
Four Types of Lookback

Gilbert Chen and Boleslaw K. Szymanski
Department of Computer Science
Rensselaer Polytechnic Institute

110 8th Street,
Troy, NY 12180, U.S.A.

fcheng3,szymanskg@cs.rpi.edu

Abstract

We present a classification that groups lookback into four
types: direct strong lookback, universal strong lookback, di-
rect weak lookback, and universal weak lookback. They are
defined in terms of absolute and dynamic impact times. We
discuss relationships between lookback types by consider-
ing when rollbacks and/or anti-messages are avoided. From
different types of lookback, we also derive three optimiza-
tion techniques for optimistic simulation and point out their
advantages over lazy cancellation. Finally, we show that all
four types of lookback exist in the PCS network simulation
and can be exploited by either lookback-based or optimistic
protocols.

1. Introduction

Lookback is the ability to change the past locally [4], as
opposed to lookahead, the ability to predict the future [6].
We have shown that lookback is more commonly observed
than lookahead and enables a new class of synchroniza-
tion protocols [4]. More importantly, the execution time
of lookback-based protocols may be lower than the bound
given by the critical times of events, which is an insur-
mountable limit for lookahead-based conservative protocols
and even optimistic protocols without optimization [9].

From a historical point of view, lookback unifies two
trends in PDES research. First, it follows an idea of out-
of-timestamp order execution [10, 13, 16, 18], which has
been pursued, yet achieved little success for general real-
world simulations. Second, it is a perfect local rollback
protocol. The well-known distinction between aggressive-
ness and risk predicted that there should be a new class of
protocols that allow aggressiveness but not risk [15]. Two
such protocols [5, 17] had been already developed, but the
lookback-based protocol is the first asynchronous local roll-

back protocol which controls the aggressiveness by main-
taining an adequate amount of lookback.

The understanding and application of lookback are still
in early stages. Although lookback is always greater
than or equal to lookahead, they are exactly the same in
the Closed Queuing Network (CQN) simulation presented
in [4]. Hence the CQN simulation did not back the claim
that, in practice, lookback-based protocols have a wider ap-
plication range than lookahead-based protocols do. In this
paper, we classify lookback into four types, and show that
all four exist in the PCS (Personal Communication Ser-
vice) network simulation. PCS network simulation has been
widely studied by the PDES community [1, 8, 11, 12], yet it
is difficult to simulate it efficiently using lookahead-based
conservative protocols. In this paper, we demonstrate that
lookback-based protocol is capable of efficient parallel PCS
network simulations. Moreover, we demonstrate that differ-
ent types of lookback can be exploited to improve also the
performance of optimistic simulations in a similar way as
lazy cancellation does.

2. Four Types of Lookback

The starting point of this paper is based on a close ex-
amination of the definition of lookback in [4]. A lookback
of L was originally defined as the ability of a component at
simulated time T to “execute correctly, without sending out
anti-messages, any received event with timestamp between
T � L and T ”, and the lookback window is defined as the
time interval [T � L; T]. There is some ambiguity in this
definition with regard to the number of stragglers (events
with timestamp smaller than the local simulated time) that
can be processed correctly by the lookback procedure. The
first straggler in the lookback window should always be pro-
cessed without difficulty. However, the definition did not
clearly specify whether the second, and subsequent strag-
glers, can also be correctly processed. Moreover, a restric-
tion stronger than avoidance of anti-messages can also be

Bolek
Text Box
Proc. 17th Workshop on Parallel and Distributed Simulation, San Diego, CA, June 2003, pp. 3-10

imposed on lookback window, namely forbidding a compo-
nent to rollback any processed events.

Based on these choices, we can define four types of look-
back (Figure 1), induced by two orthogonal classifications:
direct versus universal, and strong versus weak. Direct
lookback exists when any event within the lookback win-
dow can be processed without a rollback (directly). Any
lookback without this restriction is called a universal one.
A component with weak lookback is able to process only
a limited number of events within the lookback window
without anti-messages (or rollbacks for direct rollback). A
component with strong lookback can process any number
of stragglers that way.

U
nl

im
ite

d
Li

m
ite

d

Direct Strong

Direct Weak
Lookback

Lookback

Universal Weak

Universal Strong
Lookback

Lookback

No anti−messagesNo rollbacks

N
um

be
r

of
 s

tr
ag

gl
er

s
w

ith
in

pr
oc

es
se

d
co

rr
ec

tly
lo

ok
ba

ck
 w

in
do

w
 th

at
 c

an
 b

e

are successfully processed?
What is avoided when stragglers

Figure 1. Four Types of Lookback

By definition, weak lookback always contains the cor-
responding strong lookback. If we assume that the event
history is not exposed to the lookback procedure, univer-
sal lookback always contains the corresponding direct look-
back. Therefore, universal strong lookback always includes
direct strong lookback, direct weak lookback always in-
cludes direct strong lookback, etc. These containing rela-
tions are depicted by arrows in Figure 1.

The relation between universal strong lookback and di-
rect weak lookback bears some elaboration. It is not read-
ily clear whether one encloses the other, but their defini-
tions imply that they have at least an intersection, the direct
strong lookback.

Let us consider whether rollbacks and anti-messages can
occur during the lookback procedure with each type of look-
back. For rollbacks, there are three possibilities: no roll-
backs, some rollbacks, and always rollbacks, denoted by
NR, SR, and AR, respectively. For anti-messages, there are
only two possibilities, no anti-messages (NA) or some anti-
messages (SA), because anti-messages are not always nec-
essary, if no messages have been produced during the event
execution. Of the six combinations of these possibilities,
only five are feasible. The case of ‘NR,SA’ which stands
for ‘No Rollback and Some Anti-messages’ is contradic-

tory, because an anti-message may trigger a rollback at the
recipient (depending on its progress after the corresponding
positive message was received). Let us denote these five
cases as 1,2,3,4,5 respectively, as shown in Table 1.

Case Rollbacks Anti-messages
1 No Rollbacks No Anti-messages
2 Some Rollbacks No Anti-messages
3 Always Rollbacks No Anti-messages
4 Some Rollbacks Some Anti-messages
5 Always Rollbacks Some Anti-messages

Table 1. All Five Possible Cases of Rollbacks
and Anti-messages

It is now clear that with universal strong lookback, cases
1,2, and 3 can occur, while with direct weak lookback, cases
1,2, and 4 are possible. This infers that there is no contain-
ing relation between them. Direct strong lookback corre-
sponds to case 1, while for universal weak lookback, the
weakest form of the four types, all five cases could occur.
Their relations are illustrated in Figure 2.

Direct

Universal Weak Lookback
(1,2,3,4,5)

(1)
Lookahead

Universal

Lookback
Strong

Strong
Lookback
(1,2,3)

Direct
Weak

Lookback
(1,2,4)

Figure 2. Relations of Four Types of Lookback
and Lookahead

The lookback discussed in [4], which forms the basis for
lookback-based protocols, is actually universal strong look-
back. We can also deduce the position of lookahead in the
picture. Since lookahead cannot be larger than the universal
strong lookback, it must be strictly contained in the univer-
sal strong lookback. The claim that lookahead and direct
strong lookback only intersect can be supported by three
examples. First, in a server with an infinite capacity (all
jobs start service as soon as they arrive), if the service time
obeys an exponential distribution, the direct strong look-
back is infinite while the lookahead is zero, so this is a
case where direct strong lookback exists while lookahead
does not. Second, if the service time is constant for any
job, the direct strong lookback is still infinite but the looka-
head is now equal to the service time, and both direct strong
lookback and lookahead exist. Third, if departing jobs are
dependent on each other, for instance, if each job contains

a field that records how many jobs are in the server at the
time it arrives, the strong lookback becomes universal. This
is because previously arriving jobs with timestamps larger
than the straggler must be rolled back, if we assume that
it is forbidden to directly modify the processed event list
from the event handler of the arriving event. Therefore, this
is an example where there is lookahead but no direct strong
lookback.

Weak lookback does not support lookback-based proto-
cols because the component has no knowledge of how many
stragglers would come and therefore some of them may vi-
olate the lookback constraint. This can be demonstrated by
looking at the range of the lookback function.

Theorem 1. LB(e; T) denotes the function that gives the
value that the virtual lookback time would have if the event
e were executed at simulated time T . For strong lookback,
LB(e; T) � ts(e) where ts(e) denotes the timestamp of
event e.

Proof. Suppose that at simulated timeT , e is a straggler
andLB(e; T) > ts(e). After e were processed, the virtual
lookback time would have become equal toLB(e; T). Now
consider another stragglere0. If ts(e0) � ts(e), it is possi-
ble thatts(e0) < LB(e; T), which implies thate0 could
not be correctly processed by the lookback procedure, con-
tradicting the definition of strong lookback. Therefore by
contradictionLB(e; T) � ts(e).

For weak lookback,LB(e; T) might be larger than the
timestamp of the stragglere. In such a case, the execution
of the unprocessed event with the smallest timestamp in the
entire simulation may increase the virtual lookback time to a
value larger than the minimum timestamp of the remaining
unprocessed events. Then, processing any of those events
would violate the lookback constraint, so these events have
to resort to the rollback and recovery procedure. Hence,
weak lookback alone is not sufficient for lookback-based
protocols.

3. Finding Lookback

How do we know whether or not lookback exists, and, if
it does, to which type it belongs and how large it is?

To identify universal lookback, it is reasonable to assume
that any change made to local state variables can be aggres-
sively repaired by some means. Shared variables are usu-
ally excluded in PDES, so the universal lookback is infinite
if no messages have been sent out during the event execu-
tion. Even if the event execution produces messages, the
universal lookback may not necessarily be zero. It actually
depends on a property, that we termedimpact time, of the
message being sent out.

We define theimpact time of a message as the upper
bound on the timestamp of any stragglers that can change
or cancel this message. We further distinguishabsolute im-
pact time from dynamic impact time. The former cannot
be changed by the arrival of a straggler, so any number of
stragglers with a timestamp larger than the absolute impact
time of a message cannot affect the messages. The latter is
subject to change after a straggler has been processed, so
only a limited number of stragglers can be correctly han-
dled. One can easily deduce that the absolute impact time
induces universal strong lookback while the dynamic im-
pact time implies universal weak lookback. In both cases, if
a straggler comes with a timestamp smaller than the impact
time of the message, this straggler cannot be processed by
the lookback procedure. The reason is that such a straggler
may affect the message, thus requiring an anti-message to
cancel it. This is strictly prohibited by the lookback-based
protocols but allowed in optimistic protocols.

If the event execution produces exactly one message, the
impact time of the message gives the largest possible look-
back. If more messages are produced, the lookback is equal
to the local simulated time minus the maximum of the im-
pact times of all messages.

The distinction between direct and universal lookback
depends on whether the direct access to the processed event
list is allowed from the event handler of the straggler. If the
direct access is not allowed or only a part of the processed
event is exposed to the event handler, then it is not always
possible to process stragglers directly. Direct lookback ex-
ists only when it is possible to do so. This is the assumption
behind Figure 2. On the other hand, if the direct access is
granted, then the component can take aggressive actions to
repair all processed events. The net result is as if all events
arrived in timestamp order. In such a case, the direct and
universal lookback are exactly the same.

4. Lookback-Based Optimization versus Lazy
Cancellation

Based on the concept of different types of lookback,
we can design three techniques to avoid unnecessary roll-
backs and anti-messages in optimistic simulation. The first
technique, based on direct lookback, can directly process
a straggler without rolling back any other events, when a
straggler is found to have a timestamp greater than the vir-
tual lookback time,

The second and third techniques exploit universal look-
back. If the straggler has a timestamp smaller than the vir-
tual lookback time, the protocol has to resort to the roll-
back and recovery procedure. While rolling back processed
events that are later than the straggler, the protocol can com-
pare the impact times of the messages generated by pro-
cessed events with the timestamp of the straggler. If the im-

pact time of a message is smaller than the timestamp of the
straggler, it cannot be affected by the straggler, and there-
fore an anti-message is unnecessary. The only difference
between the absolute and dynamic impact times is that the
latter must be reset as each straggler is processed. As we
discuss later, often the value set after one straggler is equal
to the absolute impact time.

Lazy cancellation [7] is a well-known technique of
avoiding sending unnecessary anti-messages when the pre-
viously delivered messages are not affected by a straggler.
This technique first compares the new messages generated
by the reprocessing of a rolled-back event and the old mes-
sages generated in the first execution of the same event. If
they are the same, anti-messages are prevented. The impor-
tance of lazy cancellation is that it is one of the techniques
that enable optimistic simulations to circumvent the execu-
tion time limit imposed by the critical times of events. In
practice, it has been shown to be slightly, within 10%, faster
than aggressive cancellation in some applications [14].

It is still unclear, however, in what applications lazy can-
cellation could perform better than aggressive cancellation.
Fujimoto suggests that lazy cancellation automatically ex-
ploits lookahead, and hence simulations with good looka-
head would be more amenable to lazy cancellation [6]. With
the notion of lookback, we can claim that what is automati-
cally exploited by lazy cancellation is actually lookback, or
more specifically, all four types of lookback.

When a component contains a certain amount of look-
back, it may be able to process at least some stragglers
without sending anti-messages, or even without rollbacks,
if the lookback is direct. Indeed, messages generated in the
execution of events whose lookback window contains the
straggler will not be affected by it. Hence, lazy cancella-
tion will discover that these messages do not require anti-
messages. Therefore, lazy cancellation benefits from the
existence of lookback. This, however, does not invalidate
the claim that lazy cancellation exploits lookahead, since
lookahead is contained within universal strong lookback.

It is interesting to compare lazy cancellation and the op-
timization techniques based on lookback. Lazy cancella-
tion avoids all unnecessary anti-messages. Lookback, on
the other hand, might cancel the original message with a
corresponding anti-message and then send the same mes-
sage again. This happens when two different executions,
one with the straggler and the other without, accidentally
produce the same value.

We believe, however, that such accidental independence
occurs rarely in real world. Most often, lazy cancellation
and lookback-based optimization produce the same effect.
In these cases, the latter would be a definite win, for it deter-
mines the necessity of anti-messages by a simple compar-
ison of two floating point numbers. That is, lookback just
needs to compare the timestamps of a straggler with the im-

pact time of a message (which is the virtual lookback time
of the component, when the message is delivered). Lazy
cancellation, however, determines the validity of a message
only after the message is re-generated, thus it not only de-
lays the propagation of anti-messages, if the message needs
to be cancelled, but also incurs significant overhead, if the
message is represented by complex or large data structures.

5. Exploiting Lookback in PCS Network Sim-
ulation

A PCS (Personal Communication Service) network is
composed of a geographically distributed radio base sta-
tions. The portables, carried by users in the coverage area
(or cell) of a base station, can use channels assigned to that
station. The number of channels allocated to each cell may
be smaller than the number of portables simultaneously ac-
tive in the cell, so available channels are assigned in the
order of requests. A channel can be occupied by a portable
for a random call time and then released. A block occurs
when a portable requests a channel while all channels in the
cell have been allocated to other portables. When a portable
moves from one cell to another during a phone call, a hand-
off is said to occur. In this case, the portable releases the
occupied channel to the old cell and attempts to get a chan-
nel from the new cell.

The PCS network simulation actually represents a class
of more general systems in which various mobile objects
roaming around a spatially divided domain compete for
limited number of resources in each location. Many real
systems can be abstracted this way, such as spatially ex-
plicit problems and cellular automata, so the study of the
PCS simulation may have important consequences for all
these systems. We chose it also because the PCS network
is hard to be efficiently simulated by traditional lookahead-
based conservative protocols. This is because the time that a
portable stays in a cell is usually drawn from an exponential
distribution, which has no minimum value, thus resulting in
zero lookahead.

We now show that all four types of lookback exist in PCS
simulation.

5.1. Direct Strong Lookback

The requirement for the existence of direct strong look-
back is that a component must be able to process strag-
glers without rollbacks while maintaining the lookback con-
straint.

In the PCS simulation, a straggler is always a new
portable moving in from a neighboring component that has
a smaller local simulated time. If this portable is not in the
middle of a call, and if it does not make any new calls be-

fore the simulated time of the current cell, it obviously will
not affect any other processed events; otherwise, it may.

Direct processing can be implemented in the following
way (Figure 3). Each cell maintains two lists. One is the
portable list and the other contains the processed event list.
Each event contains four fields: the timestamp, the type of
the event, the pointer to the portable in which the event oc-
curred, and the number of the available channels before the
event is processed. The event type could be either GET or
RELEASE.

PortableTime ID Type

1123.4 GET 2

0

1

1

0

1

1

RELEASE

RELEASE

GET

GET

ARRIVAL

RELEASE

32

9

17

22

22

15

22.3

22.1

20.5

19.3

18.7

18.5

Processed Event List

Channels

ID State

11

32

9

17

Portable List

Simulated Time

Cell

Figure 3. Data Structure for Exploiting Direct
Weak Lookback in PCS Simulation

The last field is essential: it allows a reconstruction of
the history of channel allocations and releases by scanning
through the event list. To process a straggler, a new event
corresponding to the straggler is inserted into the event list,
and other events with a larger timestamp are modified, if
necessary, one by one in increasing timestamp order. No-
tice that a change of the number of available channels may
or may not invalidate the event. Only when this number
changes from 0 to 1 or from 1 to 0, the event may become
invalid. In such a case, all subsequent events occurring on
the same portable must be removed from the event list, and
the affected events must be reprocessed in timestamp order
to generate correct subsequent events.

The question of determining the size of strong lookback
still remains, because it is the strong lookback upon which
lookback-based protocols depend. To answer this question,
we have to look at the absolute impact time of outgoing
messages. In the PCS network simulation, such a message
is created for a portable that wants to leave the current cell,
as shown in Figure 4.

The absolute impact time of such a message is the last
time the portable attempted to get a channel, whether suc-
ceeded or not, because it was the latest point at which the
portable required any information from the cell. Any activ-
ities happening after that point would have no affect on the
outgoing messages. Notice that a RELEASE event cannot

be directly affected by a straggler. Therefore, the timestamp
of the last GET event defines the strong lookback.

RELEASE

DEPARTURE

GET

GVT

Safe
Stragglers

Simulated Time

Absolute
Impact
Time

Stragglers

Dangerous

Figure 4. The Absolute Impact Time of a De-
parture Event in PCS Network Simulation

To apply the lookback-based protocol to the PCS simu-
lation, a test is made, each time a portable wants to leave,
to check whether or not the absolute impact time is smaller
than the GVT (Global Virtual Time). If it is smaller, the
portable can be safely delivered to other cells. Otherwise,
the event must be suspended until this condition is met.

5.2. Universal Strong Lookback

The above algorithm that exploits direct strong lookback
is quite complicated. Although the ability to reconstruct
event history directly allows us to process stragglers at any
time, to maintain this ability is a significant burden. It is
possible to rewrite the algorithm using a rollback and recov-
ery style, whose structure appears to be clearer and simpler.
This is where universal strong lookback differs from direct
strong lookback.

The processed event list is still required. However, the
last field which stores the number of free channels in the
event structure is no longer necessary. Instead, each cell
keeps an integer which denotes the number of available
channels at the current simulated time. When a straggler
arrives, all events with a timestamp larger than that of the
straggler are undone one by one in decreasing timestamp
order. The purpose is to deduce the number of free chan-
nels at the time that the straggler is bound to occur. The
straggler is processed based on this number and all rolled-
back events are reprocessed in increasing timestamp order.

5.3. Direct Weak Lookback

To exploit the direct weak lookback in the PCS network
simulation, we define the virtual lookback time of a cell.
It is the last simulated time at which a portable released
a channel at a time when there are no free channels. As

soon as a portable gets the last available channel, we set the
weak lookback to zero (which means that the virtual look-
back time is always equal to the local time of the cell after-
wards). Theorem 2 proves that any straggler that falls into
the lookback window cannot affect any processed events in
the lookback window. Therefore, a portable arriving from
other cells in the simulation past but within the lookback
window can be granted a channel, without rolling back any
processed events. To preserve the correctness, we must also
set the lookback to zero after processing a straggler. Con-
sequently, the existence of direct weak lookback enables us
to reduce the rollback frequency for an optimistic PCS sim-
ulation.

Theorem 2. If the lookback window begins with a RE-
LEASE event that increases the number of free channels to 1
and ends with the first GET event that decreases the number
of free channels to 0, any straggler arriving in the lookback
window will not affect any processed event in the lookback
window, except the ending GET event.

Proof. Only GET events can be affected by a GET strag-
gler. The condition for this happening is that the number of
free channels before the GET event must be exactly 1. The
only event that satisfies this condition in the lookback win-
dow is the ending GET event. The number of free channels
before any other GET events must be at least 2, otherwise
such an event would have been the ending GET event. The
arrival of a GET straggler only decreases the number of free
channels before these GET events by 1, so they can still ob-
tain a channel and therefore remain unaffected.

In case of a RELEASE straggler, there is no event in
the lookback window that can be affected. The RELEASE
straggler only affects an unsuccessful GET event, that can
occur only when the number of free channels is 0. However,
at any point in the lookback window, the number of free
channels is at least 1, because otherwise the GET event that
makes this number 0 would have become the ending GET
event. Therefore, a RELEASE straggler affects no events.

Surprisingly, one can make use of the direct weak look-
back in the lookback-based protocol that is based on uni-
versal strong lookback. The idea is almost the same as in
optimistic simulations. When a straggler arrives, we first
check to see if it falls into the weak lookback window. If
it does, we simply process it by granting it a channel. Be-
sides, we must set the weak lookback to zero and decrease
the number of free channels by one. It is unnecessary to roll
back any other events because they cannot be affected.

5.4. Universal Weak Lookback

In optimistic simulation, we can take advantage of the
existence of direct weak lookback to reduce rollback fre-

quency, and the existence of universal strong lookback to
avoid unnecessary anti-messages. In addition, we can ex-
ploit universal weak lookback with the notion of dynamic
impact time to further reduce the number of unnecessary
anti-messages.

We have known that the absolute impact time of an out-
going message in the PCS simulation is equal to the times-
tamp of the last GET event. The dynamic impact time of
the message is at least the same as the absolute impact time.
However, if, after the GET event, there is still at least one
free channel, the dynamic impact time will be equal to the
timestamp of the latest RELEASE (before the GET event)
which increases the number of free channels from 0 to 1, as
shown in Figure 5. The RELEASE event may belong to the
same or a different portable. The numbers along the sim-
ulated time axis in the figure represent the number of free
channels before and after each event.

The window from the RELEASE event to the GET event
in the figure is part of the lookback window given by Theo-
rem 2. As a result, a straggler with a timestamp smaller than
the absolute impact time but larger than the dynamic impact
time will not affect any events in the lookback window, ex-
cept the ending GET event. The GET event shown in the
Figure 5 is still in the lookback window starting from the
RELEASE event, and it cannot be the ending GET event
because after its execution there is still one free channel.
Therefore, it cannot be affected by the straggler and the out-
going departure message remains unchanged.

Portable A leaves

Portable A gets 1 from 2

Simulated Time

Absolute
Impact
Time

Portable B releases 1

0

1

2

1

. .
 .

. .
 .

Dynamic
Impact
Time

Figure 5. The Dynamic Impact Time of a De-
parture Event in PCS Network Simulation

A second straggler with a timestamp smaller than the ab-
solute impact time but larger than the dynamic impact time
cannot always be processed correctly without changing the
departure message. As a result, we must set the dynamic
impact time to absolute impact time after processing the first
straggler. This is the reason that we call it ‘dynamic’. It is
also worth to note that the dynamic impact time is equal
to the virtual lookback time given by the direct weak look-
back at the simulated time when the last GET event is being

processed. This fact greatly simplifies the implementation.

6. Performance Evaluation

Our parallel simulation platform is built as an exten-
sion of COST, a component-oriented sequential simula-
tor [3]. We have successfully implemented two synchro-
nization protocols: one is a lookback-based protocol called
LB-GVT, and the other is an optimistic protocol that utilizes
Reverse Computation [2] called LBTW.

The PCS simulation that we executed contains 256 cells.
Each cell is initially assigned 16 portables. The average call
time and the average idle time are 36 seconds and 18 sec-
onds, respectively. The average time a portable stays in a
cell is by default 450 seconds. The actual call time, idle
time, and residence time all obey exponential distributions.
All experiments ran on a shared-memory computer with 4
Intel 500Mhz Pentium III processors. The last relevant pa-
rameter is the number of available channels in each cell. In
each set of experiments, this number varied from 2 to 16.

Figure 6 shows the performance of the LB-GVT proto-
cols. Despite the fact that with universal strong lookback we
may roll back processed events unaffected by a straggler, it
performs better than a protocol with direct strong lookback,
mainly due to a simpler design that incurs less overhead.

1e+06

1.05e+06

1.1e+06

1.15e+06

1.2e+06

1.25e+06

1.3e+06

2 4 6 8 10 12 14 16

E
ve

nt
 P

ro
ce

ss
in

g
R

at
e

(e
ve

nt
s/

se
c)

Number of Channels per Cell

LBGVT(Universal Lookback)
LBGVT(Direct Lookback)

Figure 6. Performance of the LB-GVT protocol
with Direct Strong Lookback and Universal
Strong Lookback

As we pointed out earlier, direct weak lookback can help
decrease the number of rollbacks in lookback-based proto-
cols. Figure 7 empirically confirmed this claim. Weak look-
back is able to slightly boost the performance in all but one
case where each cell possesses 10 channels. In another set
of experiments, we allow a portable, when it is departing, to
move to a randomly chosen cell among all cells and not con-
fined to neighboring cells. Such random connections natu-
rally increase the rollback frequency. Consequently, event
processing rates dropped, but the performance improvement

resulting from the use of direct weak lookback became more
apparent.

1e+06

1.05e+06

1.1e+06

1.15e+06

1.2e+06

1.25e+06

1.3e+06

2 4 6 8 10 12 14 16

E
ve

nt
 P

ro
ce

ss
in

g
R

at
e

(e
ve

nt
s/

se
c)

Number of Channels per Cell

LBGVT + Weak Lookback
LBGVT

Random Connection: LBGVT + Weak Lookback
Random Connection: LBGVT

Figure 7. Improve the LB-GVT Protocol by Ex-
ploiting Direct Weak Lookback

Comparing Figure 7 and Figure 8, we can find that the
performance of the PCS simulation with the LBTW proto-
col is better than with LB-GVT protocol. This is mainly be-
cause of the different implementations of the cell model. In
PCS with LB-GVT we use two events to simulate a portable
(one for call activities and the other for scheduling the de-
parture event), while with LBTW, we use only one event.

We tested the three lookback-based optimization tech-
niques and their combinations (random connection between
cells was adopted, as describe earlier). Only direct weak
lookback showed a very small improvement (Figure 8).
However, when we changed the average residence time
from 450 to 50, we obtained positive data (Figure 9). Both
direct weak lookback and absolute impact time can improve
the performance individually, and the combination of them
is even better, obtaining an average improvement of about
3.7%. The inclusion of dynamic impact time seems to only
slow down the simulation, due to the associated overhead.
We also noticed from the data that the impact of direct weak
lookback is less noticeable when there are few channels in
each cell, but it continues to improve as more channels are
available. This is no surprise since more free channels usu-
ally means more direct weak lookback.

7. Conclusion

We extended the theory of lookback by introducing its
two orthogonal classifications, yielding four types of look-
back. All of these types are useful in both lookback-based
and optimistic protocols, as confirmed by the experiments
conducted for the PCS simulations.

Although the performance improvement in the PCS sim-
ulation was rather modest, we believe that it was largely
limited by the relatively small rollback frequency in simu-
lations running on shared-memory computers. In all our ex-

1.18e+06

1.19e+06

1.2e+06

1.21e+06

1.22e+06

1.23e+06

1.24e+06

1.25e+06

1.26e+06

2 4 6 8 10 12 14 16

E
ve

nt
 P

ro
ce

ss
in

g
R

at
e

(e
ve

nt
s/

se
c)

Number of Channels per Cell

None
Weak Lookback

Absolute Impact Time
Weak Lookback + Absolute Impact Time

All

Figure 8. Optimistic PCS Simulation with Sev-
eral Optimization Techniques (Average Resi-
dence Time = 450 seconds)

650000

700000

750000

800000

850000

2 4 6 8 10 12 14 16

E
ve

nt
 P

ro
ce

ss
in

g
R

at
e

(e
ve

nt
s/

se
c)

Number of Channels per Cell

None
Weak Lookback

Absolute Impact Time
Weak Lookback + Absolute Impact Time

All

Figure 9. Optimistic PCS Simulation with Sev-
eral Optimization Techniques (Average Resi-
dence Time = 50 seconds)

periments, the ratio of the number of rollbacks to the num-
ber of total events processed was less than 5%. We con-
jecture that lookback-based optimization techniques will
yield more performance improvements for large simulations
running on distributed memory parallel computers. There,
messages transmission delay dominates the execution time
and a considerable portion of inter-processor messages will
be stragglers. Exploiting lookback to reduce rollbacks
might be the only hope to obtain satisfactory speedups for
simulations running on such machines.

References

[1] C. D. Carothers, R. M. Fujimoto, Y. B. Lin, et al. Distributed
simulation of large-scale PCS networks. InProceedings of
the Second International Workshop on Modeling, Analysis,
and Simulation of Computer and Telecommunication Sys-
tems, pages 2–6, 1994.

[2] C. D. Carothers, K. S. Perumall, and R. M. Fujimoto. Effi-
cient optimistic parallel simulations using reverse computa-

tion. In Proceedings of the 13th Workshop on Parallel and
Distributed Simulation, pages 126–135, 1999.

[3] G. Chen and B. K. Szymanski. COST: Component-oriented
simulation toolkit. InProceedings of the 2002 Winter Simu-
lation Conference, 2002.

[4] G. Chen and B. K. Szymanski. Lookback: A new way of
exploiting parallelism in discrete event simulation. InPro-
ceedings of the 16th Workshop on Parallel and Distributed
Simulation, pages 153–162, 2002.

[5] P. Dickens and P. Reynolds. SRADS with local rollback. In
Proceedings of SCS Multiconference on Distributed Simula-
tion, pages 161–164, 1990.

[6] R. M. Fujimoto. Parallel discrete event simulation.Commu-
nication of the ACM, pages 30–53, October 1990.

[7] A. Gafni. Rollback mechanisms for optimistic distributed
simulation. InProceedings of the SCS Multiconference on
Distributed Simulation, pages 61–67, 1988.

[8] A. Greenberg, B. Lubachevsky, D. Nicol, and P. Wright. Ef-
ficient massively parallel simulation of dynamic channel as-
signment schemes for wireless cellular communication. In
Proceedings of the 8th Workshop on Parallel and Distributed
Simulation, pages 187–194, 1994.

[9] D. Jefferson and P. Reiher. Supercritical speedup. InPro-
ceedings of the 24th Annual Simulation Symposium, pages
159–168, 1991.

[10] H. V. Leong and D. Agrawal. Semantics-based time warp
protocols. Technical Report TRCS93-10, Department of
Computer Science, University of California, Santa Barbara,
1993.

[11] Y.-B. Lin and P. A. Fishwick. Asynchronous parallel dis-
crete event simulation.IEEE Transactions on Systems, Man
and Cybernetics, 26(4):397–412, 1996.

[12] B. A. Malloy and A. T. Montroy. A parallel distributed sim-
ulation of a large-scale PCS network: Keeping secrets. In
C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Golds-
man, editors,Proceedings of the 1995 Winter Simulation
Conference, pages 571–578, 1995.

[13] F. Quaglia and R. Baldoni. Exploiting intra-object depen-
dencies in parallel simulation.Information Processing Let-
ters, 70(3):119–125, 1999.

[14] P. L. Reiher, R. M. Fujimoto, S. Bellenot, and D. Jeffer-
son. Cancellation strategies in optimistic execution systems.
In Proceedings of the SCS Multiconference on Distributed
Simulation, volume 22, pages 112–121, 1990.

[15] P. Reynolds, C. Weight, and J. Filder. Comparative analy-
ses of parallel simulation protocols. InProceedings of the
Winter Simulation Conference, pages 671–679, 1989.

[16] L. M. Sokol, J. B. Weissman, and P. A. Mutchler. MTW: An
empirical performance study. InProceedings of the 1991
Winter Simulation Conference, pages 557–563, 1991.

[17] J. Steinman. Breathing time warp. InProceedings of the
7th Workshop on Parallel and Distributed Simulation, pages
109–118, 1993.

[18] P. A. Wilsey, A. C. Palaniswamy, and S. Aji. Rollback re-
laxation: A technique for reducing rollback costs in an opti-
mistically synchronized simulation. InInternational Confer-
ence on Simulation and Hardware Description Languages,
pages 143–148, 1994.

