
Transient Traffic Congestion Control with Traveling Auctions

S. Yousaf Shah and Boleslaw K. Szymanski
Department of Computer Science and Network Science and Technology Center

Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
Email: {shahs9,szymansk}@cs.rpi.edu

Abstract—The use of market mechanisms to solve computer
science problems such as resource sharing, load distribution
and network routing, is gaining significant traction. In this
paper, we investigate new market mechanisms to solve the
problem of bandwidth sharing in wireless networks for tran-
sient traffic congestion often generated by event-driven packet
flows. Typically, such congestion is transient at each node
it arises since the bursts of data move following the event.
We first demonstrate that a previously proposed strategy that
greedily selects winners in repeated routing auctions is not
globally optimal in such a case. We also demonstrate, by
evaluating a lookahead mechanism for winner selection in the
corresponding auctions, that greedy algorithm approximates
optimal selection very closely. Then, we introduce and evaluate
a novel mechanism which we call Traveling Auctions to address
the problem of transient congestion. We experimentally show
that using Traveling Auctions mechanism improves the network
performance.

Keywords-Wireless Sensor Networks (WSNs); Quality of
Information (QoI); Auctions; Congestion

I. INTRODUCTION

Typically congestion control in communication networks
is based on a feedback loop from congested nodes to
the sources that limits the source transmission rates, when
appropriate. Since the feedback loop takes time to adjust the
rates, this approach works well only for stable flows. How-
ever, in many situations, congestion may arise from burst of
packets triggered by mobile events in the environment. These
events, and often the spot at which packets are generated,
move as the event evolves. A typical scenario may involve
traffic generated by people and the devices operating during
the rescue operation in a disaster stricken area. In such a
case, the packets sent by them may be prioritized by the
urgency assigned to the message that they carry. Moreover,
they can travel along the regular or ad hoc deployed wireless
network.

Congestion delays packets on their way to the destination,
which lowers QoI provided by the corresponding applica-
tion. Each application has a specific QoI function whose one
of the arguments is the delay of the information received at
the destination since its inception at the source. In this paper,
we use a simple QoI function that defines the loss of QoI
resulting from the delay of the packet during transmission
from the source to the destination as the product of this delay
and the packet priority. Our approach applies directly to any

application in which loss of QoI is a linear function of the
packet delay, and requires just straightforward modifications
for application in which the loss is monotonically non-
decreasing function of the delay.

In [1], the authors propose an auction mechanism for
resource allocation in WSNs. Whenever congestion occurs
on a node, it acts as an auctioneer and runs an auction
for the available transmission slot. Each packet bids its
predicted QoI loss that would result from not receiving the
next available transmission slot. By choosing bid values, the
auction can either minimize the total QoI loss for all appli-
cations, or equalize the QoI loss among all applications. In
auction mechanism proposed in [1], the packet with highest
bid or in other words with highest QoI loss wins auction
and is transmitted. A receiver-assisted congestion control
(RACC) mechanism, based on TCP is proposed in [2]. In
RACC the receiver estimates transmission rate based on
packet inter-arrival time at the receiver-end and notifies the
sender of the rate so that the sender adopts the rate to avoid
congestion. Buffer based mechanism to avoid congestion has
been proposed in [3]. In which each node maintains a buffer
state which is piggybacked to its neighbors. A node forwards
packet to the other node only if its buffer status is nonfull,
this way the whole network adopts to a rate that would not
create congestion. In [4], priority based congestion control
(PCCP) is proposed. PCCP protocol detects congestion using
its intelligent congestion detection (ICD) mechanism and
piggybacks implicit congestion notifications in the header
of data packets. ICD uses both packet inter-arrival time as
well as packet service times to detect congestion. PCCP
also has priority based rate adjustment (PRA) mechanism
in place in which each sensor node is given priority index,
and bandwidth assigned to nodes is proportional to their
priority index.

Above mentioned approaches (except [1]) use feedback
loops in one way or the other, some of them are also rate
limiting protocols. As explained earlier, such mechanisms
for congestion control are not feasible for event driven traffic
in WSN. Our approach, like [1], uses auctions to resolve
transient congestion at each node. Previously considered
approaches of this kind [1], considered each node in isolation
from others, and their greedy winner selection was optimal
if very long (theoretically infinite) streams of packets were
congested. In this paper, we show that in the case of

Bolek
Typewritten Text
IQ2s: Workshop on Information Quality and Quality of Service for Pervasive Computing, Lugano, Switzerland, March 19, 2012, Proc. 2012 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), IEEE Press, 2012, pp. 14-19. 

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text



limited length of packet streams, a lookahead based winner
selection can improve the results slightly, thanks to its
ability to accelerate gains as early as possible. At the same
time, the cost of lookahead rises quickly with the horizon
(number of future auctions considered) of lookahead and
its benefits decrease as the number of packets competing
for transmission in a congested node increases. Hence, our
results demonstrate that the greedy winner selection is an
excellent and simple approximation of the optimal selection.

To further address the challenges of transient congestion
resolution, we also introduce a traveling auction in which
its state at the currently congested node is piggybacked
in the transmission packets. Consequently, each neighbor
of the congested node can continue the current auction
in case congestion moves there. The main contribution of
this paper is a solution to the transient congestion problem
arising in wireless networks when the sources of streams of
packets move from node to node shifting their trajectories
and the congestion points of the traffic. We developed a
novel Traveling Auction mechanism in which the state of
auction execution transfers from node to node following the
congestion.

II. MOTIVATING SCENARIOS

As explained in the previous section, our approach is
based on traveling auction and applies to scenarios in
which congestion moves from node to node. Some of these
scenarios include (i) object tracking, (ii) unmanned vehicles
performing joint operation and communicating over wireless
network, and (iii) rescue workers using an ad-hoc wireless
network in a disaster stricken area exchanging messages of
various priorities with aid agencies, hospitals and general
public. All the aforementioned scenarios involve mobile
objects with prioritized data traffic in which an efficient
congestion resolution mechanism is needed to effectively
use the WSN bandwidth. In this paper, we demonstrate our
approach benefits in the scenario of a tracking application.

Consider a car chased by police; as the car moves along
its path in the sensor network, the sensor nodes sensing the
car generate bursts of data. As the followed and following
cars move forward, they enter into the sensing range of
new sensor nodes and exit the range of sensor nodes behind
them. Consequently, the bursts of packets are generated by
different sensor nodes as the cars continue the chase. These
bursts generate congestion on the routing nodes, with the
congestion moving from one routing node to another as the
bursts change their origins and trajectories. These bursts are
of short duration but produce intensive traffic.

In previously developed solutions, a static auction at a
congested node starts from scratch when the congestion
arises and does not take into account the times at which the
last packets of each application passed to the destination.
This makes the first round of sending packets round robin
as each application sends one packet out in the order of its

Figure 1. Congestion traveling along with the object

priority. Thus, packets with lower priorities may wait shorter
or longer for winning compared to the case in which the
congestion would stay at the previous node.

III. AUCTIONS FOR CONGESTION CONTROL

Auctions have proven to be useful in distributed resource
allocation. Auctions were used in [1] for transient conges-
tion. They use greedy winner selection in which the winner
of each auction is the packet with the highest QoI loss. Thus,
the greedy strategy considers the QoI loss only in the current
auction. However, when the streams of packets creating a
congestion in the given node are short, the greedy selection
may not be optimal.

We developed and evaluated lookahead mechanism for
winner selection in which we consider a sequence of
auctions, not just one, and find a sequence of winners
that reduce the QoI loss the most. Here is our motivation
for investigating the lookahead mechanism. Consider just
two applications, a1, a2 with single auction QoI loss of
s1 > s2 and the total accumulated loss at the current auction
l1 < l2, respectively. If s1 + l1 > s2 + l2, the greedy
selection of a winner in each auction yields a1, a2 and saves
2l1 + l2 + s1 + s2 of QoI loss, while the opposite order of
winners saves l1 + s1 + s2 + 2l2 of QoI loss. Yet, the latter
is larger than the former. This happens when a low priority
packet accumulates QoI loss just slightly above the loss of
a high priority packet. In general, Lookahead Strategy with
Horizon h finds the best sequence of winners in the current
and h future auctions and selects the first application in this
sequence as the winner of the current auction.

In this paper, the goal of an auctioneer is to minimize
the total QoI loss for all the applications. Let pi be the
priority of the application ai. This priority is a function of
the subjective measure of importance of the application and
objective measure of the content of the packet (e.g., in our
application that could be the speed of the object, direction
of its movement, etc.). We assume the TDMA MAC layer
protocol in our scenario with TDMA slot being large enough
to transmit one packet every time unit independently of the
time of the auction, but in general this may not be the case.
tmi denotes the time at which the packet of application i
currently competing in the auction was generated (in our
applications, this is the measurement time of the object).
tmpi is the packet origination time of the last packet for
application i that was transmitted by the node. Since we
assumed that the QoI loss caused by losing the next auction
is a linear function of the delay, the bid bi for the application



Figure 2. Sink replacing an old packet with a fresher one; tmp1 and
tmp2 are either the origination times or zeros whereas tm1 and tm2 are
the origination times of the packets of applications 1and 2. respectively.

ai represents this loss, so it is equal to:

bi = (tmi− tmpi)pitc (1)

If the QoI loss is a non-linear function of the packet delay,
the bid computation will be just a difference between the
predicted QoI loss with winning the current auction versus
this loss with losing the current auction and winning the next
one. Therefore, packets bidding in the auction calculate their
bids based on above mentioned parameters, that are known
at each node including priority (carried in packet) which is
specific to source application and highly impacts the bids.
In short, each packet contributes two application specific
factors to the formation of the bid, the application priority
and lateness of the packet.

From the above definition of QoI loss, it is clear that when
a new packet of the application for which we already have a
packet in the queue waiting to be delivered arrives, only the
packet with the latest origination time needs to be stored
and the older one can be discarded. When a new packet
replaces the old one for the same application, its bid grows
too because the (tmi−tmpi) increases. So, the more current
information sink has about the object the lower is the QoI
loss caused by delays. We understand that this replacement
of packets creates loss as we are skipping a packet but as
we can see from the figure (2) it is optimal decision at this
point. Figure (2) illustrates the QoI losses saved when the
latest available packet is delivered.

For lookahead with a horizon h, we need to calculate h
future bids for each application in addition to the current
bid. Winning the auction changes value of tmpi for the
subsequent auctions, so the QoI loss of application ai, and
therefore its bid in future auctions depends who was the
winner in previous auction. Moreover, it is also important
to know if the winning application will participate in the

future auctions at all, which will not be the case if the
application shifts its path and no longer routes the packets
via the current node. Even if the path continues through the
current node, in general the node cannot know when it will
receive next packet for this application and what origination
time that packet will carry. This means we need a mechanism
to predict the next possible tmi. In order to predict the future
tmi, we employed two techniques. The first one is based on
recent history and it computes the predicted origination time
of the future packet as:

tmit+k = tmit + k(tmit − tmit−1) (2)

where tmit−1 is the origination time of the packet of
application i just before the current packet was received at
the node. Equation (2) calculates the next possible tmit+k

for application i by adding previous inter-packet generation
delay observed at the node up to the current packet genera-
tion time. The other technique is based on packets received
per transmission slot and the computation in this case is:

tmit+k = tmit + ktc
Nmi

Nslots
(3)

Nmi is the number of packets received from this application
in the given time, and Nslots is the number of transmission
slots that arrived at the node during this time. Equation
(3) calculates the next possible tmit+k for application i
by adding average packets per slot to the current packet
generation time.

Our experiments show that history based approach gives
better results. The future bids are dependent on who is the
winner of each preceding auction. As we proved in [5],
by sorting all possible bids for the current auction, only
h highest bids can be potential winners for the first auction
in the sequence of h future auctions. Still, the number of
alternative winners in the auction followed by at most h
future auctions is limited only by 2h. Hence, the overhead
of lookahead with horizon h grows very quickly with h.

In the static auction discussed so far, each congested node
does not take into account the auction information on the
other nodes. Thus, every node when it becomes congested,
starts an auction based only on its local information. To
address this shortcoming, we developed traveling auctions
strategy in which the auction history travels along with the
congestion.

As discussed before, it is just the tmpi value that defines
the current QoI loss of the application, so to enable sharing
this value with the neighbors of the congested node, this
value is added to the header of each winner packet being
transmitted for the node. As a result, if the congestion and
consequently also the auction move to the neighboring node,
the node will be able to compute losses of all applications
correctly. Sharing of the auction state information is done via
each node overhearing its neighbors. When a node forwards
a packet to another node, all the neighbors of the sender



node listen to it, and read the packet’s header to check the
destination address of the packet against their own addresses;
nodes or a node to which the packet is forwarded receive it
(as the destination address of the packet and node’s address
matches), and rest of the nodes extracts the application
id and the tmpi of that packet, note that this is tmi of
the packet, it becomes tmpi for subsequent packets. It is
important to notice that this is not data level overhearing
but it leverages MAC level filtering to share the auction
state information which is less costly than application level
data overhearing. For our simulations, we have extended the
packet header in NS2 to include this additional information
there.

IV. PERFORMANCE EVALUATION

A. Testbed

To evaluate ‘Lookahead’ with horizon up to two, and
‘Traveling Auctions’ approaches, we implemented the object
tracking scenario using the Network Simulator NS2. We sim-
ulated a sensor network of 44 nodes with number of mobile
objects (nodes) varying between 2 and 4, each of which
was served by a separate application of the object tracking
algorithm. The sensing nodes were positioned at fixed points,
while the tracked objects were moving according to certain
mobility patterns to mimic real life objects moving in a
sensor network while being tracked by the sensing nodes.
We used NS2 native DSDV as routing protocol that routes
packets via the dynamically chosen shortest path to the
destination.

We have developed a traffic generator that is attached to
all sensing nodes. It generates customized UDP packets with
extended header containing scenario specific information,
such as the total number of applications, the associated appli-
cation id, the time of the packet creation, and the application
priority. Whenever the object enters the sensing range of a
node, the node starts generating object measurement packets
for the application associated with this object at a rate of 10
packets per second.

B. Evaluating Lookahead vs. Greedy Selection

We simulated three different mobility models: “Random
Waypoint Model (RWM)”, “Pursue Mobility Model (PMM)”
[6] and “Manhattan Grid Model (MGM)”. We generated the
mobility traces using BonnMotion tool [7]. We experimented
with these mobility models over the diverse set of priorities,
and with the number of objects varying from 2 to 4. We
set packet generation rate at the sensor node high enough to
create congestion somewhere downstream. The congested
nodes then run auction to find the winner for the next
transmission slot. The winner is selected in three different
ways: Greedy, Lookahead with h = 1 (LA-1) and h = 2
(LA-2). We ran simulation for 200 seconds and recorded
the sum of QoI losses for all applications at the sink.

Figure 3. Performance of Lookahead measured as percentage of greedy
performance under different mobility models

Table I presents the average QoI loss for all applications
under different mobility models for all objects.

Table I
AVERAGE QOI LOSS FOR APPLICATIONS UNDER DIFFERENT MOBILITY

MODELS.1

Objects LA-1 LA-2 Greedy Runs Mobility Model

2 1330 1357 1331 7 PMM
3 5247 5332 5267 7 PMM
4 7622 7683 7592 7 PMM
2 2029 2021 1982 7 RWP
3 5309 5403 5344 7 RWP
4 9095 8965 8933 7 RWP
2 2347 2388 2378 7 MGM
3 5119 5277 5135 7 MGM
4 8691 8662 8802 7 MGM

Figure 3 presents the average performance of lookahead
winner selection normalized to the greedy winner selection
under different mobility models. Since there is either very
little or no improvement from using lookahead versus the
greedy selection, we use the latter in Traveling Auctions
mechanism.

It is obvious from the results that there is no single
strategy which is optimal for all cases. Since the sensing
nodes generate packets only when they sense an object, the
generated traffic behavior is unpredictable. The results show
that by increasing the lookahead horizon, in some cases, we
can slightly improve the results. Yet, such slight improve-
ment triggers increase of computational overhead incurred
by lookaheads with larger horizons. Since continuation of
the current auction at the given node is never guaranteed (as
the congestion may move to another node at any time), the
added overhead may not improve the results. If the auctions
are running very long, LA-1 is better in terms of the avoided
QoI loss, but it requires the investment (non-optimal step
from the perspective of a single auction) which may be lost
if the traffic moves. We have developed a simulator in JAVA

1Priority sets: {(5,10), (4,16), (4,8), (9,36), (2,8), (3,6),(7,14)},
{(5,10,15), (4,16,36), (4,8,12), (9,36,81), (2,8,27), (3,6,9),(7,14,21)},
{(5,10,15,20), (4,16,36,64), (4,8,12,16), (9,36,81,144), (2,8,27,64),
(3,6,9,12),(7,14,21,28)}



to simulate the long running auctions and verify that LA-1 is
better in such situations. Whereas if there are fewer auctions
or stream of packets is finite, then simple greedy outperforms
lookahead mechanism. For the sake of space these results
are omitted here, but available at [5]. Luštrek and Bulitko
have also found in [8] that lookahead with the unit horizon
is the best for the real time path finding problems.

C. Evaluating Traveling Auction

We evaluated the Traveling Auction mechanism with
PMM and compared it with static greedy auction mechanism
under the same mobility model2.

Table II
CONFIGURATION PARAMETERS FOR TRAVELING AUCTIONS

Objects Bandwidth Packet Rate P.G P.Rec

2 200kbps 10 pkts/sec 5403 1304
3 200kbps 10 pkts/sec 8111 915
4 200kbps 10 pkts/sec 10801 947

Table II shows parameters used in experiments. The
columns ‘P.G’ and ‘P.rec’ represent the total number of
packets generated and received, respectively. Since the ob-
jects move from outside of the sensing range, they initially
travel through sparse portion of the field, and the number of
packets generated reflects that. In case of three applications,
the overlap of sensing ranges of nodes causes on average
1.36 packet generated for each objected sensed. Hence, with
200 seconds of simulation and 3 objects in range, there
would be 8160 packets, while actual number is 8111. Packets
received arrive on average with 200/915 =0.219 sec delay.
By design, packets leave each node every 0.1sec. so the
waiting time for arrival of the transmission slot at the node
ranges from 0 to 0.0975 with each transmission, so average
delay is 0.050674. The average number of hops recorded was
four and therefore delay is about 0.203 which is consistent
with the delay observed. We observed the same consistency
of expected and recorded results in the remaining cases of
two and four applications.

The figure 4 shows QoI loss under comparative strategies.
The no congestion, referred here as network losses, are
losses accumulated by all the applications because of non-
congested traffic delays and discontinuous measurements of
the target object movements. Therefore, the total QoI losses
caused by: (i) Non-continuous measurements: Depending
upon the frequency of measurement of the position of the
object, the application accumulates loss between two sub-
sequent measurements. Higher frequency of measurement
would lower the loss and vice versa. (ii) Non-congested
traffic delays: During the time when a packet traverses its
path from source to sink even under the non-congested

2We also experimented with lookahead as the winner selection strategy
for traveling auction but the greedy selection yielded better results.

Figure 4. QoI losses for different set of applications

Figure 5. Percentage of Traveling Auctions Gain for various sets of
priorities

network, the object measurement information carried by a
packet becomes outdated by the time this packet reaches
the sink. Longer the path from the source to destination,
larger is the loss incurred by the application. (iii) Congestion
delay: While there is congestion in the network, some of
the packets wait at the congested routing nodes as the
upcoming transmission slots are taken by the packets of
other applications. We can reduce this loss and thus the total
QoI loss by efficiently managing the order in which packets
of various applications are assigned incoming transmission
slots.

The network losses for two applications with priorities
(9,36) are shown in the figure 4. During the simulation, the
sink received 2000 packets. The positions of objects were
measured every 0.005s, so loss caused by the non-continuous
measurements was 0.005/2 ∗ 2000 ∗ (36 + 9) = 225.
Hence, the QoI loss due to the non-congested traffic delay
is 1033 − 225 = 808 and this bounds the delay that
was at least (1033-225)/2000/(36+9) = 0.009s and at most
(1033-225)/2000/(36+9)*2=0.018s. The delay measured in
the simulation was 0.012 sec., so consistent with the bounds.
In case of three applications with priorities (4,16,36), the
minimum cost that is caused by non-continuous measure-
ments is 0.005/2 ∗ 2000 ∗ (4 + 16 + 36) = 280 and caused
by the non-congested traffic delay is 1359−280 = 1079. The
corresponding bounds on network delay are 1079/2000/(4+
16 + 36) = 0.0096sec and 1079/2000/(4 + 16 + 36) ∗ 2 =
0.019sec which again is consistent with the measured delay
of 0.012 sec. The same consistency was observed for four
applications.

Auctions impact only congestion caused losses of QoI,



Figure 6. Average gains for different set of applications.3

so we measured how much higher were the Static Auction
QoI loss relative to Traveling Auction VoI loss using the
following formula,

Gain = 100 ∗ LSA− LTA

LTA− Loss Network
(4)

where LSA is the QoI loss in Static Auctions while LTA
is the QoI loss in Traveling Auctions.

As shown in figure 5, Static Auctions incur 45% higher
losses relative to Traveling Auctions. In order to affirm the
scale of performance gains, we conducted tests for various
priority sets for 2,3 and 4 mobile objects under the same
setup. Figure 6 shows average of performance improvements
for each number of mobile objects tested. The actual values
of losses are not presented here in the interest of space,
instead we computed the improvements for each individual
case and then took their average.

For optimal sharing of bandwidth in case of traveling con-
gestion, sensor nodes need to share information on auctions
that are held at the neighboring nodes to provide continu-
ity in congestion resolution. As we have shown, in such
highly bursty traffic situations StaticAuctions performs on
average up to 45% worst than the TravelingAuctions.
However, if the network is dense relative to the node’s
sensing range (so there are many neighbors in the sensing
range of an average node), then static auctions perform
better.

V. CONCLUSION

In this paper, we have investigated lookahead mechanism
for winner selection in auctions that are used for congestion
resolution in wireless networks. We have compared tradi-
tional greedy winner selection mechanism with lookahead
mechanisms introduced in this paper. We have also proposed
the new Traveling Auctions mechanism, in which the state of
the auction moves along with the congestion in the network
in order to minimize the total QoI loss. The performance
results show that the Traveling Auction improves routing
decisions and reduces the QoI loss in scenarios in which
high bursts of event driven data trigger intense but transient
congestion in wireless sensor networks. For future research,
we plan to investigate market based routing in which low

3Priorities: {(9,36), (2,8), (7,14), (6,12), (3,6), (4,16), (5,10)},{(5,10,15),
(2,4,9), (3,6,9), (7,14,21), (6,12,18), (4,16,36), (4,8,12)},{(5,10,15,20),
(2,4,9,16), (7,14,21,28), (6,12,18,24), (3,6,9,12), (4,16,36,64), (4,8,12,16)}

priority packets based on expected routing delays would
dynamically choose alternative but longer paths to the des-
tination. This will enable the low priority packets to avoid
competing with high priority packets on congested nodes for
the shortest paths and possibly reduce delivery delays.

VI. ACKNOWLEDGMENT

Research was sponsored by the Army Research Labora-
tory and was accomplished under Cooperative Agreement
Number W911NF-06-3-0001. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Labora-
tory, the U.S. Government, the UK Ministry of Defense, or
the UK Government. The US and UK Governments are au-
thorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

REFERENCES

[1] L. Chen, Z. Wang, B. Szymanski, J. Branch, D. Verma,
R. Damarla, and J. Ibbotson, “Dynamic service execution in
sensor networks,” The Computer Journal, vol. 53, no. 5, p.
513, 2010.

[2] K. Shi, Y. Shu, O. Yang, and J. Luo, “Receiver-assisted
congestion control to achieve high throughput in lossy wireless
networks,” Nuclear Science, IEEE Transactions on, vol. 57,
no. 2, pp. 491–496, 2010.

[3] S. Chen and N. Yang, “Congestion avoidance based on
lightweight buffer management in sensor networks,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 17, no. 9,
pp. 934–946, 2006.

[4] C. Wang, B. Li, K. Sohraby, M. Daneshmand, and Y. Hu, “Up-
stream congestion control in wireless sensor networks through
cross-layer optimization,” Selected Areas in Communications,
IEEE Journal on, vol. 25, no. 4, pp. 786–795, 2007.

[5] S. Y. Shah, “Use of auctions in wireless sensor
networks,” Master’s thesis, RPI, 2011. [Online]. Avail-
able: http://www.cs.rpi.edu/∼szymansk/theses/shah.ms.11.pdf
[Oct,10,2011]

[6] T. Camp, J. Boleng, and V. Davies, “A survey of mobility
models for ad-hoc network research,” Wireless Communica-
tions and Mobile Computing, vol. 2, no. 5, pp. 483–502, 2002.

[7] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, and
M. Schwamborn, “Bonnmotion: A mobility scenario
generation and analysis tool,” in Proceedings of the 3rd
International ICST Conference on Simulation Tools and
Techniques. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2010, pp.
1–10.

[8] M. Luštrek and V. Bulitko, “Lookahead pathology in real-
time path-finding,” in Proceedings of the National Conference
on Artificial Intelligence (AAAI), Workshop on Learning For
Search, 2006, pp. 108–114.




