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Abstract

Diversified rankingis a fundamental task in machine learning. It is broadly appli-
cable in many real world problems, e.g., information retrieval, team assembling,
product search, etc. In this paper, we consider a generic setting where we aim
to diversify the top-k ranking list based on anarbitrary relevance function and
an arbitrary similarity function among all the examples. We formulate it as an
optimization problem and show that in general it is NP-hard. Then, we show that
for a large volume of the parameter space, the proposed objective function enjoys
the diminishing returns property, which enables us to design a scalable, greedy
algorithm to find the(1 − 1/e) near-optimalsolution. Experimental results on
real data sets demonstrate the effectiveness of the proposed algorithm.

1 Introduction

Many real applications can be reduced to a ranking problem. While traditional ranking tasks mainly
focus onrelevance, it has been widely recognized thatdiversityis another highly desirable property.
It is not only a key factor to address the uncertainty and ambiguity in an information need, but also
an effective way to cover the different aspects of the information need [14]. Take team assembling
as an example. Given a task which typically requires a set of skills, we want to form a team of
experts to perform that task. On one hand, each team member should have somerelevantskills.
On the other hand, the whole team should somehow bediversified, so that we can cover all the
required skills for the task and different team members can benefit from each other’s diversified,
complementary knowledge and social capital. More recent research discovers that diversity plays
a positive role in improving employees’ performance within big organizations as well as their job
retention rate in face of lay-off [21]; in improving the human-centric sensing results [15, 17]; in the
decision of joining a new social media site (e.g., Facebook) [18], etc.

To date, many diversified ranking algorithms have been proposed. Early works mainly focus on
text data [5, 23] where the goal is to improve the coverage of (sub-)topics in the retrieval result. In
recently years, more attention has been paid to result diversification in web search [2, 20]. For ex-
ample, if a query bears multiple meanings (such as the key word ‘jaguar’, which could refer to either
cars or cats), we would like to have each meaning (e.g., ‘cars’ and ‘cats’ in the example of ‘jaguar’)
covered by a subset of the top ranked web pages. Another recent trend is to diversify PageRank-type
of algorithms for graph data [24, 11, 16]. It is worth pointing out that almost all the existing diver-
sified ranking algorithms hinge on thespecificchoice of the relevance function and/or the similarity
function. For example, in [2] and [20], both the relevance function and the similarity function im-
plicitly depend on the categories/subtopics associated with the query and the documents; in [16], the
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relevance function is obtained via personalized PageRank [8], and the similarity is measured based
on the so-called ‘Google matrix’; etc.

In this paper, we shift the problem to a more generic setting and ask: given anarbitrary relevance
function wrt an implicit or explicit query, and anarbitrary similarity function among all the available
examples, how can we diversify the resulting top-k ranking list? We address this problem from
the optimization viewpoint. First, we propose an objectivefunction that admitsany non-negative
relevance function andanynon-negative, symmetric similarity function. It naturally captures both
the relevance with regard to the query and the diversity of the ranking list, with a regularization
parameter that balances between them. Then, we show that while such an optimization problem
is NP-hard in general, for a large volume of the parameter space, the objective function exhibits
the diminishing returns property, including submodurality, monotonicity, etc. Finally, we propose a
scalable, greedy algorithm to findprovably near-optimalsolution.

The rest of the paper is organized as follows. We present our optimization formulation for diversified
ranking in Section 2, followed by the analysis of its hardness and properties. Section 3 presents our
greedy algorithm for solving the optimization problem. Theperformance of the proposed algorithm
is evaluated in Section 4. In Section 5, we briefly review the related work. Finally, we conclude the
paper in Section 6.

2 The Optimization Formulation

In this section, we present the optimization formulation for diversified ranking. We start by intro-
ducing the notation, and then present the objective function, followed by the analysis regarding its
hardness and properties.

2.1 Notation

In this paper: we use normal lower-case letters to denote scalers or functions, bold-face lower-case
letters to denote vectors, bold-face upper-case letters todenote matrices, and calligraphic upper-case
letters to denote sets. To be specific, for a setX of n examples{x1,x2, . . . ,xn}, letS denote the
n × n similarity matrix, which is both symmetric and non-negative. In other words,Si,j = Sj,i

andSi,j ≥ 0, whereSi,j is the element ofS in the ith row and thej th column (i, j = 1, . . . , n).
For any ranking functionr(·), which returns the non-negative relevance score for each example
in X with respect to an implicit or explicit query, our goal is to find a subsetT of k examples,
which are relevant to the query and diversified among themselves. Here the positive integerk is the
budget of the ranking list size, and the ranking functionr(·) generates ann× 1 vectorr, whoseith

elementri = r(xi). When we describe the objective function as well as the proposed optimization
algorithm, it is convenient to introduce the followingn× 1 reference vectorq = S · r. Intuitively,
its ith elementqi measures the importance ofxi. To be specific, ifxi is similar to many examples
(highSi,j (j = 1, 2, ...., )) that are relevant to the query (highrj(j = 1, 2, ...), it is more important
than the examples whose neighbors are not relevant. For example, if xi is close to the center of a
big cluster relevant to the query, the value ofqi is large.

2.2 Objective Function

With the above notation, our goal is to find a subsetT of k examples which are both relevant to
the query and diversified among themselves. To this end, we propose the following optimization
problem.

arg max
|T |=k

g(T ) = w
∑

i∈T

qiri −
∑

i,j∈T

riSi,jrj (1)

wherew is a positive regularization parameter that defines the trade-off between the two terms, and
T consists of the indices of thek examples that will be returned in the ranking list.

Intuitively, in the goodness function g(T ), the first term measures the weighted overall relevance
of T with respect to the query, andqi is the weight forxi. It favors relevant examples from big
clusters. In other words, if two examples are equally relevant to the query, one from a big cluster and
the other isolated, by using the weighted relevance, we prefer the former. The second term measures
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the similarity among the examples withinT . That is, it penalizes the selection of multiple relevant
examples that are very similar to each other. By including this term in the objective function, we seek
a set of examples which are relevant to the query, but also dissimilar to each other. For example, in
the human-centric sensing [15, 17], due to the homophily in social networks, reports of two friends
are likely correlated so that they are a lesser corroboration of events than reports of two socially
unrelated witnesses.

2.3 The Hardness of Equation (1)

In the optimization problem in Equation (1), we want to find a subsetT of k examples that collec-
tively maximize the goodness function g(T ). Unfortunately, by the following theorem, it is NP-hard
to find the optimal solution.

Theorem 2.1. The optimization problem in Equation(1) is NP-hard.

Proof. We will prove this from the reduction of the Densestk-Subgraph (DkS) problem, which is
known to be NP-hard [7].

To be specific, given an undirected graphG(V , E) with the connectivity matrixW , whereV is the
set of vertices, andE is the set of edges.W is a|V|×|V| symmetric matrix with elements being 0 or
1. Let|E| be the total number of the edges in the graph. The DkS problem is defined in Equation (2).

Q = arg max
|Q|=k

∑

i,j∈Q

W i,j (2)

Define another|V| × |V| matrix W̄ as: W̄ i,j = 1 −W i,j . It is easy to see that
∑

i,j∈Q W i,j =

k2 −
∑

i,j∈Q W̄ i,j . Therefore, Equation (2) is equivalent to

Q = arg min
|Q|=k

∑

i,j∈Q

W̄ i,j (3)

Furthermore, notice that
∑|V|

i,j=1
W̄ i,j = |V|

2 − |E| = constant. LetT = V \ Q, then Equation (3)
is equivalent to

arg max
|Q|=k

∑

i∈Q,j∈T

W̄ i,j +
∑

i∈T ,j∈Q

W̄ i,j +
∑

i∈T ,j∈T

W̄ i,j

= arg max
|T |=|V|−k

2
∑

i∈Q,j∈T

W̄ i,j +
∑

i,j∈T

W̄ i,j (4)

Next, we will show that Equation (4) can be viewed as an instance of the optimization problem in
Equation (1) with the following setting: let the similarityfunctionS beW̄ , the ranking functionr
be1|V|×1, the budget be|V| − k, and the regularization parameterw be2. Under such settings, the
objective function in Equation (1) becomes

g(T ) = 2
∑

i∈T

qiri −
∑

i,j∈T

riW̄ i,jrj

= 2
∑

i∈T

|V|∑

j=1

riW̄ ijrj −
∑

i,j∈T

riW̄ i,jrj (dfn. of q)

= 2
∑

i∈Q

∑

j∈T

riW̄ ijrj +
∑

i,j∈T

riW̄ i,jrj (symmetry ofW̄)

= 2
∑

i∈Q

∑

j∈T

W̄ ij +
∑

i,j∈T

W̄ i,j (dfn. of r) (5)

which is equivalent to the objective function in Equation (4). This completes the proof. �
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2.4 Diminish Returns Property of g(T )

Given that Equation (1) is NP-hard in general, we seek for aprovably near-optimalsolution instead
in the next section. Here, let us first answer the following question: under what condition (e.g., in
which range of the regularization parameterw), is it possible to find such a near-optimal solution
for Equation (1)?

To this end, we present the so-called diminishing returns property of the goodness function g(T )
defined in Equation (1), which is summarized in the followingtheorem. By Theorem 2.2, if we
add more examples into an existing top-k ranking list, the goodness of the overall ranking list is
non-decreasing (P2). However, the marginal benefit of adding additional examples into the ranking
list decreases wrt the size of the existing ranking list (P1).

Theorem 2.2. Diminish Returns Property of g(T ). The goodness function g(T ) defined in Equa-
tion (1) has the following properties:

(P1) submodularity. For anyw > 0, the objective function g(T ) is submodular wrtT ;

(P2) monotonicity. For any w ≥ 2, The objective function g(T ) is monotonically non-
decreasing wrtT .

Proof. We first prove (P1). For anyT1 ⊂ T2 and any given examplex /∈ T2, we have

g(T1 ∪ x)− g(T1) = (w
∑

i∈T1∪x

qiri −
∑

i,j∈T1∪x

riSi,jrj)− (w
∑

i∈T1

qiri −
∑

i,j∈T1

riSi,jrj)

= wq
x
rx − (

∑

i∈T1

riSi,xrx +
∑

j∈T1

rxSx,jrj + rxSx,xrx)

= wq
x
rx − Sx,xr

2

x
− 2rx

∑

j∈T1

Sx,jrj (6)

Similarly, we have g(T2 ∪ x)− g(T2) = wq
x
rx − Sx,xr

2

x
− 2rx

∑
j∈T2

Sx,jrj .

Therefore, we have

(g(T1 ∪ x)− g(T1))− (g(T2 ∪ x)− g(T2)) = 2rx
∑

j∈T2

Sx,jrj − 2rx
∑

j∈T1

Sx,jrj

= 2rx
∑

j∈T2\T1

Sx,jrj ≥ 0 (7)

which completes the proof of (P1).

Next, we prove (P2). Given anyT1 ∩ T2 = Φ, whereΦ is the empty set, withw ≥ 2, we have

g(T2 ∪ T1)− g(T2) = w
∑

i∈T1

qiri − (
∑

i∈T1,j∈T2

riSi,jrj +
∑

i∈T2,j∈T1

riSi,jrj +
∑

i,j∈T1

riSi,jrj)

= w
∑

i∈T1

ri

n∑

j=1

Si,jrj − (2
∑

i∈T1,j∈T2

riSi,jrj +
∑

i,j∈T1

riSi,jrj)

≥ 2
∑

i∈T1

ri

n∑

j=1

Si,jrj − 2(
∑

i∈T1,j∈T2

riSi,jrj +
∑

i,j∈T1

riSi,jrj)

= 2
∑

i∈T1

ri(

n∑

j=1

Si,jrj −
∑

j∈T1∪T2

Si,jrj)

= 2
∑

i∈T1

ri

∑

j /∈T1∪T2

Si,jrj ≥ 0 (8)

which completes the proof of (P2). �
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3 The Optimization Algorithm

In this section, we present our algorithmGenDeR for solving Equation (1), and analyze its perfor-
mance with respect to its near-optimality and complexity.

3.1 Algorithm Description

Based on the diminishing returns property of the goodness function g(T ), we propose the following
greedy algorithm to find a diversified top-k ranking list. In Alg. 1, after we calculate the reference
vectorq (Step 1) and initialize the ranking listT (Step 2), we try to expand the ranking listT
one-by-one (Step 4-8). At each iteration, we add one more example with the highest scoresi into
the current ranking listT (Step 5). Each time we expand the current ranking list, we update the
score vectors based on the newly added examplei (Step 7). Notice that in Alg. 1, ‘⊗’ means the
element-wise multiplication, and diag(S) returns ann × 1 vector with the corresponding elements
being the diagonal elements in the similarity matrixS.

Algorithm 1 GenDeR

Input: The similarity matrixSn×n, the relevance vectorrn×1, the weightw ≥ 2, and the budget
k;

Output: A subsetT of k nodes.
1: Compute the reference vectorq: q = Sr;
2: Initialize T as an empty set;
3: Initialize the score vectors = w × (q ⊗ r)− diag(S)⊗ r ⊗ r;
4: for iter = 1 : k do
5: Find i = argmaxj(sj |j = 1, ..., n; j /∈ T );
6: Add i to T ;
7: Update the score vectors← s− 2riS:,i ⊗ r
8: end for
9: Return the subsetT as the ranking list (earlier selected examples ranked higher).

3.2 Algorithm Analysis

The accuracy of the proposedGenDeR is summarized in Lemma 3.1, which says that for a large
volume of the parameter space (i.e.,w ≥ 2), GenDeR leads to a(1− 1/e) near-optimal solution.

Lemma 3.1. Near-Optimality of GenDeR. Let T be the subset found byGenDeR, |T | = k, and
T ∗ = argmax|T |=kg(T ). We have that g(T ) ≥ (1 − 1/e)g(T ∗), wheree is the base of the natural
logarithm.

Proof. The key of the proof is to verify that for any examplexj /∈ T , sj = g(T ∪ xj) − g(T ),
wheres is the score vector we calculate in Step 3 or update in Step 7, and T is the initial empty
ranking list or the current ranking list in Step 6. The remaining part of the proof directly follows the
diminishing returns property of the goodness function in Theorem 2.2, together with the fact that
g(Φ) = 0 [12]. We omit the detailed proof for brevity. �

The complexity of the proposedGenDeR is summarized in Lemma 3.2. Notice that the quadratic
term in the time complexity comes from the matrix-vector multiplication in Step 1 (i.e.,q = Sr);
and the quadratic term in the space complexity is the cost to store the similarity matrixS. If the
similarity matrix S is sparse, say we havem non-zero elements inS, we can reduce the time
complexity toO(m + nk); and reduce the space complexity toO(m+ n+ k).

Lemma 3.2. Complexity ofGenDeR. The time complexity ofGenDeR is O(n2 + nk); the space
complexity ofGenDeR isO(n2 + k).

Proof. Omitted for Brevity. �
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4 Experimental Results
We compare the proposedGenDeR with several most recent diversified ranking algorithms, includ-
ing DivRank based on reinforced random walks [11] (referredto as ‘DR’), GCD via resistive graph
centers [6] (referred to as ‘GCD’) and manifold ranking withstop points [25] (referred to as ‘MF’).
As all these methods aim to improve the diversity of PageRank-type of algorithms, we also present
the results by PageRank [13] itself as the baseline. We use two real data sets, including an IMDB
actor professional network and an academic citation data set. In [11, 6], the authors provide detailed
experimental comparisons with some earlier methods (e.g.,[24, 23, 5], etc) on the same data sets.
We omit the results by these methods for clarity.

4.1 Results on Actor Professional Network
The actor professional network is constructed from the Internet Movie Database (IMDB)1, where
the nodes are the actors/actresses and the edges are the numbers of the co-stared movies between two
actors/actresses. For the inputs ofGenDeR, we use the adjacency matrix of the co-stared network as
the similarity functionS; and the ranking results by ‘DR’ as the relevance vectorr. Given a top-k
ranking list, we use the density of the induced subgraph ofS by thek nodes as the reverse measure
of the diversity (lower density means higher diversity). Wealso measure the diversity of the ranking
list by the so-called ‘country coverage’ as well as ‘movie coverage’ (higher coverage means higher
diversity), which are defined in [24]. Notice that for a good top-k diversified ranking list, it often
requires the balance between the diversity and the relevance in order to fulfill the user’s information
need. Therefore, we also present the relevance score (measured by PageRank) captured by the entire
top-k ranking list. In this application, such a relevance score measures the overall prestige of the
actors/actresses in the ranking list. Overall, we have 3,452 actors/actresses, 23,460 edges, 1,027
movies and 47 countries.

The results are presented in Fig. 1. First, let us compareGenDeR with the baseline method ‘PageR-
ank’. From Fig. 1(d), we can see that ourGenDeR is as good as ‘PageRank’ in terms of capturing
the relevance of the entire top-k ranking list (notice that the two curves almost overlap with each
other). On the other hand,GenDeR outperforms ‘PageRank’ in terms of the diversity by all the
three measures (Fig. 1(a-c)). SinceGenDeR uses the ranking results by ‘DR’ as its input, ‘DR’
can be viewed as another baseline method. The two methods perform similarly in terms of density
(Fig. 1(c)). Regarding all the remaining measures, ourGenDeR is always better than ‘DR’. For
example, whenk ≥ 300, GenDeR returns both higher ‘country-coverage’ (Fig. 1(a)) and higher
‘movie-coverage’ (Fig. 1(b)). In the entire range of the budgetk (Fig. 1(d)), ourGenDeR captures
higher relevance scores than ‘DR’, indicating the actors/actresses in our ranking list might be more
prestigious than those by ‘DR’. Based on these results, we conclude that ourGenDeR indeed im-
proves ‘DR’ in terms of both diversity and relevance. The most competitive method is ‘MF’. We
can see thatGenDeR and ‘MF’ perform similarly in terms of both density (Fig. 1(c)) and ‘movie
coverage’ (Fig. 1(b)). In terms of ‘country coverage’ (Fig.1(a)), ‘MF’ performs slightly better than
ourGenDeR when300 ≤ k ≤ 400; and for the other values ofk, the two methods mix with each
other. However, in terms of relevance (Fig. 1(d)), ourGenDeR is much better than ‘MF’. Therefore,
we conclude that ‘MF’ performs comparably with or slightly better than ourGenDeR in terms of
diversity, at the cost of sacrificing the relevance of the entire ranking list. As for ‘GCD’, although
it leads to the lowest density, it performs poorly in terms ofbalancing between the diversity and the
relevance (Fig. 1(d)), as well as the coverage of countries/movies (Fig. 1(a-b)).

4.2 Results on Academic Citation Networks
This data set is from ACL Anthology Network2. It consists of a paper citation network and a re-
searcher citation network. Here, the nodes are papers or researchers; and the edges indicate the
citation relationship. Overall, we have 11,609 papers and 54,208 edges in the paper citation net-
work; 9,641 researchers and 229,719 edges in the researchercitation network. For the inputs of
GenDeR, we use the symmetrized adjacency matrix as the similarity functionS; and the ranking
results by ‘DR’ as the relevance vectorr. We use the same measure as in [11] (referred to as ‘cover-
age’), which is the total number of unique papers/researchers that cite the top-k papers/researchers in
the ranking list. As pointed out in [11], the ‘coverage’ might provide a better measure of the overall
quality of the top-k ranking list than those traditional measures (e.g., h-index) as they ignore the di-
versity of the ranking list. The results are presented in Fig. 2. We can see that the proposedGenDeR

1http://www.imdb.com/
2http://www.aclweb.org/anthology-new/
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Figure 1: The evaluations on actor professional network. (a-c) are different diversity measures and
(d) measures the relevance of the entire ranking list.

performs better than all the alternative choices. For example, with k = 50, GenDeR improves the
‘coverage’ of the next best method by 416 and 157 on the two citation networks, respectively.
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5 Related Work
Carbonell et al [5] are among the first to study diversified ranking in the context of text retrieval and
summarization. To this end, they propose to use the Maximal Marginal Relevance (MMR) criterion
to reduce redundancy while maintaining query relevance, which is a linear combination of relevance
and novelty. In [23], Zhai et al address this problem from a different perspective by explicitly model-
ing the subtopics associated with a query, and proposing a framework to evaluate subtopic retrieval.
Recently, researchers leverage external information sources to help with diversified ranking. For ex-
ample, in [2], Agrawal et al maximize the probability that the average user finds at least one useful
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result within the top ranked results with the help of a taxonomy available through Open Directory
Project (ODP); in [4], Capannini et al mine the query log to find specializations of a given query,
and use the search results of the specializations to help evaluate the set of top ranked documents;
in [20], Welch et al model the expected number of hits based onthe number of relevant documents
a user will visit, user intent in terms of the probability distribution over subtopics, and document
categorization, which are obtained from the query logs, WordNet or Wikipedia.

With the prevalence of graph data, such as social networks, author/paper citation networks, actor
professional networks, etc, researchers have started to study the problem of diversified ranking in
the presence of relationships among the examples. For instance, in [24], Zhu et al propose the
GRASSHOPPER algorithm by constructing random walks on the input graph, and iteratively turning
the ranked nodes into absorbing states. In [11], Mei et al propose the DivRank algorithm based on
a reinforced random walk defined on the input graph, which automatically balances the prestige
and the diversity among the top ranked nodes due to the fact that adjacent nodes compete for their
ranking scores. In [16], Tong et al propose a scalable algorithm to find the near-optimal solution to
diversify the top-k ranking list for PageRank. Due to the asymmetry in their formulation, it remains
unclear if the optimization problem in [16] is NP-hard. On a higher level, the method in [16]
can be roughly viewed as an instantiation of our proposed formulation with the specific choices
in the optimization problem (e.g, the relevance function, the similarity function, the regularization
parameter, etc). In [25], Zhu et al leverage the stopping points in the manifold ranking algorithms
to diversify the results. All these works aim to diversify the results of onespecifictype of ranking
function (i.e., PageRank and its variants).

Learning to rank [10, 1, 3] and metric learning [19, 22, 9] have been two very active areas in the
recent years. Most of these methods require some additionalinformation (e.g., label, partial order-
ing, etc) for training. They are often tailored for other purposes (e.g., improving the F-score in the
ranking task, improving the classification accuracy in metric learning, etc) without the consideration
of diversity. Nonetheless, thanks to the generality of our formulation, the learned ranking functions
and metric functions from most of these works can be naturally admitted into our optimization ob-
jective function. In other words, our formulation brings the possibility to take advantage of these
existing research results in the diversified ranking setting.

Remarks.While generality is one of the major contributions of this paper, we do not disregard the
value of the domain-specific knowledge. The generality of our method is orthogonal to domain-
specific knowledge. For example, such knowledge can be reflected in the (learnt) ranking function
and/or the (learnt) similarity function, which can in turn serve as the input of our method.

6 Conclusion
In this paper, we study the problem of diversified ranking. The key feature of our formulation lies
in its generality: it admitsany non-negative relevance function andany non-negative, symmetric
similarity function as input, and outputs a top-k ranking list that enjoys both relevance and diversity.
Furthermore, we identify the regularization parameter space where our problem can be solved near-
optimally; and we analyze thehardnessof the problem, theoptimalityas well as thecomplexityof
the proposed algorithm. Finally, we conduct experiments onseveral real data sets to demonstrate
the effectiveness of this algorithm. Future work includes extending our formulation to the on-line,
dynamic setting.
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