Proc. 11th Workshop on Parallel and Distributed Simulation (PADS97), Lockenhaus, Austria, June 10-13, 1997,
IEEE Computer Society Press, Los Alamitos, CA, pp. 124-131

Breadth-First Rollback in Spatially Explicit Simulations

Ewa Deelman

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180
deelmane@cs.rpi.edu

Abstract

The efficiency of Parallel Discrete Event Simula-
tions that use the optimistic protocol is strongly depen-
dent on the overhead incurred by rollbacks. This pa-
per introduces a novel approach to rollback processing
which limits the number of events rolled back as a re-
sult of a straggler or antimessage. The method, called
Breadth-First Rollback (BFR), is suitable for spatially
explicit problems where the space is discretized and dis-
tributed among processes and simulation objects move
freely in the space. BFR uses incremental state saving,
allowing the recovery of causal relationships between
events during rollback. These relationships are then
used to determine which events need to be rolled back.
Our results demonstrate an almost linear speedup—a
dramatic improvement over the traditional approach
to rollback processing.

1 Introduction

One of the major challenges of Parallel Discrete
Event Simulation (PDES) is to achieve good perfor-
mance. This goal is difficult to attain, because, by its
very nature, discrete event simulation organizes events
in a priority queue based on the timestamp of events,
and processes them in that order. When porting a
simulation to a parallel platform, this priority queue
is distributed among logical processes (LPs) that cor-
respond to the physical processes that are being mod-
eled. Because the LPs interact with each other by
sending event messages, it is costly to maintain the
causality between events. Two basic protocols have
been developed to ensure that causality constraints are
satisfied [9]: conservative [5] and optimistic. In Time
Warp (TW) [11], the best known optimistic protocol,
causality errors are allowed to occur, but when such an
error is detected, the erroneous computation is rolled
back. The research described in this paper utilizes the
optimistic protocol and focuses on optimizing rollback
processing.

Boleslaw K. Szymanski

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180
szymansk@cs.rpi.edu

The method of rollback processing we will present is
applicable to simulations that consist of a space with
objects moving freely in it; the space is discretized into
a multi-dimensional lattice and divided among LPs.
We make use of incremental state saving techniques
[18] to detect dependencies between events. Typical
implementations of a rollback in such a setting (used in
our previous implementation [7]) is to roll back the en-
tire area assigned to the LP. In this paper, we present a
novel approach, termed Breadth-First Rollback (BFR),
in which the rollback is contained to the area that has
been directly affected by the straggler (event message
with a timestamp smaller than the current simulation
time) or antimessage (cancellation of an event). We
also present the improved simulation speedup and per-
formance resulting from the use of this approach.

The application that motivated this work is a Lyme
disease simulation in which the two-dimensional space
is discretized into a two-dimensional lattice. The most
important characteristics of the simulation are: the
mobile objects moving freely in space (mice) and the
stationary objects present at the lattice nodes (ticks).
The two main groups of events are: (i) local to a
node (such as tick bites, mouse deaths, etc.) and (ii)
non-local (such as a mouse moving from one node to
another—Move Event).

The simulation currently runs on an IBM SP2 (we
show results for up to 16 processors). The model
was designed in an object oriented fashion and imple-
mented in C++. The communications between pro-
cesses use the MPI [10] message passing library.

2 Related Work

There are two inter-related issues that have arisen
in optimizing optimistic protocols for PDES. One is
the need to reduce the overhead of rollbacks, and the
other is to limit the administrative overhead of parti-
tioning a problem into many “small” LPs (as happens,
for example, in digital logic simulations). To address

Bolek
Text Box
Proc. 11th Workshop on Parallel and Distributed Simulation (PADS97), Lockenhaus, Austria, June 10-13, 1997, '
 IEEE Computer Society Press, Los Alamitos, CA, pp. 124-131

both of these issues, clustering of LPs is often used.

Lazy re-evaluation [9] has been been used to deter-
mine if a straggler or antimessage had any effect on
the state of the simulation. If, after processing the
straggler or canceling an event, the state of the sim-
ulation remains the same as before, than there is no
need to re-execute any events from the time of the
rollback to the current time. The problem with this
approach is that it is hard to compare the state vectors
in order to determine if the state has changed. It is
also not applicable to the protocols using incremental
state saving.

The Local Time Warp (LTW) [15] approach com-
bines two simulation protocols by using the optimistic
protocol between LPs belonging to the same cluster
and by maintaining a conservative protocol between
clusters. LTW minimizes the impact of any rollback
to the LPs in a given cluster.

Clustered Time Warp (CTW) [1, 2] takes the oppo-
site view. It uses conservative synchronization within
the clusters and an optimistic protocol between them.
The reason given for such a choice is that, since LPs
in a cluster share the same memory space, their tight
synchronization can be performed efficiently. Two al-
gorithms for rollback are presented: clustered and lo-
cal. In the first case, when a rollback reaches a cluster,
all the LPs in that cluster are rolled back. This way
the memory usage is efficient, because events that are
present in input queues and that were scheduled after
the time of the rollback, can be removed. In the local
algorithm, only the affected LPs are rolled back. Re-
stricting the rollback speeds up the computation, but
increases the size of memory needed, because entire
input queues have to be kept.

The Multi-Cluster Simulator [16], in which digital
circuits are modeled, takes a bit of a different look
at clustering. First, the cluster is not composed of a
set of LPs; rather, it consists of one LP composed of
a set of logical gates. These LPs (clusters) are then
assigned to a simulation process.

In the case of spatially explicit problems, the is-
sue of partitioning the space between LPs is also of
importance. Discretizing the space results in a multi-
dimensional lattice for which the following question
arises: Should one LP be assigned to each lattice node
(which results in high simulation overhead) or should
the lattice nodes be “clustered” and the resulting clus-
ters be assigned to LPs? Our first implementation of
Lyme disease used the latter approach and assigned
spatially close nodes to a single LP, with TW used be-
tween the LPs. This was similar to the CTW, except
that our implementation did not have multiple LPs

within a cluster, to simulate space more efficiently.
Unfortunately, this approach did not perform as well
as we had hoped, especially when the problem size
grew larger, because when a rollback occurred in a
cluster, the entire cluster had to roll back.

To improve performance, the nodes of the lattice
belonging to an LP (cluster) are allowed to progress in-
dependently in simulation time; however, all the nodes
in a cluster are under the supervision of one LP. When
a rollback occurs in a LP/cluster, only the affected
lattice nodes are rolled back, thanks to a breadth-first
rollback strategy, explained in Section 3. This ap-
proach can be classified as an inter-cluster and intra-
cluster time warp (TW).

The main innovation in BFR is that all future in-
formation is global, and information about the past is
distributed among the nodes of the spatial lattice. The
future information is centralized to facilitate schedul-
ing of events, and the past information is distributed
to limit the effects of a rollback. One could say that,
from the point of view of the future, we treat a par-
tition as a single LP, whereas, from the point of view
of the past, we treat the partition as a set of LPs (one
LP per lattice node). The performance of the new
method yields a speedup which is close to linear.

3 Breadth-First Rollback Approach

Breadth-First Rollback is designed for spatially ex-
plicit, optimistic PDES. The space is discretized and
divided among LPs, so each LP is responsible for a set
of interconnected lattice nodes. The speed of the sim-
ulation is dictated by the efficiency of two steps: the
forward event and the rollback processing. The for-
ward computation is facilitated when the event queue
is global to the executing LP, so that the choice of the
next event is quick. The impact of a rollback is re-
duced when the depth of the rollback is kept to a min-
imum: the rollback should not reach further into the
past than necessary, and the number of events affected
at a given time has to be minimized. For the latter,
we can rely on a property of spatially explicit prob-
lems: if two events are located sufficiently far apart
in space, one cannot affect the other (for certain val-
ues of the current logical virtual time (lvt) of the LP
and the time of the rollback), so at most one of these
events needs to be rolled back when a causality error
occurs.

Events can be classified as local or non-local. A
local event affects only the state of one lattice node.
A non-local event, for example the Move Event, which
moves an object from one location to the next, affects
at least two nodes of the lattice. Local events are easy
to roll back. Assume that a local event e at location

=~ Origina
|~ impact point
of arollback

location x

Z

Potential 1st,2nd and 3rd waves of the rollback

Figure 1: Waves of Rollback.

z and time ¢ triggers an event e; at time ¢; and the
same location z (by definition of a local event). If a
rollback then occurs which impacts event e, only the
state of location z has to be restored to the time just
prior to time t. While restoring the state, e; will be
automatically “undone”. If, however, the triggering
event e is non-local and triggers an event e; at location
x1 # x, then restoring the state of location z is not
sufficient—it is also necessary to restore the state of
location 7 just prior to the occurrence of event e;.
Regardless of whether an event is local or non-local,
the state information can be restored on a node-by-
node basis.

To show the impact of a rollback on an LP, consider
a straggler or an antimessage arriving at a location z,
marked in the darkest shade in Figure 1. The roll-
back will proceed as follows. The events at = will be
rolled back to time t,., the time of the straggler or
antimessage. Since incremental state saving is used,
events have to be undone in decreasing time order to
enable the recovery of state information. The rollback
involves undoing events that happened at x. Each
event e processed at that node will be examined to
determine if e caused another event (let’s call it e;) to
occur at a different location z; # = (non-local event).
In such a case, location xz; has to be rolled back to
the time prior to the occurrence of e;. Only then is
e undone (this breath-first wave gave the name to the
new approach).

In our simulation, objects can move only from one
lattice node to a neighboring one, so that a rollback
can spread from one site only to its neighbors. The
time of the rollback at the new site must be strictly
greater than the one at site x, because there is a non-
zero delay between causally-dependent events. In gen-
eral, the breadth of the rollback is bounded by the
speed with which simulated objects move around in
space.

Figure 1 shows potential waves of a rollback, from
the initial impact point through three more layers of
processing. In practice, the size of the affected area
is usually smaller than the shaded area in Figure 1,
because events at one site will most likely not affect
all their neighboring nodes. Obviously, if an event
at location z triggered events on a neighboring LP,
antimessages have to be sent.

It is interesting to note that each location belong-
ing to a given LP can be at a different logical time. In
fact, we do not necessarily process events in a given
LP in an increasing-timestamp order. If two events are
independent, an event with a higher timestamp can be
processed ahead of an event with a lower timestamp.
A similar type of processing was mentioned briefly in
[17] as CO-OP (Conservative-Optimistic) processing.
The justification is that the requirement of processing
events in timestamp order is not necessary for prov-
ably correct simulations. It is only required that the
events for each simulation object be processed in a
correct time order.

Due to this type of processing, when we process an
event (in the forward execution), we have to check the
logical time of the node where the event is scheduled.
If the logical time is greater than the time of the event,
the node has to roll back.

4 Comparison With The Traditional
Approach

To demonstrate improvements in performance, we
present below the model used in our initial simula-
tion, which did not use the BFR method. The space,
as previously mentioned, is discretized into a two-
dimensional lattice. Similar discretization is used,
for example, in personal communication services [4],
where the space is discretized by representing the net-
work as hexagonal or square cells. In these simula-
tions, each cell is modeled by an LP. In our research,
we have developed a simulation system for spatially
explicit problems. The particular application we de-
scribe in this paper is the simulation of the spread of
the Lyme disease.

In Lyme disease simulation, it would be pro-
hibitively expensive to assign one LP to each lattice
node, so we “cluster” lattice nodes into a single LP.
Currently, the space is divided strip-wise among the
available processors. Of course, other spatial decom-
positions can be used. To achieve better performance,
the space can also be divided into more LPs than there
are available processors [8].

The LPs in this simulation are called Space Man-
agers, because they are responsible for all the events
that happen in a given region of space. If the Space

speedup

1 I I I I I

6
processors

Figure 2: Speedup For Small Data Set (about 2,400
nodes).

Manager determines that an object moves out of local
space to another partition, the object and all its future
events are sent to the appropriate Space Manager. As
previously mentioned, the optimistic approach is used
to allow concurrent processing of events happening at
the same time at different locations.

Because the state information is large, we use in-
cremental state saving of information necessary for
rollback. When an event is processed, the state in-
formation that it changes is placed into its local data
structure. The event is then placed on a processed
event list. Events that move an object from one LP to
another are also placed in a message list (only point-
ers to the events are actually placed on the lists; the
resulting duplication is not costly and speeds up send-
ing of antimessages). If an object moves to another
LP, the sending LP saves the object and the corre-
sponding events in a ghost list to be able to restore
this information upon rollback.

When a rollback occurs, messages on the message
list are removed and corresponding antimessages are
sent out (we use aggressive cancellation). Then, the
events from the processed event list are removed and
undone. Undoing an event which involved sending an
object to another process entails restoring the objects
from the ghost list and restoring future events of the
object to the event queue. For other events, the parts
of the state that have been changed by the events have
to be restored. During fossil collection, the obsolete
information is removed and discarded from the three
lists: the processed event list, the message list, and the
ghost list.

Initial results obtained for a small-size simulation
were encouraging (Figure 2); however, the speedup

speedup
IS
T

0 L L L L

16

Figure

8 10
number of processors

3: Speedup For Large Data Set (about 32,000

nodes).

Run Time with Multiple Logical Processes

90 T T T T
16 LPs <-—
12 LPs —+-

60 |- 1

run time in seconds

50 - R

30 L L L L L

6
number of processors

Figure 4: Running Time for Large Data Set and Mul-
tiple LPs per Processor.

Best Speedup
T

35 1

25 1

speedup

15 41

1 L L L L L L L

8 10
number of processors

Figure 5: Speedup with Large Data set and 16LPs.

was not impressive for larger simulations (Figure 3).
The performance degradation is caused by the large
space allocation to individual processes resulting from
the increased problem size. When a rollback occurs,
the entire space allocated to an LP is rolled back. To
minimize the impact of the rollback, we divided the
space into more LPs, while keeping the same num-
ber of processors. Figure 4 shows the runtime im-
provement achieved with this approach. For the given
problem size, the ultimate number of LPs was 16 (Fig-
ure 5), and the best efficiency was achieved with 8
processors.

5 Challenges Of The New Approach

In order to implement BFR, some changes had to
be made not only to the simulation engine, but also
to the model. A major change was made to the Move
Event. The question arose: If an object is moving
from location (z,y) to location (x,y;), where should
the object be placed as “processed”? If it is placed
in location (z,y), and location (z1,y1) is rolled back,
there would be no way of finding out that the event
affected location (z1,y1). If it is placed at location
(z1,y1), and location (x,y) is rolled back, a similar
difficulty arises. Placing the Move Event in both pro-
cessed lists is also not a good solution, because, in
one case, the object is moving out of the location,
and, in the other case, it is moving into the location.
This dilemma motivated us to split the Move event
into two: the MoveOut and Moveln Events. Hence,
when an object moves from location (x,y) to location
(z1,y1), the MoveOut is placed in the processed event
list at (x,y) and the Moveln at location (z1,y;). The
only exception is when location (z1,y1) belongs to an-
other LP. In that case, the Moveln is placed in the
processed event list at location (z,y) (it will be placed
on top of the corresponding MoveOut event), to indi-
cate that a message was sent out.

Upon rollback, if a Moveln to another LP is en-
countered, an antimessage is sent. The result of such a
treatment of antimessages, coupled with the breadth-
first processing of rollbacks, gives us an effect of lazy
cancellation [12]. An antimessage is sent together with
a location (z,y) to which the original message was ad-
dressed, to avoid searching the lattice nodes for this
information.

Since the Moveln Event indicates when a message
has been sent, no message list is necessary. Another
affected structure is the ghost list. In the original ap-
proach, objects and their events were placed on the
list in the order that objects left the partition. Now
the time order is not preserved, objects are placed on
the list in any timestamp order, because the nodes of

the lattice can be at different times. The non-ordered
aspect of the ghost list poses problems during fossil
collection. The list cannot merely be truncated to re-
move obsolete objects. The solution, again, is to dis-
tribute that list among the nodes. This is useful for
load balancing, as described in the final section. How-
ever, the ghost list is relatively small (compared to the
processed event list), so it might not be necessary to
distribute the list if no load balancing is performed. It
is sufficient to maintain an order in the list based on
the virtual time at which the object is removed from
the simulation.

Additionally, event triggering information must be
preserved. In the original implementation, when an
event was created, the identity of the event that caused
it was saved in one of the tags (the trigger) of the new
event. When an event was undone, the dependent fu-
ture events were removed by their trigger tags from
the event queue. In BFR, it is possible that the future
event is already processed, and its assigned location
has not been rolled back yet. It is prohibitively ex-
pensive to traverse the future event list and then each
processed event list in the neighborhood in search of
the events whose triggers match the given event tag.
The solution is to create dependency pointers from the
trigger event to the newly created events. This way,
a dependent event is easily accessed, and the location
where it resides can be rolled back. Pointer tacking
has been previously implemented for shared memory
[9] to decide whether an event should be canceled or
not. In our approach, we also need to know if a de-
pendent event has been processed or not, in order to
be able to quickly locate it either in the event queue
or in a processed event list.

One more change was required for the random num-
ber generation. In the original simulation, a single
random number stream was used for an LP. These
numbers are used, for example, in calculating the time
of occurrence of new events. Now, since the sequence
of events executed on a single LP can differ from run
to run, the same random number sequence can yield
two different results! Obviously, result repeatability is
important, so we chose to distribute the random num-
ber sequence among the nodes of the lattice. Initially,
a single random number sequence is used to seed the
sequences at each node. From there, each node gener-
ates a new sequence.

6 Examples

To demonstrate the behavior of the BFR algorithm,
let’s consider the example in Figure 6. The figure
shows processed lists at three different lattice nodes:
(0,0),(0,1), and (0,2). The event MO is a MoveOut

A Most Recent
Past
Ml o Mi 3 X3 T T,
X1 : : / M 4 T Ts
M MO causdity | X
~ P causali 1
! \ relation T
X causality MO, X 47
relation 1
X X X 11,
Past
(0,0 (0,1) 0,2 locations

X could be any event
MI- Moveln event
MO- MoveOut

Figure 6: View of Processed Lists at Three Nodes of
the Lattice.

event, MI a Moveln event, and X can be any local
event.

If we have a rollback for location (0,1) at time Tp,
the following will happen: First M I3 is undone and
placed on the event queue. The same is done to X5.
When MO, is being considered, the dependence be-
tween it and M I, is detected, and a rollback for loca-
tion (0,2) and time T5 is performed. As a result, X3
is undone and M I, is undone. Both are placed on the
event queue. Next M Qs is undone, which causes M I,
to be removed from the event queue. MO; is exam-
ined, and (0,0) is rolled back to time Ty. MI,, X; and
M1, are undone and placed on the event queue. MO,
is undone and M I; is removed from the event queue.

If the rollback occurred at location (0,0) for time
T}, then the three most recent events at location (0,0)
will be undone and placed on the event queue, and
no other location will be affected during the rollback.
It is possible that the other locations will be affected
when the simulation progresses forward. If, for exam-
ple, an event MO, was scheduled for time T5 on (0,0)
and triggered an event M I, on (0,1) for time T3, then
location (0,1) would have to roll back to time T3.

Interesting aside: We can have location (z,y) at
simulation time ¢t. The next event in the future list
is scheduled for time ¢; and location (z1,y1), and pro-
cessed. If an event comes in from another process for
time to (t < t2 < t1), we do not necessarily incur a
rollback. If the event is to occur at location (z,y), then
no rollback will happen. If, however, it is destined for
location (z1,y1), localized rollback will occur. As a
result, comparing the timestamp of an incoming event

uninfected

larval tick . .
infection

tick V

infected infected
mouse nymphal tick

inf:(% Ak bite

Figure 7: The Cycle of Lyme Disease

unifected
mouse

to the local virtual time is not enough to determine if
a rollback is necessary.

7 Application Description

Before we present the results obtained with BFR,
it is important to sketch our application—the simu-
lation of Lyme disease. This disease is prevalent in
the Northeastern United States [3, 13]. People can
acquire the disease by coming in contact with a tick
infected with the spirochete, which may transfer into
the human’s blood, causing an infection. Since the
ticks are practically immobile, the spread of the dis-
ease is driven by the ticks’ mobile hosts, such as mice
and deer. Even though the most visible cases of Lyme
disease involve humans, the main infection cycle con-
sists of ticks and mice (Fig. 7). If an infected tick
bites a mouse, the animal becomes infected. The dis-
ease can also be transmitted from an infected mouse
to an uninfected, feeding tick.

The seasonal cycle of the disease, and the dura-
tion of the simulation, is 180 days, starting in the late
spring[6]. This time is the most active for the ticks and
mice. Mice, during that time, are looking for nesting
sites and may carry ticks a considerable distance [14].

The mice are modeled as individuals, and ticks,
because of their sheer number (as many as 1200
larvae/400m? [14]) are treated as “background”. The
space is discretized into nodes of size 20x20m?2, which
represent the size of the home range for a mouse. Each
node may contain any number of ticks in various stages
of development and various infection status. Mice can
move around in space in search of empty nesting sites.
The initiation of such a search is described by the Dis-
perse Event, and the moves by the Move Event. Mice
can die (Kill Event) if they cannot find a nesting site
or by other natural causes, such as old age, attacks by

Comparison of Run Times Between Approaches
90 T T T T T T

breadth-first +—

old approach —+-
80]

70
60

50

run time in sec

40 |-

30

20

10

8 1
number of processors

Figure 8: Results: Comparison of Runs With BFR
and the Traditional Approach.

predators, and disease. Mice can be bitten by ticks
(Tick Bite) or have ticks drop off (Tick Drop). From
the above list of events, only the Move Event is non-
local.

8 Results

Figure 8 shows the performance of BFR and illus-
trates almost linear speedup. The running time of the
BFR is considerably shorter than that of the tradi-
tional approach. Looking at the new algorithm, we
observe several benefits. The most important benefit
is that, when a rollback occurs, we do not need to roll
back all the events belonging to a given LP. Only the
necessary events are undone. In the traditional ap-
proach, the number of events that needed to be rolled
back was ultimately proportional to the number of
lattice nodes assigned to a given LP. When a rollback
occurred, all the events that happened in that space
had to be undone. On the other hand, when a rollback
occurs in the BFR version, the number of events being
affected by a rollback is proportional to the length of
the edges of the space that interface with other LPs.
In the case of the space divided into strips, the number
of events affected by a given rollback is proportional
to the length of the two communicating edges. There-
fore, when the size of the space assigned to a given LP
increases (when the number of LPs for a given prob-
lem size decreases), the number of events affected by
a rollback in the case of BFR remains roughly con-
stant. In the traditional approach, that number in-
creases proportionally to the increased length of the
non-communicating edges. Consequently, we observe
that the number of events rolled back using BFR is an
order of magnitude smaller than that in the traditional
approach.

Comparison of Speedup in Balanced and Unbalanced Computations
T T T T T T
balanced load +—
uneven load -+

16

14 4

10 1

speedup

8 10
number of processors

Figure 9: Speedup for Balanced and Unbalanced Com-
putations.

We also get fewer antimessages being sent as a re-
sult of the automatic lazy cancellation. In general,
having one LP per processor eliminates on-processor
communication delays. There are, of course, some
drawbacks to the new method. Fossil collection is
much more expensive (because lists are distributed);
therefore, it is done only when the Global Virtual
Time has increased by a certain amount from the last
fossil collection. It is harder to maintain dependency
pointers than triggers, because, when an event is un-
done, its pointers have to be reset. The pointers have
to be maintained when events are created, deleted,
and undone, whereas triggers are set only once. There
must be code to deal with multiple dependents. There
is no aggressive cancellation, but, as can be seen from
the results, that does not seem to have an adverse
impact on performance.

9 Conclusions and Future Work

We have described a new algorithm for rollback
processing in spatially explicit problems. The algo-
rithm is based on the optimistic protocol and relies on
the space being partitioned into a multi-dimensional
lattice. Rollbacks are minimized by examining the
processed event list of each lattice node during roll-
back, in search of causal dependencies between events
which span the lattice nodes. The rollback impacts
the minimum number of sites, making the simulation
very efficient. As a result, an almost linear speedup
is achieved. Obviously this performance is attainable
thanks to a large amount of parallelism existing in the
application.

Up to now, we did not address the issue of load
distribution. If the simulation’s load per LP is uneven
(for example, when the odd LPs have more load then

the even ones), the performance degrades, as shown
in Figure 9. Another advantage of BFR is that it
lends itself well to load balancing, since the local (at
the node level) history tracking facilitates load balanc-
ing. An overloaded LP can “shed” layers of space in
order to balance the load. Nothing special needs to
happen on the receiving side. If messages were sent
to the space that just arrived, they are simply dis-
carded by the sender of the space and reconstructed
from the ghost list by the receiver (we assume that
load can only be exchanged between neighboring pro-
cesses). On the sending side, however, the priority
queue has to be filtered in order to extract the future
events for the area sent to the new process. In order
to decide if there is a need to migrate the load, the
event queue can be scanned to determine the event
density. Since there is a large number of events in the
queue at any given time, this quantity might prove to
be a good measure of load. If the density is too high
at some process, some of the space can be sent to the
neighboring processes.
Acknowledgments

This work was supported by the National Science
Foundation under Grants BIR-9320264 and CCR-
9527151. The content of this paper does not nec-
essarily reflect the position or policy of the U.S.
Government—no official endorsement should be in-
ferred or implied.

References
[1] H. Avril and C. Tropper. The Dynamic Load Bal-
ancing of Clustered Time Warp for Logic Sim-
ulations. Workshop on Parallel and Distributed
Simulation, pages 20-27, 1996.

[2] H. Avril and Carl Tropper. Clustered time warp
and logic simulation. Workshop on Parallel and
Distributed Simulation, pages 112-119, 1995.

[3] A.Barbour and D. Fish. The biological and social
phenomenon of Lyme disease. Science, 260:1610—
1616, 1993.

[4] C.D. Carothers, R.M. Fujimoto, and Y.B. Lin.
A Case Study in Simulating PCS Networks Us-
ing Time Warp. Workshop on Parallel and Dis-
tributed Simulation, pages 87-94, 1995.

[5] K. M. Chandy and J. Misra. Distributed Simu-
lation: A Case Study in Design and Verification
of Distributed Programs. IEEE Transactions on
Software Engineering, 5:440-452, 1979.

[6] Ewa Deelman, Thomas Caraco, and Boleslaw K.
Szymanski. Parallel Discrete Event Simulation of

Lyme Disease. Pacific Biocomputing Conference,
pages 191-202, 1996.

[7] Ewa Deelman and Boleslaw K. Szymanski. Con-
tinuously Monitored Global Virtual Time in Par-
allel Discrete Event Simulation. Technical Report
96-18, Department of Computer Science, Rennse-
laer Polytechnic Institute, 1996.

[8] Ewa Deelman and Boleslaw K. Szymanski. Sim-
ulating Lyme Disease Using Parallel Discrete
Event Simulation. Proceedings of the 1996 Winter
Simulation Conference, pages 1191-1198, 1996.

[9] R. M. Fujimoto. Parallel Discrete Event Simula-
tion. Communications of the ACM, 33(10):31-53,
1990.

[10] William Gropp, Ewing Lusk, and Anthony Skjel-
lum. Using MPI. The MIT Press, 1994.

[11] D.R. Jefferson. Virtual Time. Trans. Prog. Lang.
and Syst., 7:404-425, 1985.

[12] Y. Lin and E. D. Lazowska. A Study of Time
Warp Rollback Mechanisms. ACM Transactions
on Modeling and Computer Simulations, pages
51-72, 1991.

[13] G.L. Miller, R.B. Craven, R.E. Bailey, and T.F.
Tsai. The epidemiology of Lyme disease in the
United States 1987-1998. Laboratory Medicine,
21:285-289, 1990.

[14] R.S. Ostfeld, K.R. Hazler, and O.M. Cepeda.
Temporal and Spatial Dynamics of Izodes scapu-
laris (Acari: Ixodidae) in a rural landscape. Jour-
nal of Medical Entomology, 33:90-95, 1996.

[15] H. Rajaei, R. Ayani, and 1. Thorelli. The Lo-
cal Time Warp Approach to Parallel Simulation.
Workshop on Parallel and Distributed Simula-
tion, pages 119-126, 1993.

[16] R. Schlagenhaft, M. Ruhwandl, C.Sporrer, and
H. Bauer. Dynamic Load Balancing of a Multi-
Cluster Simulation of a Network of Workstations.
Workshop on Parallel and Distributed Simula-
tion, pages 175-180, 1995.

[17] J. S. Steinman. SPEEDES: A Unified Approach
to Parallel Simulation. Workshop on Parallel and
Distributed Simulation, pages 75-84, 1992.

[18] J. S. Steinman. Incremental State Saving in
SPEEDES using C++. Winter Simulation Con-
ference, pages 687696, 1993.

