
Run-Time Reference Clustering for Cache Performance Optimization

Wesley K. Kaplow
Boleslaw K. Szymanski

Peter Tannenbaum
Department of Computer Science

Scientific Computation Research Center
Rensselaer Polytechnic Institute

Troy, N.Y. 12180-3590, USA�
kaploww,szymansk,tannenp � @cs.rpi.edu

Viktor K. Decyk
Physics Department, UCLA

Los Angeles, CA. 90024, USA
and

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA. 91109, USA
vdecyk@pepper.physics.ucla.edu

Abstract

We introduce a method for improving the cache per-
formance of irregular computations in which data are
referenced through run-time defined indirection arrays.
Such computations often arise in scientific problems. The
presented method, called Run-Time Reference Clustering
(RTRC), is a run-time analog of a compile-time blocking
used for dense matrix problems. RTRC uses the data par-
titioning and re-mapping techniques that are a part of dis-
tributed memory multi-processor codes designed to mini-
mize interprocessor communication. Re-mapping each set
of local data decreases cache-misses the same way re-
mapping the global data decreases off-processor references.
We demonstrate the applicability and performance of the
RTRC technique on several prevalent applications: Sparse
Matrix-Vector Multiply, Particle-In-Cell, and CHARMM-
like codes. Performance results on SPARC-20, SP-2, and
T3-D processors show that single node execution perfor-
mance can be improved by as much as 35%.

1. Introduction

One of goals of parallel program optimization is to keep
data references as low as possible in the memory hierar-
chy. However, this is a difficult task for irregular compu-
tations that make array references via indirect indices. The
indices are data-dependent, and thus it is impossible to deter-
mine at compile-time a static distribution of the data that will
minimize inter-processor communications. Heuristic tech-
niques, such as spectral bisection, simulated annealing, etc.,
are used to create an irregular distribution of data in an at-
tempt to minimize inter-processor communication. How-
ever, these methods introduce the problems of determin-

ing the run-time dependent remote access requirements of
the application, and providing efficient facilities to perform
the communication. These problems are addressed in the
CHAOS/PARTI run-time and compilation methods [4, 12,
10]. The essential technique is the inspector/executor model
in which the inspector is used to determine which references
are required for execution, and the executor performs the
communication and the actual computation.

Cache optimization for irregular problems share the same
problems of multi-processor irregular data distribution: the
reference pattern is not determined until run-time, and may
vary during execution. During compilation of such pro-
grams it is impossible to determine a loop structure that will
confine references to the current contents of the cache. It is
exactly this type of problem that this paper addresses.

Several methods have been explored for improving cache
performance of irregular computation. Multithreading [6]
attempts to hide memory latency by creating many parallel
threads of computation that can be finely scheduled with re-
spect to the availability of data to process. Another approach
is to modify the reference order to improve locality. For cer-
tain applications, such as finite-element methods, the perfor-
mance of the cache can be improved by applying algorithms
that narrow the bandwidth of the sparse-matrix constructed
increasing reference locality [3]. However, this does not ad-
dress the details of reuse, nor is it generally applicable to ir-
regular problems. To our knowledge, [11] is the only paper
that applies data repartitioning explicitly for cache optimiza-
tion. They determine the size of a sub-domain of the local
cache, based on an analysis of the data structures and algo-
rithms of a problem, and then use a domain decomposition
scheme at run-time to reorganize data to fit into these local
cache regions. Their paper also examines software prefetch-
ing. When applied to KSR-1 (a Cache Only Memory Ar-
chitecture) both of these techniques reduce the number of

Bolek
Text Box
Proc. Second Aizu Int. Symposium on Parallel Algorithms/Architectures Synthesis, Aizu-Wakamtsu, Japan, March 17-21, 1997, IEEE Computer Society Press, Los Alamitos, CA , pp. 42-49

cache misses. The domain re-mapping decreases the execu-
tion time by 8%-19%, but prefetching does not reduce the
execution time because of the extra cost of prefetching in-
structions.

In this paper we introduce a novel method of cache per-
formance optimization for parallel programs based on the
concept of Run-Time Reference Clustering (RTRC). The
references of an irregular program are clustered in such
a way that the data referenced in each cluster fits within
the processor’s cache. For static irregular codes, such as
sparse matrix-vector multiplication, the number of clusters
and their sizes are determined statically (once during run-
time), similar to [11]. For dynamic scientific applications,
such as Particle-In-Cell [1] and CHARMM [2], the clusters’
scopes can change. Run-time management used to main-
tain the reference clusters is similar to local memory data-
reallocation done for load balancing.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the RTRC model itself and application types
that are amenable to it. Performance results for Sparse
Matrix-Vector multiply, Particle-In-Cell simulation, and a
CHARMM-like kernel are given in Section 3. Conclusions
and final remarks are given in Section 4.

2. The RTRC Model and Target Applications

RTRC Model. Scientific computations often involve
evaluating the interactions of each object from one collec-
tion with a specific subset of objects from another collection.
(The two collections are not necessarily distinct.) Examples
include:

� Particle-in-Cell (PIC) codes, in which each particle in
a simulation interacts with its neighboring grid points.

� Molecular Modeling (CHARMM) codes, in which
each simulated particle interacts with its neighboring
particles.

� Sparse Matrix-Vector Multiplication codes, in which
non-zero elements of the sparse matrix reference the
corresponding elements of the dense vector.

The first two examples above are dynamic problems; par-
ticles in the physical simulations change their positions and
therefore interact with different sets of objects during differ-
ent simulation steps. Matrix multiplication is a static prob-
lem; matrix elements always interact with the same elements
of the vector (although the vector’s values change). All three
examples share the following two properties: (i) the specific
set of objects with which a given object of the first collection
interacts is not known at compile time, and (ii) the order of
interaction evaluations does not affect the result.

RTRC

AA

A

B B B B

Reference
Cluster

0

Reference
Cluster

1

Reference
Cluster

2

Reference
Cluster

3

Reference
Cluster

4

Reference
Cluster

5

Reference
Cluster

6

Reference
Cluster

7

Real Processor 0 Real Processor 1

Referencing
Objects

Referenced
Objects

Figure 1. Run-Time Reference Cluster Model

The Run-Time Reference Clustering model optimizes
this kind of computation. For simplicity, RTRC assumes
that collections of interacting objects are represented as ar-
rays. The specific nature of the interaction is immaterial in
this model. Rather, the focus is on the pattern of interac-
tions: is there an ordering that provides better performance
when evaluating interactions? Intuitively, an ordering that
guarantees a high degree of locality should provide optimal
performance. Any type of interaction will involve data ref-
erences for each element. If successive pairs of interact-
ing elements are stored near enough to each other in mem-
ory, then the data references will enjoy a high cache-hit rate,
thereby decreasing the effective memory access time. With
static codes, a single repartitioning step can achieve an op-
timal ordering. For dynamic codes, the repartitioning must
occur often enough to provide the desired degree of local-
ity. Repartitioning at each step ensures optimal locality, but
at the cost of increased overhead.

The optimal ordering scheme is application dependent.
(Each specific ordering, regardless of the application, will
also be data dependent.) In the case of CHARMM, each par-
ticle interacts only with the particles that lie within a given
radius. With this in mind, clusters of particles in physical
space should also be clustered together in memory. The PIC
codes are similar, in that particles interact only with the near-

est grid points. Again, clusters of particles in physical space
should be clustered in memory. In the sparse matrix-vector
multiply codes, the locations of the non-zero elements in the
matrix determine the elements of the vector with which to
interact. Here, an optimal ordering rearranges the interac-
tions to achieve locality with respect to data references in
the vector.

Each cluster of elements should fit within the cache.
Finding an optimal ordering is a data partitioning problem:
just as the global data is mapped to processors with the in-
tent of minimizing inter-process communication, the data on
each processor is partitioned, and thereby ordered, into ref-
erence clusters (RCs) with the intent of minimizing inter-RC
communication. The RCs are made to fit within the cache,
and therefore any interactions evaluated within the RC will
enjoy a high cache-hit rate.

The target machine is described by the set of cache pa-
rameters that are critical in determining the performance of
the application code. An object array

�
is divided into sub-

arrays (RCs) depending on application code and the cache
parameters.

Figure 1 shows an example of the RTRC method applied
to two processors. Each processor stores the sub-arrays with
referencing and referenced objects. In the figure, each ref-
erencing object points to exactly one referenced object. In
general, the references will be scattered randomly over the
upper array of referenced objects. In the bottom part of the
figure each processor’s data are partitioned into four RCs.
Each cluster contains a section of both arrays.

The key feature of the RCs is that the referencing ob-
jects contain pointers to local sections of the array of the
referenced objects. However, in dynamic codes, the refer-
enced objects’ effective addresses change during execution,
requiring their reallocation between RCs.

An important observation can be made from Figure 1. At
the upper part of the figure there are referencing objects that
point to objects belonging to another processor. Such point-
ers (labeled A in the figure), are frequent in multi-processor
execution. To provide access to off-processor data, a mes-
sage will be created that moves such objects to the processor
to which its reference points. A completely analogous situ-
ation exists in the Reference Clusters (RCs). The pointers
labeled B originate at objects that, due to the execution of
the program, need to access data in another RC. In exactly
the same way as above, a referencing object is reallocated
from the first RC to the second RC to maintain good local-
ity of data references.

RTRC Application Structure. The following steps are
used to apply the RTRC method to an application:

1. Determining the number of reference clusters, which
can be done heuristically, analytically, or experimen-
tally at compile time.

2. Creating reference clusters, On each processor, sev-
eral clusters can be created depending on the data
structure and cache sizes.

3. Modifying the code to execute on a reference cluster
(RC) basis at run-time. In most cases the modifica-
tion follows the changes introduced to support load
balance of multi-processor execution.

1 SUBROUTINE PMULT(...)
2 DO IRC = 1, NRC
3 IBR = (IRC-1)*(NCOL+1) + 1
4 IER = IBR + NCOL - 1
5 ICOL = 0
6 DO I = IBR, IER
7 ICOL = ICOL + 1
8 IBGN = COLPTRA(I)
9 IEND = COLPTRA(I+1)-1
10 SUM = 0.0D00
11 IF (IBGN .LE. IEND) THEN
12 DO J = IBGN,IEND
13 JAJJ = ROWIND(J)
14 SUM = SUM + VALUES(J)*X(JAJJ)
15 ENDDO
16 ENDIF
17 W(ICOL) = W(ICOL) + SUM
18 ENDDO
19 ENDDO
20 DO I = 1,NCOL
21 X(I) = W(I)
22 ENDDO
23 RETURN

Figure 2. ITPACK Matrix-Vector Multiplication
Code With RTRC

Compile-Time Determination of RC Size. The cre-
ation of Reference Clusters (RCs) on a processor requires
a compile-time estimation of the ranges of the arrays that
should be allocated to an RC. There are several methods that
can be used to determine the size of the arrays allocated to
the virtual processors. An execution or benchmark method
can be used, or a cache performance estimation technique
can be employed. We describe a method in [7] that can be
used to determine quickly the optimal range values by par-
tial simulated execution of the application code on an archi-
tecturally correct model of the target processor’s cache.

Reference Cluster Creation and Code Modification.
The data structures used to support RC creation can be the
same as the structures required to support the movement
of program objects from one real processor to another in a
multi-processor implementation of an application. The code
modifications required can also follow this pattern. One way
this can be accomplished is via the specification of multiple
virtual processors on each real processor when setting com-
piler directives for automatic parallelizing languages such as

HPF. We currently have a preliminary implementation of a
language pre-processor that assists in this process.

Run-Time Component. Reallocation of referencing ob-
jects between RCs must be performed at run-time in re-
sponse to the changing reference pattern of each of such ob-
jects. The overhead associated with reallocating reference
objects between reference clusters must be small enough
so as not to negate the performance improvement resulting
from better cache hit-rates. For example, testing each object
in every iteration may be too costly. Since we are dealing
with the statistical nature of the cache, it is clear that some
number of non-local RC references will not significantly im-
pact the performance of the RC. Therefore, we can define
two types of run-time systems: strict when during execution
each object making non-local references is reallocated to its
proper RC, and non-strict otherwise.

A non-strict method could be designed according to one
of these possible schemes:

1. Count non-local RTRC requests. When a threshold
is exceeded, a reallocation of the referencing objects
would be made to restore RC locality.

2. A periodic reallocation could be used in which the ref-
erenced objects are changed every ������� interaction
evaluations.

Target Application Characteristics. In general, the
RTRC method is useful if the program reference pattern is
defined at run-time. In scientific applications such programs
use index arrays to reference data arrays. For some appli-
cations, like sparse matrix-vector multiply, these indirection
arrays do not change during execution. In many programs,
such as finite-element solvers, sparse matrix-vector multi-
plication is a key algorithm that is used to iteratively solve
a linear system. The references are static in the sense that
the reference pattern is a function of the sparse matrix con-
tents which do not change during iterations. Since dense
matrix optimizations for improving cache performance rely
on subscript analysis, the use of indirection in subscript ex-
pressions in codes using sparse matrices makes these meth-
ods useless. Techniques for improving the performance of
sparse matrix-vector multiplication on parallel architectures
have focused on improving processor partitioning to reduce
remote processor communication costs [13]. Figure 2 shows
the code for sparse matrix-vector multiplication taken from
ITPACK [8] with RTRC applied (The code multiplies

�
by�

to find � .) In general, a multi-processor implementa-
tion of this algorithm would assign to each processor a con-
tiguous number of rows of

�
,
�

, and � . Since each sparse
row of

�
is stored in contiguous addresses (in VALUES),

its cache line reuse is optimal, as are accesses to � . How-
ever, access to the

�
array follows the sequence of non-

zero elements in a row access. Usually, the number of non-
zeros is below a few percent of the total number of elements

in the matrix, and therefore accesses to
�

will be widely
spaced. Unless all elements of

�
fit into cache, there will

be no cache reuse on those references. This data locality can
be improved by applying the RTRC method to partition the
rows into reference clusters. Due to space limitations the
code to create the reference clusters from the initial sparse
matrix could not be included.

1 SUBROUTINE PUSH(PART, FX, FY, NX, NY, NOP,IDIMP,
2 nRC,mxperRC,mxsndRC,
3 nsRC, nsRCy, ndRCx,
4 sendlist, destlist, npsend, iphole
5 DIMENSION FX(NX, NY), FY(NX, NY)
6 DIMENSION PART(IDIMP, mxperRC,nRC)
7 dimension npRC(nRC)
8 dimension sendlist(idimp,mxsndRC,nRC)
9 dimension destlist(mxsndRC,nRC)
10 dimension npsend(nRC),iphole(nRC)
11
12 DO iRC=1,nRC
13 DO I=1,npRC(iRC)
14 N = PART(1,J,iRC) + 0.5
15 M = PART(2,J,iRC) + 0.5
16 DX = function(FX,N,M)
17 DY = function(FY,N,M)
18 PART(1,J,iRC) = function(DX)
19 PART(2,J,iRC) = function(DY)
20 if(freq(nsratio) .eq. 1) then
21 ipdest = RCMAP(col1,col2)
22 if (ipdest .ne. iRC) then
23 call MoveOpReq(J,RC,ipdest,...,
24 PART,sendlist,
25 destlist,npsend,iphole,...)
26 endif
27 endif
28 END DO
29 END DO
30 call DoMoveReq(PART,npRC,nRC,sendlist,
31 destlist,npsend,iphole, 	
	�)
1 SUBROUTINE NONBOND(PART,NPART,X, Y, DX, DY,
2 NOP,MAXPART)
3 DIMENSION X(NOP), Y(NOP),DX(NOP),DY(NOP)
4 DIMENSION PART(MAXPART, NOP),NPART(NOP)
5
6 DO iRC=1,nRC
6 DO I=1,npRC(iRC)
7 use variables X(I,iRC),Y(I,iRC)
8 DO J = 1,NPART(I,iRC)
9 P = PART(J,I,iRC)
10 use variables X(P,iRC),Y(P,iRC)
11 perform force calculation
12 use variables DX(P,iRC),DY(P,iRC)
13 ENDDO
14 update variables DX(I,iRC),DY(I,iRC)
15 ENDDO

Figure 3. Example PIC and CHARMM Code
Templates with RTRC Application

The reference pattern of dynamic irregular codes is cre-
ated by indirect array references that change values during
program execution. The example procedure ������ in Fig-

ure 3 illustrates a typical template for sections of Particle-
in-Cell codes. The plasma Particle In Cell simulation model
integrates in time the trajectories of millions of charged par-
ticles in their self-consistent electromagnetic fields. Parti-
cle interactions are not modeled directly, but through the
fields which they produce. Particles can be located any-
where in the spatial domain; however, the field quantities are
calculated on a fixed grid. The General Concurrent Particle
in Cell (GCPIC) Algorithm [9] partitions the particles and
grid points among the processors of the MIMD (multiple-
instruction, multiple-data) distributed-memory machine. A
secondary decomposition partitions the simulation space
evenly among processors, which makes solving the field
equations on the grid efficient. As particles move among
partitioned regions, they are passed to the processor respon-
sible for the new region.

-20

-10

0

10

20

30

500 1000 1500 2000 2500 3000 3500 4000

Im
pr

ov
em

en
t (

pe
rc

en
t)

RTRC Size (columns)

RTRC Sparse Matrix-Vector Multiply Improvement (5K x 5K, 0.5%)

Var. = 500
Var. = 250
Var. = 125
Var. = 25

-20

-10

0

10

20

30

40

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Im
pr

ov
em

en
t (

pe
rc

en
t)

RTRC Size (columns)

RTRC Sparse Matrix-Vector Multiply Improvement (50K x 3125, 0.8%)

Var. = 250
Var. = 500
Var. = 1000
Var. = 2000

Figure 4. RTRC Performance Improvement vs.
RC Size and Distribution on a single Node
and Multiprocessor SP2 Sparse Matrix-Vector
Multiplication

Figure 3 shows and example application of the RTRC
method to a PIC code template. There are three principle
arrays in the PIC code. The array PART is used to store the
X and Y positions of all of the simulated particles (there are��� � total particles). The FX and FY arrays represent the
electric field in a 2D simulation. This computation is re-
peated at the particle push and charge deposit stages of PIC
codes and it consumes the majority of the execution time of
a simulation. The order of traversal of the PART array is ir-
relevant for the results.

Cache performance can be poor because references to the
FX and FY arrays are dependent on the run-time values of
the PART array which change during execution. Over time,
the reference pattern to FX and FY become essentially ran-
dom, leading to as much as a ����� performance decrease [5]
over an initially sorted order.

The creation of RCs in the PIC code directly follows the
approach that supports multi-processor execution. In this
case the same data structures that provide the mechanism for
interprocessor communication are reused to supply inter-RC
object movement. Lines ��� thru ��	 represent the run-time
support for the periodic reallocation of objects in the refer-
ence clusters using the non-strict policy. The
��� � ����� � �
assigns an object to the new reference cluster, and, when
necessary calls the relevant inter-processor run-time proce-
dure to move this object between processors. ����
��� � � ���
is an RTRC procedure that effects the object movement be-
tween RCs on the same processor.

Another application suitable for RTRC are CHARMM-
like codes that model molecular dynamics in macromolec-
ular systems. The computationally intensive parts of
CHARMM are the molecular dynamics simulation routines.
In particular, the non-bonded force calculation represents up
to ����� of the total execution time because each modeled
atom needs to account for its interaction with all other atoms
in the system. The computation is of

���������
time complex-

ity, but it is simplified in CHARMM by ignoring all inter-
actions with atoms that are greater than a certain cutoff ra-
dius away. Thus, each atom in the simulation maintains a
dynamically changing list of all the atoms present within
its cutoff radius. Figure 3 shows a template for the non-
bonded force calculation (

�����! "��� �) characteristic of
CHARMM codes. The PART array in this case holds the ad-
jacency information for each atom.

As stated before, to create the reference clusters, the
RTRC method reuses the partitioning method (e.g.,RSB,
Recursive Spectral Bisection) included in the original code
to create an irregular data distribution for multi-processor
execution. However, now RSB is applied to an individ-
ual processor partition to subdivide it into pieces fitting into
cache. The resulting sub-partitioning reduces the number of
inter-RC reference for the same reason that the the original
partitioning minimizes inter-processor communication. As

atoms move between RCs (operation performed in another
phase of the CHARMM algorithm), the run-time support of
both RTRC and inter-process load balancing have to main-
tain the quality of the partitions. Our current implementa-
tion is limited to a single initial RC partitioning and a peri-
odic complete repartitioning to maintain reference locality.

3. Results

In this section we present the performance results of ap-
plying the RTRC method to codes described in the previous
section.

Sparse Matrix-Vector Multiplication. Many problems
that are solved using large sparse matrices have most of their
elements located close the the diagonal. Therefore, in or-
der to provide a realistic test of the RTRC modified matrix-
vector multiplication, a sparse matrix generation program
was created with the following user-defined parameters: the
number of rows and columns, density, and variance. The
density determines the number of non-zero elements in the
array. A normal distribution is used to cluster non-zeroes
around the diagonal with the given variance. Raising the
variance widens the band. There is little or no improvement
when the variance is small because all non-zero elements are
close to the diagonal and accessed with good locality. As
the variance increases the performance improvement grows,
reaching ����� for Sun SPARC-20.

The top graph in Figure 4 shows results for a single IBM
SP2 node. In this case a diagonal sparse matrix is used
and both the variance and cluster size are varied. As in the
SPARC-20 results, the performance is proportional to the
variance. Also, there is an optimal value for the cluster size.
If the size it too small then the extra overhead of manag-
ing the reference clusters causes a significant performance
degradation. If the size to too large, then the locality that
the Reference Cluster defines is larger than the cache.

The bottom graph in Figure 4 shows the performance
results for a single processor in a multiprocessor configu-
ration. The total size of the matrix is ����� ������������� �����
with �	� �	����� ����� non-zeros. With ��
 processors, �����	� rows
are assigned to each processor. The results show, as in the
uniprocessor case in Figure 4, that the variance determines
whether using RTRC is beneficial or not.

Particle-in-Cell. Performance results of applying the
RTRC method to PIC codes are presented. The x-axis of all
of the graphs represents the iteration step of the simulation.
The y-axis represents either the time of the particle push and
deposit charge routine, or a ratio indicating performance im-
provement. Three processor architectures show the applica-
tion of the method: the Sun SuperSPARC processor, a Cray
T3D node, and an IBM SP2 node.

The top of Figure 5 shows a performance comparison be-
tween the original PIC code and RTRC optimized code. The

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

0 50 100 150 200 250 300 350

P
us

h
+

D
ep

os
it

T
im

e
(s

ec
s.

)

Iteration

Original vs. RTRC Model (64 x 128, 32 x 32 RTRC) SPARC-20

Original Code
RTRC Sort (1:10)

RTRC Send (1:10)

1.2

1.4

1.6

1.8

2

2.2

2.4

0 50 100 150 200 250 300 350

P
us

h
+

D
ep

os
it

T
im

e
(s

ec
s.

)

Iteration

Original vs. RTRC Model (256 x 512, 32 x 32 RTRC) SP2

Original Code
RTRC Sort (1:10)
RTRC Send (1:5)

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 50 100 150 200 250 300 350

P
us

h
+

D
ep

os
it

T
im

e
(s

ec
s.

)

Iteration

Original vs. RTRC Model (64 x 128) T3D

Original Code
RTRC Send 32x32 (1:5)

RTRC Move 16x16 (1:10)

Figure 5. Performance Improvements:
SunSPARC-20, SP2 and T3D Processors

PIC code example included a GRID array of size
�� � ��� �
and PART array with ����	 �
 � � entries. The reference clus-
ter size is ��� � ��� , and, therefore, there are eight reference
clusters. In both cases the performance of the original code
deteriorates as the simulation proceeds. Initially, the PART
array contains particles sorted by their positions and consec-
utive reference to GRID are made to adjacent values in the
cache. However, as the particles move over time and change
their referenced grid points, this locality of reference is lost.
For example, by the ��		����� iteration, cache misses decrease
the performance by ����� ����� . This figure shows two dif-
ferent methods to maintain the reference clusters during ex-
ecution. Both methods maintain performance that is within
a few percent of the optimum but differ in the overhead re-
quired to maintain strict RC order. The sort method repre-
sents a complete periodic local data repartitioning and has a
�	� � second overhead. The send method represents periodic
restoration of the reference cluster by moving particles from
one reference cluster to another with a �
�
 second overhead.
Of course, the repartitioning method must move every refer-
ence in the particle array twice, and therefore we would ex-
pect that this would take longer than the send method. How-
ever, by allowing non-strict operation of the RTRC run-time
we can amortize this cost over a number of iterations. In
this case the run-time attempts to make a strict ordering once
every ��� iterations, and the average overhead time of these
methods become approximately �
� � seconds per iteration on
a SPARC-20.

The SP2 results in Figure 5 shows a PIC problem size
where the GRID array has been increased to be �	�	
 � � ��� .
The size of the RC is ��� � ��� . The performance of the orig-
inal code degrades from ��� � to �	� � seconds, a ��� � perfor-
mance drop. The average cost is ��� 	�� seconds for the repar-
titioning method, and ��� ��� seconds for the send method,
when the repartition is performed every � ���� iteration and
the send every fifth. This maintains performance within ap-
proximately � ��� of optimal.

The last architecture compared here is the Cray T3D.
This processor has a small direct mapped cache, and there-
fore we would expect that the RC size would have to be
much smaller. In the bottom Figure 5 the performance of the
original code decreases by �
�� . Two sizes of RCs are also
shown. The first size represents approximately ��� � of the
entire cache capacity, while the second size (��
 � �
) is �� ���
the capacity. The performance of the send code represents
�	��� and ��� � improvement respectively.

The top of Figure 6 shows the results of a comparison
of different RC sizes. As expected, over some threshold
size, the performance of too large an RC decreases as the
simulation proceeds. This effect is caused by the deterio-
ration of locality from the initial sorted order, and the self-
interference misses caused by having too large a locality for
the cache.

Selecting an RC smaller than necessary does not have a
large impact on performance. The cache locality provided
by RTRC is not influenced by a small RC, but the RTRC run-
time overhead does increase as the number of RCs increase.

14

15

16

17

18

19

20

0 50 100 150 200 250 300 350
P

us
h

+
D

ep
os

it
T

im
e

(s
ec

s.
)

Iteration

Original vs. RTRC Model (256 x 512, 3571712 Particles) SP2

Original
16 x 16 RTRC
32 x 32 RTRC
64 x 64 RTRC

64 x 128 RTRC
64 x 128 RTRC

1

1.05

1.1

1.15

1.2

1.25

0 50 100 150 200 250 300 350

D
eg

re
da

tio
n

R
at

io

Iteration

Effect of Reference Density on Performance (SP2)

0.625 References Per Grid Cell
1.7 References Per Grid Cell

6.81 References Per Grid Cell

Figure 6. Impact of RC Size Selection and Ref-
erence Density on SP2 Performance

The second graph in Figure 6 shows the effect of refer-
ence density on performance. If the number of references
per grid cell is too small then there is not enough reuse of
data in the cache to amortize the cost of bringing in the cache
line from memory. The figure shows that for a reference
density of less than one there is a degradation of approxi-
mately � � � from the optimal time. A reference density of
��� 	 improves this to only a ��� degradation. A density ra-
tio of nearly 	 provides the needed cache reuse to maintain
optimum performance.

CHARMM Performance. A benchmark was derived
from the CHARMM code to study the effect of applying
RTRC techniques. In this case, the benchmark consisted
of the non-bonded force calculation in two dimensions. A

initial population of atoms was distributed randomly over a
field. Reference clusters were created by applying domain
decomposition and reordering of atoms in the PART array.
Results are measured with respect to the worst case, which
is when the locations of atoms in the various arrays used in
the calculation are not correlated with their partners for the
entire array. Figure 7 shows the performance improvement
for both a SPARC-20 processor and a single node of an SP2
each for different reference cluster sizes. With an RC size of
approximately
���� the performance improves by �	��� and
��� � respectively.

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000

P
er

fo
rm

an
ce

 Im
pr

ov
m

en
t

Reference Cluster Size

SPARC-20
SP2 Node

Figure 7. CHARMM Performance Improve-
ment

4. Conclusions

The RTRC model presented here provides a viable frame-
work for optimizing the use of the cache and memory hier-
archy for irregular static and dynamic codes. As described
in this paper, there are two components that are integrated
to form the model. The first is to determine a close to op-
timal reference cluster size, and use an irregular data parti-
tioning method to distribute the data to each reference clus-
ter. The second is a method for keeping the references local
to each reference cluster during execution. We have shown
that the overhead of the RTRC method is low enough to en-
able significant performance improvements. We have a pre-
liminary version of a compiler that will automatically apply
the RTRC method to PIC codes. We intend to add the addi-
tional capability of integrating a user supplied data partition-
ing function to support other applications, as well as looking
at the possibility of using the RTRC method to direct fine-
grained thread scheduling and data prefetching in an attempt
to further reduce effective memory access times.

Acknowledgments The authors thank Charles Norton
for his comments and assistance. This work was supported
in part by NSF Grant CCR-9527151. The content does not
necessarily reflect the position or policy of the U.S. Govern-
ment.

References

[1] C. K. Birdsall and A. B. Langdon. Plasma Physics via Com-
puter Simulation. McGraw-Hill, New York, 1981.

[2] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States,
S. Swaminathan, and M. Karplus. Charmm: A program for
macromolecular energy, minimization, and dynamics calcu-
lations. Journal of Computational Chemistry, 4:187, 1983.

[3] R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Pon-
nusamy. Design and implementation of a parallel un-
structured euler solver using software primitives. AIAA,
32(3):489–496, March 1994.

[4] R. Das, M. Uysal, J. Saltz, and Y.-S. Hwang. Communic-
tion optimizations for irregular scientific computations on
distributed memory architectures. Journal of Parallel and
Distributed Computing, 22:462–478, 1994.

[5] V. K. Decyk, S. R. Karmesin, A. de Boer, and P. C. Liewer.
Optimization of particle-in-cell codes on risc processors.
Computers in Physics, 1995. Submitted for Publication.

[6] K. Hwang. Advanced Computer Architecture: Parallelism,
Scalability, Programmability. McGraw-Hill, 1993.

[7] W. K. Kaplow and B. K. Szymanski. Program optimization
based on compile-time cache performance prediction. Par-
allel Processing Letters, 6(1):173–184, 1996.

[8] D. R. Kincaid, J. R. Respess, D. M. Young, and R. G. Grimes.
Itpack 2c: A fortran package for solving large sparse linear
systems by adaptive accelerated iterative methods. Technical
report, University of Texas at Austin, 1992.

[9] C. D. Norton, B. K. Szymanski, and V. K. Decyk. Object-
oriented parallel computation for plasma simulation. Com-
munications of the ACM, 38(10), October 1995.

[10] R. Ponnusamy, J. Saltz, A. Choudhary, Y.-S. Hwang, and
G. Fox. Runtime support and compilation methods for user-
specified irregular data distributions. IEEE Transactions
on Parallel and Distributed Systems, 6(8):815–831, August
1995.

[11] K. A. Tomko and S. G. Abraham. Data and program restruc-
turing of irregular applications for cache-coherent multipro-
cessors. In 8th ACM International Conference on Supercom-
puting, Manchester, England. ACM, July 1995.

[12] J. Wu, R. Das, J. Saltz, H. Berryman, and S. Hiranandani.
Distributed memory compiler design for sparse problems.
IEEE Transactions on Computers, 44(2):737–753, 1995.

[13] L. H. Ziantz, C. C. Ozturan, and B. K. Szymanski. Run-time
optimization of sparse matrix-vector multiplication on simd
machines. In C. Halatsis, D. Maritsas, G. Philokyprou, and
S. Theodoridis, editors, PARLE 94 Parallel Architectures
and Languages Europe, Athens, Greece, volume 817 of Lec-
ture Notes in Computer Science, pages 313–322. Springer-
Verlag, July 1994.

