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Abstract. Prevailing hypotheses concerning origins of life assume that
rare configurations of prebiotic polymers allowed their accurate replica-
tion, the precursor of biological reproduction. In particular, the ’RNA
world” hypothesis equates the linear sequence of an RNA’s nucleotides
with its genotype. Individual RNA molecules may fold into different 3-
dimensional structures, or conformers. Each such folding of a given geno-
type specifies a different phenotype. These phenotypes exhibit chemical
properties that may result in replication of the genotype. Each pheno-
type has a fitness depending on replication rate, and so the phenotype
distribution would be subject to natural selection. To model replication
and extinction of prebiotic polymers, we combine computational and bi-
ological approaches. We consider a single genotype that can fold into two
different phenotypes. Each phenotype’s capacity to replicate its genotype
depends on abiotic and biotic factors in the physical environment, which
may change as time advances. We begin with a spatially detailed, indi-
vidual based model, required for accurate modeling of small populations
where the variability caused by random events among individual repli-
cators dominates population dynamics. For efficient modeling of large
populations where mean behavior tends to dominate, we derive a corre-
sponding mean-field model that aggregates large, well mixed populations
of common phenotypes to compare its behavior to the individual based
version.

1 Introduction

The origins of life can be characterized as a process where the diversity of molec-
ular replicators attains a quantitative permanence [2,12]. Many biologists cur-
rently subscribe to the RNA world hypothesis, which (informally) states that
sequences of simpler molecules were assembled over a sequence of steps, eventu-
ally leading to RNA replicator sequences, that in turn resulted in cellular organ-
isms. Consider a system of catalytic polymers with heritable sequential structure.
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System diversity should be bounded above by resource competition and the re-
sulting selective evolutionary processes, and bounded below by replication error
and functional variability of individual replicator sequences. Persistence of repli-
cator diversity for an arbitrarily long period, a statistical permanence, should
promote increases in biochemical complexity leading to cellular life. We hypoth-
esize that rare events, i.e. the appearance of improbable genotypes or changes
in abiotic conditions can influence whether such permanence can be achieved.

Evolutionary dynamics are governed by two biological processes: selection
which promotes fit competitors over the unfit, and mutation which introduces
diversity of genotypes. However, before evolution can take place, a minimum
level of fitness must be met, that is the genotype must be able to avoid extinc-
tion in its environment in the absence of competition. At the molecular level,
there is little prior art on modeling the one-to-many mapping from genotype to
phenotype [1], and we are not aware of approaches that take the environment’s
spatial structure into account. We begin by considering the simplest case, where
a single non-mutating genotype induces two phenotypes (by folding), and ob-
serve the population dynamics of the system as biotic and abiotic factors vary.
Our approach uses multi-scale modeling, with two different spatially explicit
models. The first model is a spatially explicit individual based model, using a
generalized cellular automaton [7], which tends to be more accurate in modeling
systems with a high level of spatial heterogeneity or small populations where
variability induced by random localized interactions tends to dominate the pop-
ulation dynamics. The cellular automata (CA) model will let us explore (1) how
spatially structured replicator interactions promote or reduce local and global
replicator diversity, (2) how diversity patterns differ between 2 and 3-dimensional
RNA worlds, and (3) how exogenous temporal variation (disturbance frequency)
influences persistence of both replicator diversity and types of ecological inter-
actions between replicators. The second model addresses a more extended scale.
Our formulation assumes a series of spatially segregated replicator communi-
ties periodically linked by partial mixing between neighbors. This model of an
RNA-world metapopulation will let us explore (1) how the degree of mixing gov-
erns within- and between-population components of replicator diversity, and (2)
how temporal variation in the environment (e.g. cation concentration) influences
within- and between-group selective evolution, and the resulting permanence of
global diversity.

2 Biological Background

One goal of our models is to understand the maintenance of replicator diversity,
both genotype and phenotype, and the increase in complexity of interactions be-
tween replicator types in an RNA-world. We want to examine spatial structure at
the scale of replicator interaction neighborhoods [3], and at the metapopulation
scale. Spatial structure can affect extinction times (transients), and can influence
the relative significance of selection at different levels of organization [9]. Finally,
temporal variation in vitro (cation concentration [11]) can change or even reverse



fitnesses of different genotypes. We want to address these topics separately, and
then in combination. The recently-described “continuous” methodology for in
vitro RNA evolution [15] allows for dozens of iterated selection and amplifica-
tion steps to be done within hours, rather than the days required by the earlier
”stepwise” evolution protocols [4, 5, 10, 14] which needed laborious and slow pu-
rification steps between each round of RNA amplification to maintain sustained
growth and evolution of an RNA population. Our modeling assumptions are
designed to be consistent with this approach.

3 Modeling Persistence in RNA Worlds

Recall that we are beginning our investigations by considering a single genotype
with multiple phenotypes, and in particular we consider the simplest form, an-
alyzing extinction trends in a system governed by the interaction between two
phenotypes. This is similar to our approaches to modeling selection in [6,13],
in the future we plan to extend our approach to model mutation, and selection
much like in [8]. We consider two different models of selection in RNA worlds,
first beginning with a two dimensional spatially explicit individual based model,
and then exploring a spatially explicit aggregation based model.

3.1 An Individual Based Modeling Approach

The individual based model partitions a two-dimensional space into a lattice of
J > 1 sites and synchronously advances time using uniformly sized time steps,
like [6,13]. It is assumed that RNA replicator molecules in this model have the
same sequence (i.e. are of a common genotype G), and can belong to one of
two phenotypes. Sites in this model are sufficiently small that they can hold at
most one replicator. Uninhabited sites are partitioned into two groups, those
that have sufficient resources (e.g. nucleotides and substrate as per [11,15]) for
replication (in state r) and those that lack the resource required for replication
(in state ¢). Sites with resources can become depleted (e.g. due to chemical
decay) with probability u, and sites with insufficient resources can be replenished
with probability £ (due to chemical reactions or mixing).

Our initial model assumes that all replicators share the same genotype, g.
Let pp, represent the phenotype of a replicator molecule with genotype g, so that
the range of phenotypes assumed is py, € {po,p1,.--,Pn—1}, for simplicity we
begin with a model where n = 2, so there is a single genotype with two pheno-
types. An abiotic factor for the entire environment (e.g. cation concentrations)
is represented by the random variable E(t) € {0,1}. The value of E(t) indicates
which phenotype can reproduce at time ¢, and E(t + 1) is computed using a
stationary Markov chain, so that E(t + 1) = 1 — E(t) with probability 0p),
otherwise E(t+1) = E(t). About each site z is an interaction neighborhood, o,
the area of the interaction neighborhood is § = |o,|. The density of replicators
of phenotype pp,h € {0,1} residing in o, is denoted dj. Phenotype removal
(death) is assumed to be local, with pup,h € {0,1} being the mortality rate of



Fig. 1. Local State Transitions in the Individual Based Model

phenotype pp. Thus the local transition probabilities from some state ¢ to state
Jj are denoted t; ;,i,5 € {r,$,0,1}, correspond to the arcs in Figure 1. At each
time step, each site does a Bernoulli trial to compute its future state, using the
following local transition probabilities:

t¢,r = §
tpp =1—-¢
trg = pr

tro = mo(1 — pr)[((1 — E)do) + (Ed1)]
tra = m (1 — p)[((1 = E)do) + (Edy)]
tr,r =1- Hr — (1 - NT)[((I - E)dO) + (Edl)]

to,p = Mo
too=1—po
t1,p = 1
tin=1-—m

3.2 An Aggregated Modeling Approach

The individual based approach captures dynamics at a microscopic level, how-
ever for computational efficiency in modeling larger populations aggregation is
needed, leading to a spatially segregated replicator community model. The three-
dimensional space is partitioned into regions, with homogeneous mixing assumed
in each region. Flows exchange solution containing replicators and resources be-
tween adjacent regions. By taking the lower limit on the number of partitions,
all the space could be put in the same partition, resulting in a spatially homo-
geneous model.

For this model we will measure the concentration of each type of molecule in
the solution of region ¢, denoted 0 < C'.;, Cp 4, C1,; < 1. These concentrations are
normalized to reflect the “carrying capacity” induced by environmental condi-
tions. For consistency with the individual based model of Section 3.1, we impose
0 < Cri+ Co,; + C1,; < 1. The notation of the aggregated model is described in
Table 1. Migration is modeled as flows of solution across region surfaces, edges



| Symbol | Meaning |

Csise{0,1,7r},0<i< J Concentration of molecules in state s at site ¢
E € {0,1} Environmental factor permitting po,z to reproduce
and excluding po, (1— &)
F; ; Flow of solution from aggregate site i to j
J the number of aggregated sites in the lattice
ts,s € {0,1,7} Removal (mortality rate) of a type of molecule
mh,h € {0,1} Probability of a new RNA molecule assuming phenotype h
0,0<i<J Iteration neighborhood about site i.

Table 1. Notation Used in the Aggregate Model

and vertices to the nearest neighbors, carrying replicators and resources needed
for replication. Solution is assumed to be conserved, thus, for each region, i, the
inflow must match out-flow, that is: >, . Fij = > ;¢ slico, Fji- For notational
convenience, for region ¢, we denote the available capacity of the solution to hold
more replicators or resources needed for their reproduction as A; and the rate
at which new replicators are generated in region 4, IV;. For site ¢ we derive:

Ai=1—-Co; —Cii—Crs
Ni = Cr i A[(1 = E)Co i + ECy 4]

dg,:”' =£A; + ( > Fj,,-cr,j> — N;i — Ch; (NT + Y F])

j€{0oi|F;,:>0} j€{oi|F;,;>0}

dCo;
dz’ =moN; + ( Z Fj,iCO,j> —Co, (No +

Jj€{oi|Fj,i>0}

dCq
7l mN; + ( Z Fj,icl,j> —C (Hl +

j€{o:|Fj,i>0}

]E{O’z‘Fz i>0} )
)
Je{«an, >0}

4 Results of Simulations

In an experiment, we observed the behavior of our model according to the con-
trols shown in Table 2. Our experiment focuses on exploring the impact of vary-
ing the per reproductive event probability, 7o, of having an offspring of phenotype
po on phenotype concentrations, Cy and C;. The per time step probability of
the environment changing to favor the other genotype was held constant, that is
fo = 0;. As a control, mortality was assumed to be identical between phenotypes,
to = p1. Initially 1% of the nodes in both the individual based model and the
cubic three-dimensional coupled map lattice models were populated with phe-
notype h = 0 and h = 1, positioned to be both equidistant. Since the laboratory
systems we model have impermeable boundaries (the walls of a test tube and
air), we did not allow flows across lattice boundary surfaces, edges or vertices.



| Parameter | Values Used |

To=1l-m 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
K} 3%,11%,33%,101” (Individual Based Model only)
80 = 0 0.001,0.01,0.1,0.25,0.5, 1.0
o = 1 0.001, 0.005, 0.01, 0.05, 0.1
Mr 0.1
3 0.1

Table 2. Parameters Used in Experimentation

One particular case that we are interested in is when a rare event triggers a
change in the outcome of the simulation. One example of a rare event is a change
in the abiotic conditions (e.g. when the value of E changes). This sort of rare
event was observed under the condition of 8y = 6; = 0.001, which is expected
behavior given the formulation of the models. The aggregate based model had
E = 0 for early time steps, 0 < t < 92, after which F was set to 1 for the
remainder of the simulation, 92 < ¢ < 2000 . As a control, we coerced the indi-
vidual based model to have same timing for the change of E as the aggregation
based model. For individual based models with large interaction neighborhoods,
we expected to have a close approximation to both aspatial models and spatially
segregated replicator community models. As shown in Figure 2(a) and (b), the
population trends are similar. Interestingly, the rare event described above trig-
gered an extinction of the replicator when 7o € {0.8,0.9}, which seems to occur
when the environment was saturated with phenotype h = 0 prior to the change
in E and denying phenotype h = 1 locations suitable for establishment. After
the change in E, phenotype h = 1 is thus unable to spread and dies out, while
the now sterile phenotype A = 0 has used the majority of the systems resources
needed for reproduction. For the individual based model, when a large interac-
tion neighborhood is employed, the system approximates homogeneous mixing,
and has similar qualitative behavior (but slightly different steady state popula-
tions), as seen in Figure 2(e) and (f). Smaller interaction neighborhoods tended
to reduce stable state density, and promote extinction as seen in Figures 2(c)
and (d).

5 Summary and Conclusion

We present a novel approach combining theory, simulation and experimentation
to provide a preliminary model of RNA worlds. Following the principle of step-
wise refinement, we begin with the fundamental phenomena of persistence. The
novel aspects of this approach include addressing spatial effects and many-to-one
mapping from genotypes to phenotypes at the molecular level. These models may
accelerate experimental breakthroughs and interpretation of results, by avoiding
blind experimentation. First, we plan to extend the individual based model to
three dimensions. We then want to extend the individual based and aggregate



Cy over time, 6=0.001, p=0.1

0.25 . . . .
=0.7 f
2 %:o.s
S %=0.9
©° 4
0 500 1000 1500 2000 2500
time
(a) Co as a function of time
C, over time, 5=3x3, 6=0.001, u=0.1
0.08 . ! :
0.07
0.06 1
0.05
2z
2 004 ]
(7]
=l
0.03 1
0.02 1
0.01 1
0

500

1000 1500 2000 2500
time

(c) Co as a function of time, |§| = 3> — 1

0.35

density

C, over time, 3=101x101, 6=0.001, u=0.1

N,

500

1000 1500 2000 2500
time

e) C as a function of time, [§] = 1012 —1
(e) ,

C, over time, 6=0.001, p=0.1

density

e

0.35

0.3

0.25

0.2

density

0.15

0.1

0.05

500

1000

1500 2000 2500
time

(b) C1 as a function of time

C; over time, 3=3x3, 6=0.001, u=0.1

500

1000

1500 2000 2500
time

(d) C1 as a function of time, |§| = 3% —1

0.4
0.35
0.3
0.25
0.2

density

0.15
0.1
0.05

C, over time, 3=101x101, 6=0.001, p=0.1

1000

1500 2000 2500
time

(f) C1 as a function of time, |§] = 101> —1

Fig. 2. Individual Based Model: Phenotype Concentration as a function of time



models to explore: (i) the impact on persistence if folding is sensitive to abi-
otic parameters (i.e. make 7y and 7; functions of E) and (ii) continuous abiotic
factors (i.e. let 0 < E < 1). Some open issues include modeling (i) selection
between competing genotypes, (ii) relaxed synchronization of the models, (iii)
model integration across different spatial scales and (iv) enabling mutation of
genotypes.
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