
Utilizing Correlated Node Mobility for Efficient DTN

Routing

Eyuphan Buluta,b, Sahin Cem Geyika, Boleslaw K Szymanskia,c

aRensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180

Email:{bulute,geyiks, szymansk}@cs.rpi.edu
b2200 President George Bush Highway, Richardson, TX 75082

Email:ebulut@cisco.com
cSpo�leczna Akademia Nauk ul Sienkiewicza 9, 90-113 �Lódź, Poland

Abstract

In a delay tolerant network (DTN), nodes are connected intermittently and
the future node connections are mostly not known. Therefore, effective for-
warding based on limited knowledge of contact behavior of nodes is chal-
lenging. Most of the previous studies assumed that mobility of a node is
independent from mobility of other nodes and looked at only the pairwise
node relations to decide routing. In contrast, in this paper, we analyze the
temporal correlation between the meetings of each node with other nodes
and utilize this correlation for efficient routing. We introduce a new metric
called conditional intermeeting time (CIT), which computes the average in-
termeeting time between two nodes relative to a meeting with a third node.
Then, we modify existing DTN routing protocols using the proposed metric
to improve their performance. Extensive simulations based on real and syn-
thetic DTN traces show that the modified algorithms perform better than
the original ones.

Keywords: Delay Tolerant Networks, routing, efficiency, temporal
correlation.

1. Introduction

Delay tolerant networks (DTN) are wireless networks in which at any
given time instance, the probability that there is an end-to-end path from
a source to a destination is low due to the high mobility and low density
of the nodes in the network. Routing of messages in such a challenging

Preprint submitted to Pervasive and Mobile Computing September 14, 2013

*Manuscript
Click here to view linked References

DTN environment is achieved opportunistically by utilizing store-carry-and-
forward paradigm at each node. Several DTN routing algorithms based on
this paradigm have been proposed recently. In each, different techniques
(single-copy [1]-[5], multi-copy [6]-[8], erasure coding [9] [10]) with slightly
different goals have been utilized. A survey of DTN routing algorithms can
be found in [11].

Since DTNs consist of mobile agents that contact intermittently, recent
studies on DTN routing have focused on the analysis of real mobility traces
(human [12], vehicular [13] etc.) and utilized extracted characteristics of the
mobile objects in the design of forwarding algorithms for DTNs.

Reviewing these designs and analyses, we have made the following ob-
servations. First, the future meetings of nodes can be predicted from their
past relations using some distribution functions (e.g. log-normal [14] [15]).
Second, most of the previous routing protocols assume that meetings of a
node with other nodes are independent from each other. Some algorithms
(e.g. Bubblerap [19]) implicitly consider the dependency between the node
meetings thanks to their designs which use real traces, however, there is no
analysis and explicit usage of temporal correlation between the meetings of
two nodes with a third node. Third, the mobility of many real objects are
non-deterministic but periodic [22]. For example, in a cyclic MobiSpace, if
two nodes were frequently in contact at a particular time in previous cycles,
then they are likely to meet around the same time in the next cycle.

The above observations motivated us to study temporal correlation be-
tween the node meetings for designing more efficient routing algorithms.
Hence, we introduce a new link metric, conditional intermeeting time (CIT),
that computes the average intermeeting time between two nodes relative to
a meeting with a third node using only local knowledge of the past contacts.
Note that this definition makes more sense in the context of routing because
it refers to message holding time on a given node during message routing.

We analyze CIT and discuss when and why it is beneficial in providing
accurate information to nodes making routing decisions. Different than our
initial work [37], we also present statistical results from four different data
sets (RollerNet [15], Cambridge [28], Haggle [30], MIT [36]) which contain
the contact traces of real objects logged during real life experiments.

We then propose modifications to the existing DTN routing protocols us-
ing the proposed metric and demonstrate how their performance improves
as the result. First, for the algorithms which route messages over shortest
paths (SP) [23] [24], we propose to use CIT rather than standard intermeeting

2

times (SIT) and route the messages over conditional shortest paths (CSP).
Second, for the algorithms which make message forwarding decisions depend-
ing on a delivery metric (we call them metric-based forwarding algorithms),
we propose to use CIT as a secondary delivery metric and allow the forward-
ing of messages if and only if both the algorithm’s original delivery metric
and CIT agree to forward the message to the encountered node. Through
simulations, we show the benefit of proposed approach. In this extended
version, we added new simulation results and comparisons over our initial
work [37]. In addition to real DTN traces, we also utilized synthetic and
large-scale traces for simulations. Moreover, we added new results showing
the superiority of the proposed approach over other popular algorithms (i.e.,
SimBet and CREST) and added new graphs showing the effects of some im-
portant parameters (buffer space at nodes, message generation interval, and
total node count) on the results.

The remaining of the paper is organized as follows. In Section 2, we
describe the proposed metric (CIT) in detail and in Section 3, we provide its
analysis. In Section 4, we describe how it can be used to modify existing DTN
routing algorithms for performance improvement. In Section 5, we present
simulation results. Finally, we offer conclusions and outline the future work
in Section 6.

2. Conditional Intermeeting Time

Recently, the research community working on routing algorithms in DTNs
has focused on the analysis of real mobility traces to understand the main
characteristics of mobile objects. Several experiments in different environ-
ments (office [14], conference [30], city [28], skating tour [15]) with different
objects (human [12], bus [13]) and with variable number of attendants were
performed. From the analysis of the data sets collected during these exper-
iments, significant results about the aggregate and pairwise mobility char-
acteristics of real objects were obtained and different kinds of algorithms
using different metrics developed for efficient routing of messages in DTNs.
For example, in SimBet [18], a joint utility metric based on social similar-
ity and egocentric betweenness of nodes is used. In BubbleRap [19] two
rankings (global and local) is used to compute each node’s popularity (i.e.,
connectivity) in the local community and entire society. Routing of mes-
sages are then performed via nodes with high utility values. Moreover, in
LocalCom [20], a community-based epidemic forwarding scheme, which first

3

4 time units/cycle 3 time units/

2 time units
M

A

B

cycle

cycle

Figure 1: An example cyclic MobiSpace with a common motion cycle of 12 time units.

detects the community structure of the network and forwards the messages
to each community through gateways, is proposed.

Even though the previous studies modeled the node relations (i.e., inter-
meeting times) using different distributions (exponential [7] [31], log-normal [15])
and developed their routing metrics accordingly, they assumed that the meet-
ings of a node with other nodes is independent of each other. The future
meetings of two nodes are predicted looking at the meetings of only these
two nodes in the past. In [14], one additional attribute (the time passed since
the last meeting) is also taken into account for more accurate prediction.
However, as we show with statistics from real DTN traces, the meetings of a
node with other nodes may not be independent from each other (i.e., meet-
ings are correlated), thus, prediction of future node relations can be further
improved with the analysis of temporal correlation between node meetings.
In [5], each node establishes a community of nodes with whom it frequently
meets to use for routing decisions when this node meets a message carrier.
In contrast, in this paper, we consider a sequence of meetings of two specific
nodes and use the statistics about subsequent meetings of those nodes with
the destination to make routing decisions.

We introduce a new metric called conditional intermeeting time (CIT) to
define the node relations more precisely within the context of routing. This
metric computes the average intermeeting time between two nodes relative
to a meeting with an intermediate node using only the local knowledge of
the past contacts.

The proposed metric can provide higher accuracy of prediction of delivery
time, especially if the nodes move in a cyclic MobiSpace [22]. According
to the definition of a cyclic MobiSpace, if two nodes contacted frequently
at a particular time in previous cycles, the probability that they will be in

4

contact around the same time in the next cycle is high. In Figure 1, a sample
cyclic MobiSpace with three objects is illustrated. The fully repeating motion
cycle is 12 time units. In this example, the discrete probabilistic contacts
between A and M happen every 12 time units (1, 13, 25 ...) and the discrete
probabilistic contacts between A and B occur every 6 time units (2, 8, 14
...). When we consider the intermeeting time between nodes A and B, we
can expect that node A will forward its message to node B in 3 time units
(since message can arrive at A at any time within 6 sec), however CIT of A
with B based on the condition that it has met (received the message from)
node M lets us know that the message will be forwarded to node B within 1
time unit.

Algorithm 1 updateSIT (node m, time t)

1: if m is seen first time then

2: firstTimeAt[m] ← t
3: else

4: increment βm by 1
5: lastTimeAt[m] ← t
6: end if

7: for each neighbor i ∈ N do

8: τs(i) ← (lastTimeAt[i] − firstTimeAt[i]) / βi

9: end for

Each node in a DTN can compute its SIT and CIT with other nodes using
its contact history. In Algorithm 1, we show how a node, s, can compute these
metrics from previous node meetings. The notations we use in this algorithm
(and also throughout the paper) are listed below with their meanings:

• τA(B|M): Average time it takes for node A to meet node B after
meeting with node M . If B=M , the notation (in short τA(B)) shows
the standard intermeeting time (SIT) between nodes A and B.

• S: NxN matrix where S(i, j) is the sum of all samples of conditional
intermeeting times with node j relative to the meeting with node i.
Here, N is the neighbor count of current node (i.e., N(s) for node s).

• C: NxN matrix where C(i, j) is the number of all conditional inter-
meeting time samples with node j relative to meeting with node i.

5

Algorithm 2 updateCIT (node m, time t)

1: for each neighbor j ∈ N and j �= m do

2: start a timer tmj

3: end for

4: for each neighbor j ∈ N and j �= m do

5: for each timer tjm running do

6: S[j][m] += time on tjm
7: increment C[j][m] by 1
8: end for

9: if S[j][m] �= 0 then

10: τs(m|j) ← S[j][m] / C[j][m]
11: end if

12: delete all timers tjm
13: end for

• βi: Total number of meetings with node i.

To find the CIT τA(B|M), each time node A meets node M , it starts a
different timer for B. When it meets node B, it sums up the values of these
timers before deleting them. The value of τA(B|M) is then calculated by
dividing the current total of collected timer values by the number of timers
used so far. In Algorithm 2, we explain this procedure. Note that when
the node meets any node m, a timer is started for every other possible node
(lines 1-3). Since meeting with node m will also end the conditional meeting
time process for some other nodes, the corresponding timers whose clock has
started at meeting with other nodes but is scheduled to end at meeting with
m stop and their values are recorded (lines 4-8). CIT values are then updated
for all possible cases and the timers are deleted (lines 9-12). We can also use
a sliding window with an appropriate size over the past contacts [24] and
take into account the edge effects [13] to make the computation more local
and current. Moreover, we do not consider the contact durations in these
computations since inter-contact times are usually much longer than contact
times in real DTNs. However, if the last assumption does not hold, it is easy
to modify all computations accordingly.

Consider the sample meeting times of a node A with its neighbors B
and M in Figure 2. Node A meets with node B at times {5, 16, 25, 30} and
with node M at times {11, 14, 23, 34}. Following the procedure described
above, we find that τA(B|M) = (5+2+2)/3 = 3 time units and τA(M |B) =

6

A
B
5

M
11

M
14

B
16

M
23

B
25

B
30

M
34 time

6 units 7 units 4 units

9 units

5 units

2 units 2 units

0

Figure 2: Example meeting times of node A with nodes B and M . Upper and lower values
are used to compute τA(B|M) and τA(M |B), respectively.

(6 + 7 + 4 + 9)/4 = 6.5 time units while τA(B) = 8.33 time units and
τA(M) = 7.67 time units.

3. Analysis

In this section, we give the analysis of CIT and show why it is significant
in accurate prediction of future meetings within the context of routing.

Assume that node A has two different contacts, B and M , and assume
that the intermeeting time of node A with M is well represented by a random
variable XAM with the CDF DAM(x) and pdf dAM(x) = D′

AM(x).
Then, let XAB|M denote the random variable representing the CIT of A

with B under the condition that it has met M before meeting B, with CDF
DAB|M(x) and pdf dAB|M(x). Let also X t

(AM)B denote the random variable
of time between the current meeting of A with M and the next meeting of
A with B, with CDF Dt

(AM)B(x) and pdf dt(AM)B(x) given that t time units
has passed since the last meeting of A with B and current meeting of A and
M . Then:

τA(B|M) =

∫ ∞

t=0

dt(AM)BE[X t
(AM)B]dt

In general, we can write in the case of such meeting of A and M :

XAB|M = t+X t
(AM)B

Here, if A-M meeting is independent of A-B meeting, meaning that
DAB|M = DAB, then:

7

Dt
(AM)B(x) =

DAB(x+ t)−DAB(t)

1−DAB(t)

dt(AM)B(x) =
dAB(x+ t)

1−DAB(t)

Hence:

E[X t
(AM)B)] =

∫∞
x=0

xdAB(t+ x)dx

1−DAB(t)

Then, using [z(1 −D(z))]′ = 1−D(z)− zD′(z), we get:

E[X t
(AM)B] =

∫∞
z=t

(1−DAB(z))dz

1−DAB(t)

There have been several distribution functions studied in previous work to
model the pairwise intermeeting times. Using a distribution fitting software
(EasyFit [38]), we also checked the fitness of several distribution functions
including exponential, Pareto and log-normal distribution and observed that
intermeeting time (i.e., XAB) between nodes fits well with log-normal distri-
bution. The analysis here can be updated for other distribution functions
and is orthogonal to the distribution function assumed. In case of log-normal
distribution, we get:

E[X t
(AM)B] = eμ+

σ
2

2

1− erf
(

ln t−(μ+σ2)

σ
√
2

)
1− erf

(
ln t−μ

σ
√
2

) − t

where erf is the error function and μ and σ are mean and variance of XAB,
respectively.

Thus, if meeting of A with M is not correlated with meeting of A with B,
E[X t

(AM)B] depends on t. However, considering the behavior of people in real
life, temporal correlations often arise between A’s meetings with M and B
(so A-B meeting after A met M depends on A-M meeting time), yielding a
different dt(AM)B than it is in uncorrelated case. This is the case, for example,
when after A meets M , another stage of A’s journey starts and length of this
stage is largely independent of what happened earlier. Consider meetings of
a man who every morning goes from home to work. After meeting his family

8

members (while leaving home), he meets later his office peers. Yet, on the way
to his office, he meets the security guard at the gate of his workplace a few
moments before meeting his office peers. In other words, the meetings of this
man with his office peers are defined by the time when he met the guard but
independent of how long it took him to meet the guard after leaving home.
E.g, if the trip from the gate to the office is normally distributed with the
average and variance of 1 time unit, then X t

(AM)B ≈ N(1, 1) is independent of
t, the travel time of the man from home to the gate. Therefore, we compute
and use the average of the time passed from A-M meeting to A-B meeting
based on currently collected samples from encounter history.

Next, we present some statistics from available real DTN traces to show
(i) the advantage of CIT over SIT and (ii) temporal correlation between the
meetings of nodes.

For the first one, we found the answer of the question ‘What would the
average error in predicting the future meetings be if the nodes could know
their τA(B) and τA(B|M) values in advance?’. In SIT, for a given (A, B), this
refers to standard deviation (std) of SIT instances from their mean which is
τA(B). Similarly, in CIT, for a given (A, M , B) tuple, this refers to standard
deviation (std) of CIT instances from their mean which is τA(B|M). However,
to compute average of this error for all possible and different (A, B) (in SIT)
and (A, M , B) (in CIT) tuples, we computed the ‘relative standard deviation
(RSD)’, computed as std/mean, and took the weighted average (WA) of these
RSD values. More formally, WA-RSD for SIT is computed as follows:

WA-RSD(SIT) =

⎛
⎝
∑

∀A �=B

[
std(A,B)
τA(B)

|τA(B)|
]

∑
∀A �=B |τA(B)|

⎞
⎠

where, |τA(B)| denotes the instance counts used in computing the τA(B)
and std(A,B) denotes the standard deviation of these instances.

Similarly, for CIT, WA-RSD is computed as:

WA-RSD(CIT) =

⎛
⎝
∑

∀A �=M �=B

[
std(A,M,B)
τA(B|M)

|τA(B|M)|
]

∑
∀A �=M �=B |τA(B|M)|

⎞
⎠

To make these results statistically reliable, we only considered correspond-
ing tuples with instance counts higher than a threshold and looked at the

9

10 20 30 40 50 60 70
0

1

2

3

4

5

Instance count threshold

W
ei

gh
te

d
A

ve
ra

ge
 R

S
D

Haggle traces

SIT
CIT

10 20 30 40 50 60 70

0.6

0.8

1

1.2

Instance count threshold

W
ei

gh
te

d
A

ve
ra

ge
 R

S
D

RollerNet traces

SIT
CIT

10 20 30 40 50 60 70
0

1

2

3

4

Instance count threshold

W
ei

gh
te

d
A

ve
ra

ge
 R

S
D

Cambridge traces

SIT
CIT

10 20 30 40 50 60 70
0

1

2

3

4

5

Instance count threshold

W
ei

gh
te

d
A

ve
ra

ge
 R

S
D

MIT traces

SIT
CIT

Figure 3: Weighted average of relative standard deviation (RSD) for SIT and CIT in
different datasets.

change in their value for different thresholds as well. Figure 3 shows these
results for different thresholds in four different datasets. Clearly, WA-RSD
values of CIT metric are smaller than WA-RSD values of SIT metric in
each dataset. Only for RollerNet traces [15], the results get closer for some
thresholds. Consequently, these results show that CIT metric can provide
more accurate prediction than SIT metric for different environments.

To measure the temporal correlation between the meetings of nodes, we
compare τA(B|M) values for different M ’s. As the above analysis shows, if
A’s meetings with M is random, the E[X t

(AM)B] so the τA(B|M) should be
the same for different M ’s. To check if this is the case, we applied ANOVA
test on the CIT values of different M values. For each (A, B) pair, we found
τA(B|M0), τA(B|M1), . . . τA(B|Mk) values (and also all the instance values
used to compute each mean τA(B|Mi)) for all applicable Mi values (0 ≤ i ≤
k). Then, we applied ANOVA test to learn whether these τA(B|Mi) values
and also their instance value distribution differ from each other significantly
(with α = 0.05) for given pair (A, B). Table 1 shows the ratio of all (A,B)
pairs which pass this ANOVA test in different datasets. Clearly, the results
indicate that for remarkable amount of (A,B) pairs, CIT values computed

10

using different M values are significantly different from each other. This
indicates that the identity of met intermediate node (M) is significant (in
predicting the A’s future meeting with B) for all datasets. Thus, there is a
temporal correlation between the meetings of a node with other nodes. If
there were no such correlation, τA(B|M) would have been the same (or close)
for different M ’s for given pair (A, B), causing the failure in ANOVA tests.
In contrast, we observe that these values are significantly different from each
other1.

Instance Count Threshold Haggle RollerNet Cambridge MIT

10 96% 51% 64% 56%
20 95% 42% 58% 54%

Table 1: Ratio of all (A,B) pairs whose CIT values (τA(B|Mi)) for different Mis pass
ANOVA test.

4. Proposed Algorithms

In this section, we present two different applications of CIT to the existing
DTN routing algorithms. First, we look into the shortest path based routing
algorithms and propose to use conditional shortest paths to route messages.
Second, we propose to revise message forwarding decisions of metric-based
forwarding algorithms by including CIT.

4.1. Shortest Path based Routing

4.1.1. Overview

Shortest path routing (SPR) protocols for DTNs are based on the designs
of routing protocols for traditional networks. The links between each pair of
nodes are assigned a cost and messages are forwarded over the shortest paths
between the source and the destination. Furthermore, the dynamic nature
of DTNs is also addressed in these designs. Two of the common metrics
used to define the link cost are minimum expected delay (MED [23]) and
minimum estimated expected delay (MEED [24]). These metrics compute

1It might also be interesting to analyze the divergence of ANOVA test results in different
datasets and its impact on simulation results, which we will study in our future work.

11

the expected waiting time plus the transmission delay between each pair of
nodes. However, while the former uses the future contact schedule, the latter
uses only observed contact history.

In SPR, routing decision can be made: i) at source node, ii) at each hop,
and iii) at each contact with other nodes. The utilization of recent contact
information increases from the first to the last one improving the quality of
the forwarding decisions; however, more processing resources are used as the
routing decisions are made more frequently.

The suitability of SPR algorithms for DTNs and the scalability and com-
plexity of their designs have been already discussed in [23, 24], hence, in this
paper, we focus on the enhancements of the performance of SPR algorithms
achieved by utilizing our metric (CIT), rather than using SIT. To this end, in
the rest of this section, we show the necessary changes to the current designs
of SPR algorithms.

4.1.2. Network Model

We model a DTN as a graph G = (V ′, E ′) where the mobile nodes are
represented by vertices (V ′) and the possible connections between these nodes
are represented by the edges. Unlike previous DTN graph models, since CIT
considers node relations with respect to a third node, we define V ′ and E ′

sets in a different way. Given V is the set of all node names and N(i) denotes
the set of other nodes that meet with node i (i.e. neighbors of node i):

V ⊆ V × V and E ′ ⊆ V ′ × V ′ where,

V ′ = {(ij) | ∀j ∈ N(i)}

E ′ = {(ij , kl) | i = l}

where, w′(ij , kl) =
{

τi(k|j) if j �= k
τi(k) otherwise

4.1.3. Conditional Shortest Path Routing

Our algorithm basically finds conditional shortest paths (CSP) for each
source-destination pair and routes the messages over these paths. We define
the CSP < n0, n1, . . . , nd−1, nd > as follows:

CSP (n0, nd) = min

{
	n0

(n1|t) +

d−1∑
i=1

τni
(ni+1|ni−1)

}

Here, t represents the time that has passed since the last meeting of n0 with
n1 and 	n0

(n1|t) is the expected residual time to the next meeting of n0

12

and n1 given that they have not met in the last t time units. 	n0
(n1|t)

can be computed as in [14] with parameters of distribution representing the
intermeeting time between n0 and n1. It can also be approximated iteratively
from the observed intermeeting times of n0 and n1. Assume that n0 observed
k intermeeting times with n1 in the past. Let τ 1n0

(n1), τ 2n0
(n1),. . .τ

k
n0
(n1)

denote these values. Then, at time t, the iterative computation of 	n0
(n1|t)

can be defined formally as follows:

	n0
(n1|t) =

∑k

s=1 f
s
n0
(n1)

|{τ sn0
(n1) ≥ t }|

where,

f s
n0
(n1) =

{
τ sn0

(n1)− t if τ sn0
(n1) ≥ t

0 otherwise

If none of the k observed intermeeting times is bigger than t (this case is less
likely to occur as the contact history grows), 	n0

(n1|t) is set to 0, which is a
good approximation.

Each node forms the DTN using the aforementioned network model and
collects SIT and CIT information of other nodes via epidemic link state
protocol as it is described in the original study [24]. Note that, thanks to
the design of aforementioned network model which provides only valid CSP
paths between nodes, running Dijkstra’s or Bellman-Ford algorithm on the
current graph structure gives us the correct CSPs for each source destination
pair.

In Figure 4, we show a sample DTN graph where all mobile nodes A to
D meet with each other and we set the source node to A and destination
node to D (unused edges are not shown for brevity). Note that the graph
includes all possible paths from A to D and does not contain unlikely edges
like (CD, DA). Hence, only the correct τ values will be added to the path
calculation. To solve the CSP problem however, we add one vertex for source
S and one vertex for destination node D. We also add outgoing edges from S
to each vertex (iS) ∈ V ′ with weight 	S(i|t). Furthermore, for the destination
node, D, we only add incoming edges from each vertex ij ∈ V ′ with weight
τi(D|j) and from S with weight 	S(D|t).

Running Dijkstra’s shortest path algorithm on G′ given the source node
S and destination node D will give the shortest conditional path. In G,
|V ′| = O(|V |2) and |E ′| = O(|V 3|), thus, Dijkstra’s algorithm will run in
O(|V |3) (with Fibonacci heaps) while computing the original shortest paths
(with SIT and simple DTN graphs) takes O(|V |2).

13

BA

BC

CA

CB

AB

AC

DA

A (D|t)

A (C|t)

A (B|t)

C

(C | B)

C (B | A)

(D | B)

A

B
(A | C)

A
(D | B)

A
(D | C)

B
(D | C)

C
(D | A)

B
(D | A)

T

T

T

T

T

T

T

T

T

R

R

R

Figure 4: A sample DTN graph with 4 nodes where A is the source andD is the destination.

Using CIT instead of SIT only requires (over original design) extra space
to store the CIT values and additional processing, as complexity of running
Dijkstra’s algorithm increases from O(|V |2) to O(|V |3). We believe that in
current DTNs, wireless devices have enough storage and processing power
not to be unduly taxed with such an increase. Moreover, to lessen the bur-
den of collecting and storing link weights, an asynchronous and distributed
version [26] of the Bellman-Ford algorithm can be used.

4.1.4. Why CSPR offers better performance?

The difference between CSPR and SPR path definitions is that CSPR
defines the link weights based on the previous node while SPR does not. In
SPR, the path (SP) can be defined as:

SP (n0, nd) = min

{
	n0

(n1|t) +
d−1∑
i=1

τni
(ni+1)

2

}

After the first hop, since the message can reach the nodes at any time between
their interaction with other nodes, each link weight can be approximated as
τni

(ni+1)

2
. However, the link weight can better be defined via τni

(ni+1|ni−1). If
there is no temporal correlation between, say, n1’s meetings with n0 and n2,

then τn1
(n2|n0) converges to

τn1
(n2)

2
, but if such correction exists (which is

often the case as shown in statistics from real DTN traces) then these values

14

will be different and routing via CSPR will therefore be faster2.

4.2. Metric-based Forwarding Algorithms

4.2.1. Overview

A common method of routing in DTNs is to forward the message to
the encountered node that is more likely to meet with destination than the
current message carrier. However, making effective forwarding decisions in
single-copy based routing in DTNs is a challenging task. When two nodes
meet, one of them forwards a message to the other one if it decides that the
message will have a higher chance to be delivered to the destination at the
other node.

In previous work, depending on the observed contact history between
nodes, several metrics have been used to define the delivery quality of nodes.
Popular ones include encounter frequency [2], time elapsed since last en-
counter [16]-[17], residual time [14] and social similarity [18] [19].

4.2.2. Proposed Modification

In most of the previous work, meetings of a node with other nodes are
assumed independent from each other and the forwarding decision at the
encounter of two nodes is made depending on their individual relations with
the destination node. In some algorithms such as [2] [17], with additional
processing (i.e. applying transitivity) on pairwise meetings, more accurate
metrics are used to reflect the effect of other nodes on the delivery quality
of a node. However, these improvements can also be applied to all other
metrics, including the one introduced in this paper. Our contribution is the
introduction of a new metric having this property by default in its basic
definition.

To make forwarding decisions of these algorithms more effective, thus to
improve their performance, we propose to use CIT as an additional delivery
metric. That is, when two nodes meet, they will also compare their CIT
with destination (depending on the condition that they met each other). If

2It is should be noted that the values of τ function are approximated iteratively. How-
ever they are used to select the minimum delay paths, so the error of selection is bounded
by the error of approximation. In other words, if iterative averages are close to each other,
so are the real averages, thus wrong selection will have small impact on performance.
Moreover, such an error of selection arises in all routing methods using the iteratively
approximated averages. Thus, this error does not negate the improvements of CSPR.

15

the current carrier of the message learns that other node also has a shorter
remaining time (according to CIT) to meet the destination than itself, the
message is forwarded. This additional condition eliminates forwardings that
based on CIT became harmful and if executed would decrease the delivery
probability. Simulation results confirm this conclusion, as the delivery rates
are preserved and simply unbeneficial forwardings are not performed. There-
fore, more effective forwarding decisions are made so that the cost of message
delivery declines while the delivery ratio and average delay are maintained
(in some cases, even the delivery ratio increases and average delay decreases).

4.2.3. Why modification offers better performance?

With the addition of CIT as second forwarding condition, forwarding de-
cisions are made depending on both the pairwise node relations between A
and B (due to the metric of original algorithm) and also possible temporal
correlations between the meetings of A with nodes M and B. If there is
no such correlation, CIT often supports the forwarding if the original metric
also supports the forwarding. However, when this correlation is strong, CIT
offers more accurate prediction and it may indicate that at the time of the
meeting the forwarding is no longer beneficial. Thus, the statistically harmful
forwarding decisions without considering possible correlations are prevented.
Even though addition of CIT makes modified algorithms more selective, the
messages are forwarded to or stay with the nodes which have higher deliv-
ery probability at the time of the meeting with node M3. Thus, delivery
performance stays similar or improves while the cost (i.e., the number of
forwardings) decreases, yielding better routing efficiency.

5. Performance Evaluation

To evaluate the performance of proposed algorithms, we have built a
Java based custom DTN simulator. It uses either the traces of real objects
from real DTN environments or the traces which are built synthetically. The
network parameters (number of nodes etc.) are set according to the traces
used.

3Note that the path to delivery in modified algorithms can be totally different than the
path in original algorithms. In original algorithm A may forward the message to M1 but
in modified version, A may skip M1 due to the unsatisfied CIT condition and later forward
the message to M2 which satisfies both conditions. The remaining paths of the message
towards the destination in both cases are likely to continue to be partially disjoint.

16

5.1. Algorithms in Comparison

We compared existing DTN algorithms with their CIT-using modified
versions. First, we compared Shortest Path Routing (SPR) with Condi-
tional Shortest Path Routing (CSPR) which is described in Section 4.1.3.
Then, we compared the existing and revised versions of three metric-based
DTN routing algorithms: Prophet [2], Fresh [16] and SimBet [18]. In the
revised versions of these algorithms (referred to as C-Prophet, C-Fresh and
C-SimBet to underline that they use CIT), A forwards the message to B if
τA(D|B) > τB(D|A) is also satisfied (in addition to algorithm’s own forward-
ing condition). In the graphs, we also give the results obtained by Epidemic
Routing [6] since it achieves the optimum delivery ratio and delay (at high
cost, however).

5.2. Data Sets

For the main simulations, we used three real and one synthetic DTN
traces. Real traces are from RollerNet [15], Cambridge [28] and Haggle [30]
datasets where Bluetooth sightings between respectively 62, 36 and 41 user
mobile devices are recorded. Further details of these traces can be found
in crawdad archive [29]. Synthetic traces are generated using a community-
based mobility model which is similar to the models in [20, 21, 25]. In a 1000
units by 1000 units square region, we generated Nc randomly located non-
overlapping community regions (home, work, school etc.) of size 100 units
by 100 units and distributed Np nodes (i.e. people) to these community
regions. For each node, we randomly assigned V communities to visit (i.e.
commonly visited places for a person in a day). Each node first selects a
random point within the next community region in its list, assigns a random
speed in range [Vmin, Vmax] and moves towards the target point with that
speed. Once it reaches that point, it randomly assigns a visit duration in
range [Tmin, Tmax] and randomly walks within the community region for that
visit duration. Once that duration expires, it moves to the next community
in its list in a similar way. Each node visits all the communities in its list
as indicated, then once all of them are done (i.e. end of day), they again
start the same process and start visiting the communities in their list. While
nodes are moving, we record the meetings between nodes assuming they
have a transmission range of R. The default values for the parameters are
Nc=10, Np=50, V=5, Vmin=10 units, Vmax=50 units, Tmin=20 time units,
Tmax=50 time units. However, we also looked at the effects of different values

17

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time (min)

M
e

ss
a

g
e

 d
e

liv
e

ry
 r

a
tio

SPR
CSPR
Epidemic

(a) RollerNet traces

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Time (day)

M
e

ss
a

g
e

 d
e

liv
e

ry
 r

a
tio

SPR
CSPR
Epidemic

(b) Cambridge traces

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Time (day)

M
e

ss
a

g
e

 d
e

liv
e

ry
 r

a
tio

SPR
CSPR
Epidemic

(c) Haggle traces

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Time units

M
e

ss
a

g
e

 d
e

liv
e

ry
 r

a
tio

SPR
CSPR
Epidemic

(d) Synthetic traces

RollerNet Cambridge Haggle Synthetic
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Av

er
ag

e
co

st
 p

er
 m

es
sa

ge

SPR
CSPR

(e) Average Cost

RollerNet Cambridge Haggle Synthetic
0

0.1

0.2

0.3

0.4

0.5

0.6

R
ou

tin
g

Ef
fic

ie
nc

y

SPR
CSPR

(f) Routing Efficiency

Figure 5: Comparison of SPR and CSPR: Message delivery ratio (a-d), Cost (e) and
Routing Efficiency (f).

of parameters in simulations. We also used large scale WiFi traces [34] to
evaluate the performance of the proposed approach in large scale networks.

5.3. Simulation Results

To collect several routing statistics, we have generated traffic on the afore-
mentioned traces. For each simulation run, after a warm up period4 (20%
of the data), we generated 5000 messages from a random source node to a
random destination node at each t seconds. In RollerNet, since the duration
of experiment is short, we set t = 1s, but for Cambridge and Haggle data
sets, we set t = 1min and t = 30s, respectively. For synthetic trace, we set
t = 10 time units. Besides this single difference, we compare all algorithms
in the same conditions.

4During warm up period, nodes build some encounter history to compute their initial
CIT values. After the warm up period, as the messages are received and new meetings
happen, CIT values are updated in parallel and the forwarding decisions are performed
using the updated CIT values.

18

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time (min)

M
e

ss
a

g
e

 d
e

liv
e

ry
 r

a
tio

Prophet
C−Prophet
Fresh
C−Fresh
SimBet
C−SimBet
Epidemic

(a) Delivery ratio

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

Time (min)

A
ve

ra
g

e
 C

o
st

Prophet
C−Prophet
Fresh
C−Fresh
SimBet
C−SimBet

(b) Average cost

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Time (min)

R
o

u
tin

g
 E

ff
ic

ie
n

cy

(c) Routing efficiency

Figure 6: Comparison using RollerNet traces

For main simulations, we assume that the nodes have enough buffer space
to store every message they receive5, the bandwidth is high and the contact
durations of nodes are long enough to allow the exchange of all messages
between nodes. These assumptions are reasonable in view of capabilities of
today’s technology and are also used commonly in previous studies [27, 31].
Any change in the current assumptions is expected to affect the performance
of compared algorithms in the same way since they use one copy of the
message. Moreover, we used a simplified slotted CSMA MAC model as in [7].
We ran each simulation 10 times with different seeds and in each run, we
collect statistics by running each algorithm on the same set of messages. All
results plotted in figures show the averages of results obtained in all runs.

5.3.1. Comparison of CSPR and SPR

Figure 5(a) shows6 the delivery ratios achieved in CSPR and SPR al-
gorithms with respect to time (i.e., TTL of messages) in RollerNet traces.
Clearly, CSPR algorithm delivers more messages to their destinations than
SPR algorithm. Moreover, it achieves lower average delivery delay than SPR
algorithm. For example, CSPR delivers 80% of all messages after 17 minutes
with an average delay of almost 6 minutes, while SPR achieves the same
delivery ratio only after 41 minutes and with an average delay of 12 minutes.
Moreover, as it is shown in Figure 5(e), average costs in SPR and CSPR are
very close (1.48 and 1.52 respectively) to each other (and much smaller than
the average cost in epidemic routing which is around 25).

5The largest number of messages in a node buffer over all simulations was 120 messages,
so in the order of 12Mb, well below the buffer space in modern wireless devices.

6Error bars are not shown since they are so small.

19

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Time (day)

M
e

ss
a

g
e

 d
e

liv
e

ry
 r

a
tio

Prophet
C−Prophet
Fresh
C−Fresh
SimBet
C−SimBet
Epidemic

(a) Delivery ratio

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

7

8

Time (day)

A
ve

ra
g

e
 C

o
st

Prophet
C−Prophet
Fresh
C−Fresh
SimBet
C−SimBet

(b) Average cost

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

Time (day)

R
o

u
tin

g
 E

ff
ic

ie
n

cy

(c) Routing efficiency

Figure 7: Comparison using Cambridge traces

We also observe better delivery ratios achieved by CSPR algorithm in
Cambridge and Haggle traces in Figure 5(b) and Figure 5(c), respectively.
In Cambridge traces, after 6 days, CSPR delivers 78% of all messages with an
average delay of 2.6 days, however SPR can only deliver 62% of all messages
to their destination with an average delay of 3.2 days. Moreover, average
costs in SPR and CSPR are 1.73 and 1.78 respectively while it is around 16
in epidemic routing. Similarly, in Haggle traces, with an average cost close
to each other, CSPR delivers 87% of all messages by the end of simulation
whereas SPR can only achieve 78% delivery ratio. The results with synthetic
data in Figure 5(d) also support the results based on real traces. While SPR
delivers 65% of messages, CSPR delivers 82% of them when TTL of messages
is set to 500 time units.

Figure 5(f) compares the routing efficiency [32] of SPR and CSPR in all
four traces. It shows an increase of 10%-22% in routing efficiency with the
usage of CIT. However, if we compare the percentage of undelivered messages
in these algorithms that are delivered in Epidemic routing, we can observe a
higher performance increase. For example in Haggle traces, Epidemic routing
delivered 94% of all messages. CSPR lost only 7% of these messages, while
SPR lost 16% of them. Hence, CSPR achieved over 55% improvement over
SPR.

5.3.2. Evaluation of modified metric-based algorithms

In Figure 6(a), we show the delivery ratios achieved in RollerNet traces.
Clearly, C-Prophet and C-Fresh provide higher delivery ratio than their orig-
inal versions but C-SimBet achieves similar delivery ratio as SimBet. More-
over, as Figure 6(b) shows, average cost is lower for the modified algorithms.
For example, C-Prophet delivers 90% of all messages after 23 minutes with

20

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Time (day)

M
e

ss
a

g
e

 d
e

liv
e

ry
 r

a
tio

Prophet
C−Prophet
Fresh
C−Fresh
SimBet
C−SimBet
Epidemic

(a) Delivery ratio

0.5 1 1.5 2
0

5

10

15

20

Time (day)

A
ve

ra
g

e
 C

o
st

Prophet
C−Prophet
Fresh
C−Fresh
SimBet
C−SimBet

(b) Average cost

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

Time (day)

R
o

u
tin

g
 E

ff
ic

ie
n

cy

(c) Routing efficiency

Figure 8: Comparison using Haggle traces

average delay of 7.8 minutes and average cost of 4.83 hops. However, the
original Prophet reaches the same delivery ratio only after 33 minutes with
average delay of 13.5 minutes and average cost of 17.02. A similar situation
is also observed between C-Fresh and Fresh, and C-SimBet and SimBet. As
a result, over 100% increase in C-Prophet and C-Fresh, and around 30%
increase in C-SimBet is achieved in routing efficiency (Figure 6(c)).

When we look at the results obtained from Cambridge and Haggle traces
in Figure 7 and Figure 8, we observe a different improvement. As it is seen
in Figure 7(a) and Figure 8(a), revised and original versions of all algorithms
have similar delivery ratios (and therefore similar average delays). However,
as Figure 7(b) and Figure 8(b) show, average costs in modified versions are
lower than they are in the original ones. This shows that when CIT is used
as an additional delivery metric, the nodes choose better next hops so that
the cost decreases while still keeping the original delivery ratio. Therefore,
again the routing efficiency (Figure 7(c) and 8(c)) is increased in all revised
algorithms remarkably. The results with synthetic data in Figure 9 also
demonstrates the superiority of revised algorithms. More (in C-Prophet and
C-Fresh) or at least the same number of messages (in C-SimBet) are delivered
with lower cost when compared to the original algorithms. From the above
results, we observe the benefit of CIT in metric-based forwarding algorithms
clearly.

5.3.3. Effects of Simulation Parameters on Results

We evaluate here the impact of some parameters on the results. First,
we look at the scenarios where the buffer space at nodes is limited. Assum-
ing that nodes use FIFO buffer management scheme, we measured routing
efficiency improvements delivered by the proposed metric over the original

21

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Time units

M
e

ss
a

g
e

 d
e

liv
e

ry
 r

a
tio

Prophet
C−Prophet
Fresh
C−Fresh
SimBet
C−SimBet
Epidemic

(a) Delivery ratio

0 100 200 300 400 500
0

2

4

6

8

10

12

14

16

Time units

A
ve

ra
g
e
 C

o
st

Prophet
C−Prophet
Fresh
C−Fresh
SimBet
C−SimBet

(b) Average cost

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Time units

R
o

u
tin

g
 E

ff
ic

ie
n

cy

(c) Routing efficiency

Figure 9: Comparison using Synthetic traces

algorithms. Figure 10(a) shows the results for different buffer sizes in the
range of [15-100] messages (in Cambridge traces). For these simulations we
kept the message generation interval t=1 min and TTL=4 days. The results
show that in the modified versions of algorithms, the increase in the routing
efficiency grows as the buffer space increases. Moreover, the increase con-
verges to a constant value after sufficient buffer spaces is allocated. CSPR,
C-SimBet, C-Fresh, and C-Prophet offer 22%, 26% 48% and 130% increase
in the routing efficiency over their original algorithms, respectively.

In Figure 10(b), we observe similar results with different message gen-
eration intervals. As the messages are generated more frequently, due to
buffer overflow, some messages are lost. However, the routing efficiency of
algorithms is still remarkably increased with modified versions. Finally, we
changed the node count in the network (in synthetic traces) and looked at the
effect of node count on results. Figure 10(c) clearly shows that the increase
in routing efficiency rises as the node count increases. This is because in
synthetic data, temporal correlation between the meetings of nodes increases
due to higher number of nodes in each community. Thus, CIT provides more
accurate information about node relations.

5.3.4. Comparison with Closest Related Work

Even though several DTN routing algorithms have been proposed in lit-
erature, they usually assume that the meetings of a node with other nodes
are independent and identically distributed. The closest study to our work
is in [14], where a new metric, conditional residual time (CREST), which
computes the remaining time for the meetings of two nodes based on the
condition that t time units has passed since their last encounter, is proposed.
However, the relations with other nodes is still not considered in this compu-

22

20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Buffer space (messages)

P
e

rc
e

n
ta

g
e

 I
n

cr
e

a
se

 in
 R

o
u

tin
g

 E
ff
ic

ie
n

cy

Message generation interval = 1 min, Cambridge traces

SP −> CSP
Prophet −> C−Prophet
FRESH −> C−FRESH
SimBet −> C−SimBet

(a) Effect of buffer space

0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

Message generation interval (min)

P
e

rc
e

n
ta

g
e

 I
n

cr
e

a
se

 in
 R

o
u

tin
g

 E
ff
ic

ie
n

cy

Buffer space = 100 messages, Cambridge traces

SP −> CSP
Prophet −> C−Prophet
FRESH −> C−FRESH
SimBet −> C−SimBet

(b) Effect of message gener-
ation interval

30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

Total node count

P
e

rc
e

n
ta

g
e

 I
n

cr
e

a
se

 in
 R

o
u

tin
g

 E
ff
ic

ie
n

cy

Message generation interval = 10 time units, Synthetic traces

SP −> CSP
Prophet −> C−Prophet
FRESH −> C−FRESH
SimBet −> C−SimBet

(c) Effect of node count

Figure 10: Extensive Results

 0

 5

 10

 15

 20

 25

 30

 35

 40

RollerNet Haggle Cambridge Synthetic

Im
pr

ov
em

en
t i

n
R

ou
tin

g
Ef

fic
ie

nc
y

(%
)

(a) Improvement over
CREST

1000 1500 2000 2500 3000
0

10

20

30

40

50

60

Node count

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 R
ou

tin
g

Ef
fic

ie
nc

y

SP−>CSP
Prophet−>C−Prophet
Fresh−>C−Fresh
Simbet−>C−Simbet

(b) Results with WiFi traces

Figure 11: Results showing a) the comparison with CREST and b) the performance in
WiFi traces.

tation and meetings of a node with other nodes is assumed independent. In
case of temporal correlation between the meetings of a node with other nodes,
CIT can predict the remaining time to the next meeting of nodes more accu-
rately, while CREST cannot differentiate the cases where two different nodes
are met at the same elapsed time since the last meeting with destination and
yields less accurate prediction. Figure 11(a) shows how much improvement
CIT can achieve over CREST while maintaining (sometimes increasing) the
delivery rate in all traces. The results clearly show the superiority of CIT
over CREST with an improvement in the range of 20%-37%.

5.3.5. Scalability of Proposed Approach

We also evaluated the performance of the proposed approach in a large
scale network. Due to lack of real DTN traces with many nodes, we used
a large scale dataset of WiFi connection traces [34]. The traces contain

23

587782 user sessions for 69689 (distinct) users, which were collected from
206 hotspots for three years. We assumed that the users that are connected
to the same hotspot can communicate with each other to obtain the meetings
(i.e. communication opportunity) of nodes similar to the DTN environment.
There are many users which appear a few times in the dataset thus their
meeting counts with other nodes is very small. Therefore, we first identified
the top 1000, 2000 and 3000 nodes having the most meetings and utilized
the meeting history that occur among these nodes for the evaluation of the
proposed approach. As the Figure 11(b) shows, the modified versions of al-
gorithms has much better routing efficiency (with similar or higher delivery
rate) compared to the original algorithms. The increase achieved via modi-
fied algorithms is smaller than the increase in routing efficiency shown in the
results with other datasets. This can be due to the difference of WiFi traces
than DTN traces, however, the results show that proposed approach can pro-
vide enough improvement even in large scale networks. CSPR, C-SimBet,
C-Fresh, and C-Prophet algorithms offer 8%, 10% 17% and 30% increase on
the average in the routing efficiency over their original algorithms, respec-
tively.

6. Conclusion and Future Work

In this paper, we focused on the routing problem in delay tolerant net-
works (DTN). First, we introduced a new metric called conditional inter-
meeting time (CIT) which is the average time that passes from the time a
node meets with a neighbor until the time it meets another one. Next, we
presented an analysis of this metric showing why it can improve represen-
tation accuracy of node relations. Then, we looked at the effects of this
metric on existing DTN routing algorithms. To this end, we modified their
current designs to enable them to use CIT. Finally, through extensive simu-
lations based on both the real DTN traces and synthetic mobility traces, we
evaluated the modified algorithms and demonstrated their superiority over
original ones.

In our future work, we plan to extend the definition of CIT to include
more than one meeting in the contact history. To achieve this, we plan to use
probabilistic context free grammars (PCFG) and the construction algorithm
presented in [35].

[1] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, Efficient rout-

24

ing in intermittently connected mobile networks: The single-copy case,
IEEE/ACM Transactions on Networking, vol. 16(1), Feb. 2008.

[2] A. Lindgren, A. Doria, and O. Schelen, Probabilistic routing in intermit-
tently connected networks, SIGMOBILE Mobile Computing and Com-
munication Review, vol. 7(3), 2003.

[3] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, MaxProp: Rout-
ing for Vehicle-Based Disruption- Tolerant Networks, In Proc. IEEE
Infocom, April 2006.

[4] C. Mascolo, and M. Musolesi, CAR: Context-aware Adaptive Routing
for Delay Tolerant Mobile Networks, in IEEE Transactions on Mobile
Computing. Vol. 8(2), pp. 246-260. February 2009.

[5] E. Bulut, and B. K. Szymanski, Exploiting Friendship Relations for Effi-
cient Routing in Mobile Social Networks, IEEE Transactions on Parallel
and Distributed Systems, 23(12) 2012, pp. 2254-2265.

[6] A. Vahdat and D. Becker, Epidemic routing for partially connected ad
hoc networks, Duke University, Tech. Rep. CS-200006, 2000.

[7] T. Spyropoulos, K. Psounis,C. S. Raghavendra, Efficient routing
in intermittently connected mobile networks: The multi-copy case,
IEEE/ACM Transactions on Networking, 2008.

[8] A. Balasubramanian, B. N. Levine, A. Venkataramani, Replication Rout-
ing in DTNs: A Resource Allocation Approach, IEEE Transactions on
Networking, Vol. 18(2), April 2010.

[9] Y. Wang, S. Jain, M. Martonosi, and K. Fall, Erasure coding based rout-
ing for opportunistic networks, in Proc. of ACM SIGCOMM workshop
on Delay Tolerant Networking (WDTN), 2005.

[10] E. Bulut, Z. Wang and B. K. Szymanski, Cost Efficient Erasure Cod-
ing based Routing in Delay Tolerant Networks, in Proc. of the ICC,
Capetown, South Africa, May 2010.

[11] I. Psaras, L. Wood and R. Tafazolli, Delay-/Disruption-Tolerant Net-
working: State of the Art and Future Challenges, Technical Report,
University of Surrey, UK, 2009.

25

[12] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott,
Impact of Human Mobility on the Design of Opportunistic Forwarding
Algorithms, in Proc. of INFOCOM, 2006.

[13] X. Zhang, J. F. Kurose, B. Levine, D. Towsley, and H. Zhang, Study of a
Bus-Based Disruption Tolerant Network: Mobility Modeling and Impact
on Routing, In Proc. of ACM MobiCom, 2007.

[14] S. Srinivasa and S. Krishnamurthy, CREST: An Opportunistic Forward-
ing Protocol Based on Conditional Residual Time, in Proc. of SECON,
2009.

[15] P. U. Tournoux, J. Leguay, F. Benbadis, V. Conan, M. Amorim, J. Whit-
beck, The Accordion Phenomenon: Analysis, Characterization, and Im-
pact on DTN Routing, in Proc. of Infocom, 2009.

[16] H. Dubois-Ferriere, M. Grossglauser, and M. Vetterli, Age Matters: Ef-
ficient Route Discovery in Mobile Ad Hoc Networks Using Encounter
Ages, In Proc. of ACM MobiHoc, 2003.

[17] T. Spyropoulos, K. Psounis, and C. Raghavendra, Spray and Focus: Ef-
ficient Mobility-Assisted Routing for Heterogeneous and Correlated Mo-
bility, In Proc. of IEEE PerCom, 2007.

[18] E. Daly and M. Haahr, Social Network Analysis for Information Flow in
Disconnected Delay-Tolerant MANETs, in IEEE Transactions on Mobile
Computing, vol. 8(5), May, 2009.

[19] P. Hui, J. Crowcroft, and E. Yoneki, BUBBLE Rap: Social Based For-
warding in Delay Tolerant Networks, In Proc. of ACM MobiHoc, 2008.

[20] F. Li, J. Wu, LocalCom: A Community-Based Epidemic Forwarding
Scheme in Disruption-tolerant Networks, in Proc. of IEEE Secon 2009.

[21] W. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy, Modeling time
variant user mobility in wireless mobile networks, in IEEE INFOCOM,
2007.

[22] C. Liu and J. Wu, Practical Routing in a Cyclic MobiSpace, In
IEEE/ACM Transactions on Networking, vol.19(2), April, 2011.

26

[23] S. Jain, K. Fall, and R. Patra, Routing in a delay tolerant network, in
Proc.of ACM SIGCOMM, Aug. 2004.

[24] E. P. C. Jones, L. Li, and P. A. S. Ward, Practical routing in delay toler-
ant networks, in Proc. of ACM SIGCOMM workshop on Delay Tolerant
Networking (WDTN), 2005.

[25] T. Spyropoulos, K. Psounis,C. S. Raghavendra, Performance Analysis
of Mobility-assisted Routing, In Proc. of MobiHoc, 2006.

[26] D. Bertsekas, and R. Gallager, Data networks (2nd ed.), 1992.

[27] C. Liu and J. Wu, On Multicopy Opportunistic Forwarding Protocols
in Nondeterministic Delay Tolerant Networks, in IEEE Transactions on
Parallel Dist. Syst., 23(6): 1121-1128, 2012.

[28] J. Leguay, A. Lindgren, J. Scott, T. Friedman, J. Crowcroft and P. Hui,
CRAWDAD data set upmc/content (v. 2006-11-17), downloaded from
http://crawdad.cs.dartmouth.edu, 2006.

[29] CRAWDAD data set, http://crawdad.cs.dartmouth.edu..

[30] A European Union funded project in Situated and Autonomic Commu-
nications, www.haggleproject.org.

[31] E. Bulut, Z. Wang, and B. Szymanski, Cost-Effective Multi-Period
Spraying for Routing in Delay Tolerant Networks, in IEEE/ACM Trans-
actions on Networking, Vol. 18(5), Oct. 2010.

[32] J. M. Pujol, A. L. Toledo, and P. Rodriguez, Fair routing in delay tol-
erant networks, in Proc. of Infocom, 2009.

[33] S. Jain, M. Demmer, R. Patra, K. Fall, Using redundancy to cope with
failures in a delay tolerant network, in Proc. of ACM Sigcomm 2005.

[34] M. Lenczner, B. Grgoire and F. Proulx, CRAWDAD trace
set ilesansfil/wifidog/session (v. 2007-08-27), downloaded from
http://crawdad.cs.dartmouth.edu/ilesansfil/wifidog/session, July, 2013.

[35] S. Geyik, E. Bulut and B. Szymanski, Grammatical Inference for Mod-
eling Mobility Patterns in Networks, accepted to appear in IEEE Trans-
actions on Mobile Computing (TMC), 2012.

27

[36] N. Eagle, A. Pentland, and D. Lazer, Inferring Social Network Structure
using Mobile Phone Data, in Proc. of National Academy of Sciences,
106(36), pp. 15274-15278, 2009.

[37] E. Bulut, S. Geyik and B. Szymanski, Efficient Routing in Delay Tol-
erant Networks with Correlated Node Mobility, in Proc. of MASS, Nov,
2010.

[38] EasyFit: Distribution Fitting Software, http://www.mathwave.com/,
last accessed in August, 2013.

28

