the particles are modeled
indirectly through the fields induced by the particles at the fixed points of a grid.
The General Concurrent Particle-in-Cell (GCPIC) algorithm partitions the particles
and grid points uniformly among the processors of a distributed memory machine.
This allows for efficient computation of positions and velocities of the particles. As
particles move among partitioned regions, they are passed to the processor respon-
sible for the new region. To enable efficient solution of the field equations on the
grid, a secondary temporary decomposition is used to partition the simulation space
evenly among the processors. After computing charge deposition by the particles,
grid point data is exchanged among the processors to allow processors to solve field
equations in their secondary partitions. For computational efficiency, field/grid
data on the border of partitions is replicated on the neighboring processor to avoid
frequent off-processor references.

The distributed grid described above require a parallel machine with fast in-
terconnection because interactions between particles and grid points belonging to
different processors gives rise to frequent communication. To improve performance
of plasma simulation on a cluster, we use a replicated grid that eliminates commu-
nication associated with interactions of particles on one processor with grid points
on another. It also eliminates communication associated with solving the field
equations on a distributed grid. In addition, a replicated grid allows particles to
remain on the same processor for the entire duration of the simulation eliminating
communication associated with particle redistribution.

As a result, the replicated grid version of plasma simulation performs well on
clusters of workstations [12]. This application demonstrates that it is possible to
execute computation intensive parallel applications on a cluster of workstations.
However, the application may need to be restructured by changing the data distri-
bution to avoid frequent communication.

1.3 Parallel Computing on Nondedicated Workstations

Workstations in a cluster are often under-utilized [11], [3]. Arpaci et al. [1] report
that, although the set of idle machines changes over time, the total number of idle
machines stays relatively constant. Our objective is to use the idle workstations in
a cluster to run additional parallel jobs.

Section 1.3 Parallel Computing on Nondedicated Workstations 5

1.3.1 Nondedicated Workstations as Transient Processors

There have been several systems that attempt to make use of idle workstations to
execute sequential programs [8]. Such additional computation is suspended when
primary user activity is detected to avoid performance degradation for primary
users. It is resumed when primary user activity ends and the workstation becomes
idle. The workstations that are available for use only when they are idle are referred
to as transient processors [7]. A transition of the host processor from an available
to a non-available state is referred to as a transient failure. When using a network
of transient processors for parallel computation, each component process of the
parallel application is assigned to a processor; the component process is scheduled
when the host processor is idle and suspended when the processor is busy.

The impact of transient failures on sequential programs and long-duration par-
allel programs with many independent tasks is analyzed by Kleinrock et al. [7] who
showed that the rate of progress is proportional to the fraction of time the pro-
cessor is idle. The impact of transient failures on frequently synchronizing parallel
programs with relatively small amounts of computation between synchronizations
is much more severe; if a single participating processor becomes unavailable, the
entire parallel computation is delayed for the duration of the non-available period,
making use of parallelism inefficient. In some cases synchronous parallel programs
may take longer to execute on nondedicated clusters of workstations than on a single
workstation sequentially. To deliver acceptable performance, parallel applications
executing in such environments must be able to adapt to the changing computing
environment; we refer to such ability as adaptive parallelism.

1.3.2 Approaches to Adaptive Parallelism

Recall that a transition of the host processor from an available to a non-available
state is referred to as a transient failure of the component process. The effect of
a transient failure is to delay the parallel application. Conversely, a transition of
the host processor from a non-available to an available state is treated as recovery
of this process. In the following discussion, we assume that transient failures of
processors are independent events.

In general, there are two ways to deal with failures in a system: prevent (or
avoid) occurrence of failures or recover from them. Prevention or avoidance of
failures is usually achieved through redundancy, i.e., use of multiple instances of
certain critical resources. In case of parallel computations, we can use multiple
instances of either data or computations to prevent or avoid failures. Alternatively,
we can try to recover after a failure has occurred by re-executing the failed (delayed)
computations.

Based on these general principles, we identify three schemes to deal with tran-
sient failures. The schemes try to mask or reduce the impact of processor state
transitions by replicating processes, computations and/or data to varying degrees.
They can be classified based on the eagerness with which the replication takes
place, as in Table 1.1. The straightforward execution simply delays the completion

6 BSP-Based Adaptive Parallel Processing Chapter 1

of the computation step until all participating processes finish their computation,
even if some of the processors participating in the computation change their state
from available to non-available. This scheme requires the least effort, but is also
susceptible to the full impact of the unavailability of participating processors.

Table 1.1 Classification of Schemes to Deal with Transient Processor Failures Using
Replication of Data and Computations as well as Migration of Processes

Replication of Replication Migration
Scheme Computations of Data of Processes

Straightforward execution No No No
Full process replication Eager Lazy Not needed

Standard failure recovery Lazy Lazy Needed
Adaptive replication Lazy Eager Needed

The first approach to reduce the impact of transient failures is based on eager
(preventive) replication of component processes which increases the probability that
at least one replica finishes the computation step without transient failure. Such
replication can be justified by the argument that the idle time on a processor is free
for use and, therefore, costs nothing. This approach is called the full replication
scheme. This scheme uses (lazy) data replication to enable replicas that have fallen
behind to catch up with the leading process that has finished its computation. The
problem with this solution is that it is often too costly to update replicas with the
status of the fastest processor in each group.

Another approach is based on recovery from failures by another component pro-
cess executing on a different processor than the failing one. We further assume
that at least one of the component processes is immune to transient failures due to
processor unavailability. This assumption is easily satisfied, since it is possible to
place at least one component of the parallel computation on a workstation owned
by the user. We refer to this process as the master process. The computations of
the failed component process can be recovered by sending the computation state
of the failed process to the master process. The master process can use this data
to recreate the computation state of the failed process and execute its computa-
tions. This approach requires the services of the master process for each process
that failed. Consequently, the master process can become a bottleneck in case of
multiple transient failures.

Yet another approach is to deal with transient failures preventively. In the adap-
tive replication scheme, the computation state is eagerly replicated on a neighbor
process at the beginning of a computation step. In the event of a failure of the
sender process, the receiver process uses the state data it received to replicate the
computations of the failed process. Recovery of computations in this approach
is distributed among the components and hence this scheme has the potential to
be scalable. Due to the advantages this scheme offers, we choose this scheme to

Section 1.4 Adaptive Parallelism in the BSP Model 7

implement adaptive parallelism in the Bulk-Synchronous Parallel model.

1.4 Adaptive Parallelism in the Bulk-Synchronous Parallel Model

As explained above, the adaptive replication scheme relies on executing (replicat-
ing) the computations of a failed process on another participating processor to allow
the parallel computation to proceed. Note that in the Bulk-Synchronous Parallel
computation, the computation states of the participating processes are consistent
with each other at the point of synchronization. By starting with the state of a
failed process at the most recent synchronization point and executing its compu-
tations on another available participating workstation, we are able to recover the
computations of the failed process. This allows the parallel computation to proceed
without waiting for the failed process. Thus, our approach uses eager replication of
computation state and lazy replication of computations.

1.4.1 Protocol for Replication and Recovery

The master process coordinates recovery from transient failures without replicating
for any of the failed processes. Figure 1.1 illustrates the protocol. The participating
processes, other than the master process, are organized into a logical ring topology
in which each process has a predecessor and a successor. At the beginning of each
computation step, each process in the ring communicates its computation state Cs

to one or more of its successors, called backup processes, before starting its own
computations. Each process also receives the computation state from one or more
of its predecessors.

When a process finishes with its computations, it sends a message indicating
successful completion to each of its backup processes. The process then checks
to see if it has received a message of completion from each of its predecessors
whose computation state is replicated at this process. Not receiving a message
in a short timeout period is interpreted as the failure of the predecessor. The
process then creates new processes — one for each of the failed predecessors — and
restores the computation state of each new process to that of the corresponding
failed predecessor at the beginning of the computation step, using the computation
state received from that predecessor. Each of the newly-created processes performs
the computations on behalf of a failed predecessor and performs synchronization
on its behalf to complete the computation step. In general, such a newly created
process assumes the identity of the predecessor and can continue participating in
the parallel computation as a legitimate member. However, for the sake of better
performance, this new process is migrated to a new host if one is available. For
more details on the protocol, refer to [13]. It should be noted that the assumption
of existence of a master process is not necessary for the correctness of the protocol.
Using the standard techniques from distributed algorithms, synchronization can be
achieved over the virtual ring, regardless of transient failures. However, the master
process is a convenient solution for a majority of applications, so we used it in this

8 BSP-Based Adaptive Parallel Processing Chapter 1

D0 D1 D2 D3 D4

D1 D2 D3D4

Primary Data

Secondary Data

Sync(0)
Sync(1) Sync(3)

FinishTask(1) FinishTask(3)

Sync(4)

FinishTask(4)

Transient
 Failure !

Sync(2)

WorkStation WorkStation WorkStation WorkStation WorkStation WorkStation

STEP 2

S
T

E
P

 1

Process 0 Process 1 Process 2 Process 3 Process 4

Process 2

Process
 D0

Process
 D1

Process
 D2 Process

 D4
Process
 D3

Process
 D2

Process
 D3

(processing
 aborted)

Migration to a new host

Figure 1.1 Protocol for replication and recovery illustrated for a replication level
of one.

prototypical implementation of the system.
In our approach, the recovery of the failed computations and subsequent migra-

tion to a new available host are performed on an available host, which is much less
intrusive than migrating from the failed (i.e., non-available) process.

The number of successors at which the computation state of a process is repli-
cated is referred to as the replication level, denoted by R. R is also the number
of predecessors from which a process will receive the computation state. A process
can therefore act as a backup to any of the R predecessors from which it receives
the computation state. It is easy to see that the replication level defines the max-
imum number of consecutive process failures in the logical ring topology that the
system can tolerate. Failure of more than R consecutive processes within the same
computation step will force the processes to wait until one of the host processors
recovers. A higher level of replication increases the probability of recovery from
failures, but it also increases the overhead during normal (failure-free) execution.
The probability of transient failure of R consecutive processes is PR

f , where Pf is
the probability of transient failure of a single workstation. Assuming the duration
of the computation step is small compared to the mean available and non-available
periods, the probability of failure is small (Pf � 1). This assumption is justified
because we are interested in the small total parallel computation time, so the larger

Section 1.5 A Programming Environment for Adaptive BSP 9

the computation, the more processors we are willing to use. Hence, the computation
step on each processor is relatively small, regardless of the size of the application.
Under this assumption, the probability of irrecoverable failures decreases exponen-
tially with the replication level R. The optimal for scalability level of replication
growths as a logarithm of the number of processors and for sufficiently large degrees
of parallelism (that are most important for practical applications) is very small.

1.4.2 Performance of Adaptive Replication

The cost of data replication includes the additional memory required for the repli-
cated data and the cost of transferring the computation state to the successors. The
additional memory needed for data replication is proportional to the level of replica-
tion, R, and the size of the computation state, Cs. The cost of communicating the
computation state depends on the replication level, R, the size of the computation
state, Cs, and the underlying communication network. A communication network
that scales with the number of processors allows for a higher level of replication and
a higher degree of tolerance to transient failures without incurring overhead during
normal execution.

To minimize overhead during normal execution, our approach overlaps the com-
putation with communication associated with data replication. For those applica-
tions in which the cost of data replication is smaller than the cost of computation
in the superstep, replication of the computation state can be done without any
overhead during normal execution. We refer to such applications as computation
dominant applications. Under these assumptions, the scheme is scalable with high
efficiency. Applications for which the cost of data replication is larger than the
computation have an overhead associated with data replication, and therefore they
are referred to as data replication dominant applications. A more detailed discus-
sion of the performance of the adaptive replication scheme, along with the analysis,
can be found in [15]. It should be noted that for scalability, it is sufficient that
the cost of data replication will be of the same order (when expressed as a function
of the problem size and the number of processors) as the cost of computation in a
superstep.

1.5 A Programming Environment for Adaptive Bulk-Synchronous

Parallelism

A programming environment developed at Rensselaer known as Adaptive BSP (A-
BSP) library, is designed within the framework of the BSP model [18] and developed
using the Oxford BSP Library [9]. A-BSP consists of dynamic extensions to the
Oxford BSP library and the adaptive replication scheme designed in two levels of
abstraction: replication layer and user layer. The replication layer implements the
functionality of the adaptive replication scheme, including the protocol for recovery
and replication, as a set of primitives. These primitives are accessible only through
the user layer. By designing the run-time support in two layers, we intend to

10 BSP-Based Adaptive Parallel Processing Chapter 1

insulate the applications from changes in the implementation. By implementing
the replication layer for other architectures, we can maintain the portability of
applications using our library.

1.5.1 Dynamic Extensions to the Oxford BSP Library

The Oxford BSP Library implements a simplified version of the Bulk-Synchronous
Parallel model. It is simple, yet robust, and was successfully used by us for im-
plementing plasma simulation on a cluster of workstations [12]. We extended the
Oxford BSP Library to provide dynamic process management and virtual synchro-
nization as described in [13]. The extensions include the following features: the
component processes can be terminated at any time, new processes can be created
to join the computation, and component processes can perform synchronization for
one another.

The A-BSP prototype implementation was based on the following assumptions.
The supersteps that make use of adaptive replication contain computation only.
This is not overly-restrictive, since a superstep containing computation and commu-
nication can always be expressed as a sequence of computation and communication
supersteps. This assumption greatly simplifies the design of the protocol for the
recovery of failed processes. We assume a reliable network, so a message that is
sent by a process will always be received at the destination.

In A-BSP, restoring the computation state of the failed process involves

• restoring specific system state from the backup copy received from that pro-
cess,

• restoring common system state from local checkpoint, and

• executing the user supplied recovery function.

Each of the newly-created processes performs the computations on behalf of a failed
process and performs synchronization on its behalf to complete the computation
step. In general, such a newly created process assumes the identity of the corre-
sponding failed process and can continue participating in the parallel computation
as a legitimate member. However, for the sake of better performance, this restored
process is migrated to a new host if one is available.

1.5.2 The Replication Layer

The replication layer implements the functionality of the adaptive replication scheme,
including the protocol for replication and recovery. It provides the following func-
tionality for a component process:

• Replicate the specific system state on the backup process as determined by
the replication protocol.

• Checkpoint the common system state locally on the same process.

Section 1.5 A Programming Environment for Adaptive BSP 11

• Detect the failure of the process whose computation state is replicated on this
process.

• Create a new process to execute the computations of a failed process. The
new process is created as a child of the process performing the recovery.

• Restore the computation state of the newly created process from the backup
copies of the specific and common system states.

• Execute the recovery function supplied by the user.

• Perform synchronization on behalf of a failed process.

• Terminate lagging processes whose computations have been successfully repli-
cated.

• Migrate the process to another available host.

The replication layer allows a process to detect and replicate for failed processes.
However, functionality of this layer is not directly accessible to the user.

1.5.3 The User Layer

The user layer provides the application programming interface (API) for the A-BSP
library. It includes the following primitives that transparently allow access to the
functionality of the replication layer:

• Constructs to specify data to be replicated and to specify memory manage-
ment for the replication data.

The construct bsp replication data (see Figure 1.2 for the full syntax) al-
lows the user to specify data to be replicated. The user can specify static
storage for replication data by defining a valid location for the store param-
eter. Otherwise, automatic memory management is assumed and the system
allocates dynamic storage for the replication data. It keeps track of the dy-
namic storage across process replications.

• Constructs to specify computation state.

A predefined structure BspSystemState can be used to declare variables that
hold specific or common system state. The function bsp init system state

can be used to initialize a BspSystemState variable. Using the function
bsp set system state, the state variable can be made to hold variables that
comprise the computation state (specific or common system state). The spe-
cific system state can be specified for a computation superstep using the con-
struct bsp specific system state and the common system state using the
construct bsp common system state.

12 BSP-Based Adaptive Parallel Processing Chapter 1

/* Constructs to specify a computation superstep */
bsp comp sstep(int sstepid);
bsp comp sstep end(int sstepid);
/* Constructs to specify replication data and allocate storage */
bsp replication data(void* data, long nbytes, void* store,

char* tag, int subscript);
bsp setup replication environment();
/* Constructs to specify Computation State */
struct BspSystemState;
bsp init system state(BspSystemState* bss);
bsp reset system state(BspSystemState* bss);
bsp set system state(BspSystemState* bss);
bsp specific system state(BspSystemState* bss);
bsp common system state(BspSystemState* bss);
RecoveryFunction();

Figure 1.2 Adaptive parallel extensions to the Oxford BSP Library (User Layer).

• Constructs to specify a computation superstep.

The constructs bsp comp sstep and bsp comp sstep end are used to delimit a
computation superstep. The replication and recovery mechanism is embedded
into these constructs; the process of data replication, detection of failures and
recovery is transparent to the user.

• Recovery Function.

The predefined function RecoveryFunction is executed after restoring the
computation state of a failed process from the backup. The user must supply
the code required for any operations required for recovering the computation
state of a failed process. Specification of the recovery function is optional.

Figures 1.2 - 1.5 illustrate the use of BSP constructs for adaptive parallelism.
These examples were taken from a C++ implementation of a plasma simulation
using the adaptive replication system. Figure 1.2 shows the constructs provided by
the user layer described above. Figure 1.3 illustrates the use of these constructs to
specify replication data. Figure 1.4 illustrates the use of the constructs to specify
the computation state of a component process. Figure 1.5 illustrates the use of
the A-BSP construct for the computation superstep. The specific and local system
states must be specified for each computation superstep. The computation super-
step requires no additional constructs; adaptive replication and recovery of failed
computations are done transparently to the user.

Section 1.6 Application of A-BSP to Parallel Computations 13

/* case (a): (static) storage available for replication data */
bsp replication data((void*) &plasma region, sizeof(plasma region),

(void*) &plasma region backup,
“PLASMA REGION”, -1);

/* case (b): storage to be allocated by the BSP library */
bsp replication data((void*) elec pos,

PTMAXNP * sizeof(ChargedParticle),
0,“PLASMA POS”, -1);

/* case (c): A 2 dimensional array, with no static storage available
for replication data */

for(i=0; i < SYSLEN MX; i++)
bsp replication data((void*) ForceFieldX[i],

SYSLEN Y*sizeof(Scalar),
0,“FORCE FIELD X”, i);

Figure 1.3 Use of A-BSP constructs to specify replication data.

1.6 Application of A-BSP to Parallel Computations

We applied the A-BSP library to two different applications that illustrate the per-
formance of the scheme for computation dominant applications and data replication
dominant applications described in Section 1.4.2.

BspSystemState* plasmaState = new BspSystemState;
bsp init system state(plasmaState);
/* Specify the data for the state variable, using symbolic names */
bsp set system state(specific, “PLASMA REGION”, -1);
bsp set system state(specific, “PLASMA POS”, -1);
for(i=0; i < SYSLEN MX; i++)

bsp set system state(specific, “FORCE FIELD X”, i);

Figure 1.4 Use of A-BSP constructs to specify computation state.

1.6.1 Maximum Independent Set

A set of vertices in a graph is said to be an independent set if no two vertices in
the set are adjacent [4]. A maximal independent set is an independent set which is
not a subset of any other independent set. A graph, in general, has many maximal
independent sets. In the maximum independent set problem, we want to find a
maximal independent set with the largest number of vertices. Given a graph G, we
start with a vertex v of G in the set. We add more vertices to this set, selecting
at each stage a vertex that is not adjacent to any of the vertices already in the
set. This procedure will ultimately produce a maximal independent set. In order to

14 BSP-Based Adaptive Parallel Processing Chapter 1

bsp specific system state(plasmaState);
bsp local system state(localCharge);

bsp comp sstep(bsp step);
CalcEField(vpm, energy);
InitChargeDensity();
energy.ke(0.0);
Advance(elec pos, elec vel);
bsp comp sstep end(bsp step);

Figure 1.5 An A-BSP computation superstep.

find a maximal independent set with the largest number of vertices, we find all the
maximal independent sets using a recursive depth first search with backtracking [6].
To conserve memory, no explicit representation of the graph is maintained. Instead,
the connectivity information is used to search through a virtual graph. To reduce the
search space, heuristics are used to prune the search space. Each processor searches
a subgraph and the processors exchange information on the maximal independent
set found on each processor. Since the adjacency matrix is replicated on each
processor, the computation state that needs to be communicated to a successor to
deal with transient failures is nil. That is, the computation state of a failed process
can be recreated based on the knowledge of its identity alone. This application can
therefore be categorized as a computation dominant application.

1.6.2 Plasma Simulation

The plasma Particle-in-Cell simulation model was described in Section 1.2.2. In the
replicated grid version of this model [12], the particles are evenly distributed among
the processors sharing work load; the simulation space (field grid) is replicated on
each of the processors to avoid frequent communication between processors. The
computations modify the positions and velocities of the particles, forces at the grid
points, and the charge distribution on the grid. Hence, the computation state data
that needs to be replicated includes the positions and velocities of the particles,
the forces at the grid points and the grid charge. However, at the beginning of
each superstep, all processors have the same global charge distribution and hence
the charge data does not need to be replicated on a remote host. Instead, each
process can save this data locally, which it can use to restore a failed predecessor.
Checkpointing data locally when possible reduces the amount of data communicated
for data replication. Due to the overhead associated with the communication of
computation state, this application can be categorized as a replication dominant
application (also see discussion in Section 1.6.3). It is still scalable, as long as the
interconnection network of an executing cluster is scalable.

Section 1.6 Application of A-BSP to Parallel Computations 15

1.6.3 Results

Figure 1.6(a) shows a plot of the execution times of maximum independent set
problem on transient processors using the A-BSP library with ta = 40 minutes and
tn = 20 minutes respectively. These values for ta and tn are within the range of
values reported in earlier works [11]. The measurements were taken on a cluster
of Sun Sparc 5 workstations connected by a 10 Mbps Ethernet. The number of
processors available is much larger than the degree of parallelism used in the simu-
lations and, therefore, migration to an available processor was always possible. The
execution times of the runs on transient processors using the A-BSP library were
compared with the execution time on dedicated processors and with execution time
on transient processors without using the adaptive replication scheme. Runs on
transient processors that do not use A-BSP simply suspend the execution of the
parallel computation when the host processor is busy. The execution time on a
single processor is also shown for reference. As can be seen from these timings, the
runs on transient processors using the A-BSP library compare favorably with runs
on dedicated processors. Our measurements indicate that a significant amount of
computation was performed using idle workstations. Since a dedicated workstation
is used to execute the main process, when using a parallelism of p, a fraction of p−1

p

of the total computation is performed by the idle machines.
Figure 1.6(b) shows the results of application of A-BSP library to plasma simula-

tion with N = 3, 500, 000 particles. As mentioned in Section 1.6.2, the computation
state data that needs to be replicated includes the positions and velocities of par-
ticles in the local partition and the forces at the grid points in the local partition.
The replicated data includes four floating point numbers for each particle. As a re-
sult, for runs with four processors, the size of data replicated for particles is about
14 MBytes. On a 10 Mbps cluster, replicating the computation state of three pro-
cessors takes up to about 40 seconds while the computation step, ts, is half as long.
In addition, the network is shared with other users, so heavy network traffic may
increase the time needed for replication. Figure 1.6(b) shows a plot of execution
times on transient processors with and without adaptive replication for degrees of
parallelism of 4, 8 and 12. These measurements were obtained using ta = 30 min-
utes and tn = 20 minutes, respectively. For plasma simulation, due to the overhead
associated with communication of computation state in each step, simulation runs
on transient processors using the adaptive replication scheme take longer to execute,
compared to the runs on dedicated processors. The execution time on transient pro-
cessors with adaptive replication is also longer than the sequential execution time,
as estimated from the execution times on dedicated processors. However, even in
this case, the adaptive replication scheme is relevant for the following reasons. The
execution time on transient processors with adaptive replication is still much smaller
than the execution time without adaptive replication. Further, the simulation used
for our measurements was too large to fit on a single workstation and hence single
processor runs were not even possible. For simulations that are too large to fit on
a single workstation, parallel runs are mandatory. When dedicated machines are

16 BSP-Based Adaptive Parallel Processing Chapter 1

0

5000

10000

15000

20000

25000

30000

3 6 9 12

E
xe

cu
tio

n
T

im
e

 (
se

co
nd

s)

Degree of Parallelism

Dedicated Processors
Adaptive Replication

Transient Processors
Single Processor

0

5000

10000

15000

20000

25000

30000

4 8 12

E
xe

cu
tio

n
T

im
e

 (
se

co
nd

s)

Degree of Parallelism

Dedicated Processors
Adaptive Replication

Transient Processors

Figure 1.6 Plot showing execution times of (a) maximum independent set and (b)
plasma simulation on dedicated processors, on transient processors using adaptive
replication and on transient processors without adaptive replication. Execution
time on a single processor is shown for comparison purposes.

not available for parallel computation, application of A-BSP library ensures that
parallel runs using idle workstations complete in a reasonable time.

Any approach intended to tolerate transient failures will necessarily incur some
overhead to checkpoint the computation state of the processes. Overhead incurred
by replication of computation state as done in the adaptive replication scheme
(which can be considered a form of diskless checkpointing) is no larger than the
overhead caused by checkpointing to disk. The network used to obtain the mea-

Section 1.7 Application of A-BSP to Nondedicated Workstations 17

surements is a 10 Mbps Ethernet, which is quickly becoming obsolete. With a faster
network such as an ATM network or a 100 Mbps Ethernet, the overhead due to data
replication should be much smaller.

1.7 Application of A-BSP to Clusters of Nondedicated

Workstations

The results shown in Section 1.6 are obtained with simulated transient processors
with exponentially distributed available and non-available periods. In this section,
we present the results of executing a graph search algorithm using the adaptive repli-
cation on a cluster of nondedicated workstations in the Department of Computer
Science at Rensselaer.

In the graph search algorithm described above, the connectivity information
(the adjacency matrix) is replicated on all the processors. Replication of the adja-
cency information improves the efficiency of the parallel graph search by reducing
the amount of data communicated. Replication of the adjacency information also
reduces the state information that is required for recovering from transient failures.
However, replication of the adjacency matrix on all participating processors limits
the maximum size of the problem that can be solved. It is desirable to find a parallel
graph search algorithm that allows for solution of problems of size larger than that
can be solved on a single processor. In this section, we describe an improved graph
search algorithm with these characteristics.

In the improved graph search algorithm, the adjacency matrix is partitioned
among the participating processes in the following manner. The rows of the ad-
jacency matrix are partitioned among the participating processes such that each
process contains the complete connectivity information for a subset of the vertices.
We refer to this subset of vertices as belonging to the corresponding processor. At
each level of the recursive depth first search, a new vertex is added to the indepen-
dent set being constructed and all vertices in the current graph that are adjacent
to this vertex are deleted to form the vertex list for the new graph to be searched.
Since each processor contains only a portion of the adjacency matrix, each processor
needs to obtain adjacency information for vertices that belong to other processors.
When the subgraphs generated are of sufficient granularity, they are searched lo-
cally on one of the participating processors. To avoid communication during the
local search, each participating process needs to have adjacency information for all
pairs of vertices in its subgraph. For this purpose, before starting local search on its
subgraph, each processor obtains adjacency information for vertices in the subgraph
that belong to other processes. Once the adjacency matrix is constructed for the
subgraph to be searched, the processors do not need to communicate during the
local search.

The adaptive performance of the graph search algorithm depends on the amount
of data to be replicated. Since the adjacency matrix is partitioned among the
processes, the adjacency matrix partition of each process needs to be replicated

18 BSP-Based Adaptive Parallel Processing Chapter 1

on a backup process. The replicated adjacency information is used to recover the
predecessor in case of a failure. Replication of the adjacency matrix partition can
be done at the beginning of the search. When a process performs the recovery for
its failed predecessor and assumes its identity, the adjacency matrix information is
no longer valid since the process now has a different predecessor. The new process
needs to update the adjacency information from its predecessor. Updating the
adjacency information of the predecessor needs to be done once per recovery. The
cost of refetching the adjacency matrix partition can therefore be included in the
cost of recovering a failed process.

In addition to the adjacency matrix partition, the adjacency matrix of the sub-
graph that is searched locally also needs to be replicated. However, since the sub-
graphs searched locally on the participating processors differ only slightly, we can
avoid replicating the adjacency matrix of the local subgraphs if we construct the
adjacency matrix for the largest of these subgraphs. This is the approach followed in
our implementation. Since the subgraphs differ slightly from each other, a mapping
that identifies these vertices needs to be replicated on the backup process. This cost
is proportional to the number of vertices in the original graph. Thus the amount
of communication required for replication during normal execution is smaller than
the communication inherent to the algorithm.

The processor pool used for these runs consisted of about 20 machines that
included Sparc 5 (Models 110 and 70) and Sparc 20 processors. A host monitor [14]
is used to determine the status of the workstations based on the cpu load and the
activity of the console user. The runs used a degree of parallelism of 6, with 5 of
them using nondedicated machines. For 10,000 vertices with a mean probability
of connectivity of 0.54, the execution time on nondedicated processors is about 12
hours, compared to about 10.5 hours on dedicated processors.

The maximum size problem that can be solved on a single processor is a graph
of 10,000 vertices. Using the scalable graph search algorithm, we are able to solve
graphs of size 15,000 vertices. The execution time for a graph with 15,000 vertices
and a probability of connectivity of 0.56 is about 7.5 hours when using a degree
of parallelism of 12. The corresponding execution time on nondedicated processors
is about 10 hours. Parallel run on dedicated processors used the faster processors
(Model 110) while the run on nondedicated processors used a mixture of fast and
slow processors (both Model 110 and Model 70), so part of the execution is on the
slower processors. Scalable parallel algorithms are essential to solve problems that
are too large to fit in the memory of a single processor. Adaptive replication scheme
allows efficient execution of parallel runs on nondedicated processors.

1.8 Conclusions

In this chapter, we described a programming environment for clusters of nonded-
icated workstations to facilitate efficient parallel computations. Our approach to
adaptive parallelism is based on the Bulk-Synchronous Parallel model. It enables
parallel computations executing on nondedicated workstations to tolerate frequent

Section 1.9 Bibliography 19

unavailability of the workstations in a nondedicated cluster and thereby adapt to
the changing computing environment. Our approach offers a general framework for
adaptive parallelism and is application independent. We described a protocol for
the replication of computation state and replication of computations. We extended
the Oxford BSP library [9] with dynamic process management and virtual synchro-
nization and implemented the protocol on top of the extended library. The adaptive
parallel extensions to the library include primitives for specification of replication
data, memory management for replication data and specification of computation
state. We integrated the adaptive parallel extensions into the Oxford BSP library.
The A-BSP library performs data replication and recovery of failed computations
transparently to the user. We have demonstrated the adaptive capabilities of the
library by applying it to two applications: a graph search problem and plasma sim-
ulation. Our results demonstrate that the A-BSP library can be used to execute
parallel computations efficiently using idle machines in a cluster of nondedicated
workstations.

1.9 Bibliography

[1] Remzi H. Arpaci, Andrea C. Dusseau, Amin M. Vahdat, Lok T. Liu, Thomas E.
Anderson, and David A. Patterson. The Interaction of Parallel and Sequen-
tial Workloads on a Network of Workstations. In Proceedings of SIGMET-
RICS/Performance ’95, pages 267–277, 1995.

[2] R. H. Bisseling and W. F. McColl. Scientific Computing on Bulk Synchronous
Parallel Architectures (Short Version). In B. Pehrson and I. Simon, editors,
Proceedings of the 13th IFIP World Computer Congress, vol. 1, Elsevier, 1994.

[3] Clemens H. Cap and Volker Strumpen. Efficient Parallel Computing in Dis-
tributed Workstation Environments. Parallel Computing, vol. 23, pages 1221–
1234, 1993.

[4] Narsingh Deo. Graph Theory with Applications to Engineering and Computer
Science. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1974.

[5] A. V. Gerbessiotis and L. G. Valiant. Direct Bulk-Synchronous Parallel Algo-
rithms. In O. Nurmi and E.Ukkonen, editors, Proceedings of the Third Scandi-
navian Workshop on Algorithmic Theory, Lecture Notes in Computer Science,
pages 1–18, Berlin: Springer Verlag, 1992.

[6] Mark K. Goldberg and David L. Hollinger. Database Learning: a Method for
Empirical Algorithm Design. In Proceedings of the Workshop on Algorithm
Engineering, September 1997.

[7] L. Kleinrock and W. Korfhage. Collecting Unused Processing Capacity: An
Analysis of Transient Distributed Systems. IEEE Transactions on Parallel and
Distributed Systems, vol. 4(5), May 1993.

20 BSP-Based Adaptive Parallel Processing Chapter 1

[8] Michael J. Litzkow, Miron Livny, and Matt W. Mutka. Condor - A Hunter
of Idle Workstations. In Proceedings of the 8th International Conference on
Distributed Computing Systems, San Jose, California, June 13-17, 1988.

[9] Richard Miller. A Library for Bulk-Synchronous Parallel Programming. In
British Computer Society Workshop on General Purpose Parallel Computing,
December 1993.

[10] MPI: A Message Passing Interface Standard. Technical report, Message Passing
Interface Forum, May 5, 1994.

[11] M. W. Mutka and M. Livny. Profiling Workstations’ Available Capacity for
Remote Execution. In Proceedings of the 12th Symposium on Computer Per-
formance, Brussels, Belgium, December 7-9, 1987.

[12] M. V. Nibhanupudi, C. D. Norton, and B. K. Szymanski. Plasma Simulation
on Networks of Workstations Using the Bulk-Synchronous Parallel Model. In
Proceedings of the International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA’95), Athens, Georgia, November
1995.

[13] M. V. Nibhanupudi and B. K. Szymanski. Adaptive Parallelism in the Bulk-
Synchronous Parallel Model. In Proceedings of the 2nd International Euro-Par
Conference, Lyon, France, August 1996.

[14] M. V. Nibhanupudi and B. K. Szymanski. Adaptive Parallel Computing on
Nondedicated Networks of Workstations Using the Bulk Synchronous Parallel
Model. Technical report, Department of Computer Science, Rensselaer Poly-
technic Institute, Troy, NY, April 1998.

[15] Mohan V. Nibhanupudi. Adaptive Parallel Computations on Networks of Work-
stations. Ph.D. Thesis, Computer Sciences Department, Rensselaer Polytechnic
Institute, 1998.

[16] D. A. Nichols. Using Idle Workstations In A Shared Computing Environment.
In Proceedings of the 11th ACM Symposium on Operating System Principles,
ACM, November 1987.

[17] V. S. Sunderam. PVM: A Framework for Parallel Distributed Computing.
Concurrency: Practice and Experience, vol. 2(4), pages 315–339, 1990.

[18] Leslie G. Valiant. A Bridging Model for Parallel Computation. Communica-
tions of the ACM, vol. 33(8), pages 103–111, August 1990.

Index

A-BSP, 11–17, 19

Adaptive

parallelism, 6–7, 12, 19

replication, 7, 9–11, 15–18

Broadcast

linear, 4

logarithmic, 4

BSP

Algorithm, 3

Computer, 2–3

Model, 3, 10

Parameters, 2–4

Bulk-Synchronous Parallel Model, 2, 7, 10, 19

Common system state, 11–12

Computation state, 7–12, 15–17, 19

Full process replication, 6

Nondedicated Workstation, 5–6, 17–19

Particle-in-cell, 4

Replication layer, 10–12

Specific system state, 11–12

Superstep, 3

Synchronization, 2–3, 7, 9–11

point, 7

virtual, 10, 19

Transient

failure, 5–10, 15–17

processor, 5, 15–17

User layer, 10, 12–13

21

