
Real-time On-line Network Simulation

Boleslaw Szymanski, Yu Liu, Anand Sastry, Kiran Madnani
Department of Computer Science, RPI, Troy, NY 12180, USA

email:{szymansk,liuyu6,sastra,madnak}cs.rpi.edu

Abstract

The complexity and dynamics of the Internet is driving the demand for scalable and effi-
cient network simulation. This paper describes a collaborative on-line simulation scheme that
supports real-time on-line collaborative simulators.

The major difficulty in simulating large networks at the packet level is the enormous com-
putational power needed to execute all events that communication packets undergo in the net-
work. The needed computational resources can only be provided by the parallel computation
involving a large number of processors. However, parallelizing simulation at packet level
does not work efficiently and therefore do not scale to large number of processors because of
tight synchronization between network components. To overcome this problem we designed a
method in which a large network is decomposed into parts and each part is simulated indepen-
dently and concurrently with the others. These parts exchange information periodically about
the packet delays and losses along the paths within each part. Each part iterates over the se-
lected simulated time interval until the exchanged information changes less than the prescribed
tolerance.

Each decomposed part may represent a subnet or a subdomain ofthe entire network,
thereby mirroring the network structure in the simulation design. The proposed method is
independent of the specific simulator technique employed torun simulators of the parts of the
decomposed network. Hence, it is a general method for efficient parallelization of network
simulation based on convergence to the fixed point solution of inter-part traffic. The method
can be used in all applications in which the speed of the simulation is of essence, such as: on-
line network simulation, network management, ad-hoc network design, emergency network
planning, large network simulation or network protocol verification under extreme conditions
(large flows).

The described method can also be used to simulate networks other than computer and
communication networks, like distribution network of goods and products, road traffic, etc.

In the paper, we provide the description of the proposed method and its implementation
based on ns simulator, and we present the simulation and testresults of experiments on the
sample communication networks.

1

Bolek
Text Box
Proc. 5th IEEE Int. Workshop on Distributed Simulation and Real-Time Applications,
 Cincinnati, OH, August 2001, IEEE CS Press, 2001

1 Introduction

The major difficulty in simulating large networks at the packet level is the enormous computational
power needed to execute all events that packets undergo the network [6]. The usual approach
to providing such vast computational resources relies on parallelization of an application to take
advantage of a large number of processors concurrently. Such parallelization does not work effi-
ciently for network simulations at packet level because of tight synchronization between network
components [3]. To overcome this difficulty, we designed a method described in this paper, in
which a large network is decomposed into parts and each part is simulated independently and si-
multaneously with the others. Each part represents a subnetor a subdomain of the entire network.
These parts are connected to each other through edges that represent communication links existing
in the simulated network.

In the initial (zero) iteration of the simulation process, each part assumes on its external in-
links either no traffic or traffic equivalent to the one that ismeasured in the monitored network
when on-line simulation is used. Then, each part simulates its internal traffic, and computes the
resulting outflow of packets through its out-links.

In the subsequentk > 0 iteration, the inflow into each part from the other parts willbe gener-
ated based on the outflow measured by each part in the iteration k − 1. Once the inflows to each
part in iterationk are close enough to their counterparts in the iterationk − 1, the iteration stops
and the simulation either progresses to the next simulationtime interval or completes execution
and produces the final results.

More formally, consider a networkΓ = (N, L), whereN is a set of nodes andL (a subset
of Cartesian productN × N), a set of unidirectional links connecting them (bidirectional links
are simply represented as a pair of unidirectional links). Let (N1, ..., Nq) be a disjoint partitioning
of the nodes, each partition modeled by a simulator. For eachsubsetNi, we can define a set of
external out-links and in-links as well as local links as follows:

Oi = L&Ni × (N − Ni), Ii = L&(N − Ni) × Ni, andLi = L&Ni × Ni.

The purpose of a simulatorSi, that models partitionNi of the network, is to characterize traffic on
the links in its partition in terms of a few parameters changing slowly compared to the collaborative
simulation time step. In the implementation presented in this paper, we characterize each traffic as
an aggregation of the flows, and each flow is represented by theactivity of its source and the packet
delays and losses on the path from its source to the boundary of that part. Since the dynamics of
the source can be faithfully represented by the copy of the source replicated to the boundary, the
traffic is characterized by the packet delays and losses on the relevant paths. Thanks to queuing at
the routers and the aggregated effect of many flows on the sizeof the queues, the path delays and
packet dropping rates change more slowly than the traffic itself.

It should be noted that we are also experimenting with the direct method of representing the
traffic on the external links as a self-similar traffic definedby a few parameters. These parameters
can be used to generate the equivalent traffic using on-line traffic generator described in [12]. No
matter which characterization is chosen, based on such characterization, the simulator can find the
overall characterization of the traffic through the nodes ofits subnet. Letξk(M) be a vector of

2

traffic characterization of the links in setM in k-th iteration. Each simulator can be thought of as
defining a pair of functions:

ξk(Oi) = fi(ξk−1(Ii)), ξk(Li) = gi(ξk−1(Ii))

(or, symmetrically,ξk(Ii), ξk(Li) can be defined in terms ofξk−1(Oi)).
Each simulator can then be run independently of others, using the measured or predicted values

of ξk(Ii) to compute its traffic. However, when the simulators are linked together, then of course⋃q
i=1 ξk(Ii) =

⋃q
i=1 ξk(Oi) =

⋃q
i=1 fi(ξk−1(Ii)), so the global traffic characterization and its flow is

defined by the fixed point solution of the equation.

q⋃

i=1

ξk(Ii) = F (
q⋃

i=1

(ξk−1(Ii)), (1)

whereF (
⋃q

i=1(ξk−1(Ii)) is defined as
⋃q

i=1 fi(ξk−1(Ii)). The solution can be found iteratively
starting with some initial vectorξ0(Ii), which can be found by measuring the current traffic in the
network.

We believe that communication networks simulated that way will converge thanks to mono-
tonicity of the path delay and packet dropping probabilities as the function of the traffic intensity
(congestion). For example, if in an iterationk a partNi of the network receives more packets than
the fixed point solution would deliver, then this part will produce fewer packets than the fixed point
solution would. These packets will create inflows in the iterationk+1. Clearly then, the fixed point
solution will deliver the number of packets that is bounded from above and below by the numbers
of packets generated in two subsequent iterationsIk andIk+1. Hence, in general, iterations will
produce alternately too few and too many packets in the inflows providing the bounds for the num-
ber of packets in the fixed point solution. By selecting the middle of each bound, the number of
steps needed to convergence can be limited to the order of logarithm of the needed accuracy, so
convergence is expected to be fast. In the initial implementations of the method, the convergence
for UDP traffic and small networks was achieved in 2 to 3 iterations.

It should be noted that the similar method has been used for implementation of the flow of
imports-exports between countries in the project LINK [5] led by the economics Noble Laureate,
Lawrence Klein. The implementation [9] included distributed network of processors located in
each simulated country and it used global convergence criteria for termination [10].

One issue of great importance for efficiency of the describedmethod is frequency of synchro-
nization between simulators of parts of the decompose network. Shorter synchronization time
limits parallelism but decreases also the number of iterations necessary for convergence to the so-
lution because changes to the path delays are smaller. Variance of the path delay of each flow
can be used to adaptively define the time of the synchronization for the subsequent iteration or the
simulation step.

The efficiency of our approach is based on the following property of network simulation:
The simulation time of a network grows faster than linearly with the size of the network.
Theoretical analysis indicates that for the network size oforder O(n), the simulation time

contains terms which are of orderO(n ∗ log(n)), that correspond to sorting event queue, of order

3

O(n2), that result from packet routing, and even of orderO(n3), that are incurred while building
routing tables. Some of our experiments [11] indicate that the dominant term is of orderO(n2)
even for small networks. Using the least squared method to fitthe experiment results of execution
time and network size, we got the following approximate formula for star-interconnected networks:

T (n) = 3.49 + 0.8174 × n + 0.0046 × n2 (2)

whereT is the execution time of the simulation, andn is the number of nodes in the simulation.
From the above, we can see that the execution time of a networksimulation may hold a quadratic
relationship with the network size. Therefore, it is possible to speed up the network simulation
more than linearly by splitting a large simulation into smaller pieces and parallelizing the execution
of these pieces.

As we demonstrate later in the experiment section, a networkdecomposed into 16 parts will
require less than 1/16 of the time of the entire sequential network simulation (so also less computa-
tional power, because there are 16 parts each needing less than 1/16 of the computational power of
the sequential simulator), despite the overhead introduced by external sources added to each part
and synchronization and exchange of data between parts. Hence, with modest number of iterations
the total execution time can be cut an order of magnitude or more.

Another advantage of the proposed method is that it is independent of the specific simulator
technique employed to run simulators of the parts of the decomposed network. Rather, it is a
scheme for efficient parallelization based on convergence to the fixed point solution of inter-part
traffic which is measured by a set of parameters necessary to characterize this traffic rather then
flow of packets. Our primary application is the use of the on-line simulation for network man-
agement [11] to which the presented method fits very well and can be combined with the on-line
network monitoring. The simulations in this application predicts changes in the network perfor-
mance caused by tuning network parameters. Hence, the fixed point solution found by our method
is with high probability the point into which the real network will evolve. However, this is a still
an open issue under what conditions we can guarantee that thefixed point solution is unique, and
if it is not, when the solution found by the method is the same as the point that the real network
reaches.

The method can be used in all applications in which the speed of the simulation is of essence,
such as:

• on-line network simulation,

• ad-hoc network design,

• emergency network planning,

• large network simulation,

• network protocol verification under extreme conditions (large flows).

4

2 Implementation

Our current simulation platform is thens network simulator [7]. A simulations is defined in ns
by Tcl scripts which can also be used to interface the core of the simulator. The kernel of the
simulation system is written in C++. The ease of adding extensions and rich suite of the net-
work protocols made ns a popular and common, albeit not too efficient, platform for research in
networking. Hence, we believe that by implementing our method within ns will enable others to
experiment with our system.

Our extensions to ns enable collaboration among individualparts into which the simulated
network is divided. Since network domains are convenient granules for such partitioning, we will
refer to these parts assimulations domainsor domainsin short. Each domain is simulated by a
separate copy of ns running on a unique processor. The implementation specifics are described in
the sections below.

2.1 New Features Added to ns

To accomplish per processor based domain simulation the following extension were added to ns.

Figure 1: Active Domain with Connections to Other Domains

• The ability to suspend the simulation to enable exchange of data on path delays using mes-
sage passing between processors simulating individual domains. During the simulation

5

freeze, each individual simulation domain exchanges information on packets generated and
dropped along links leaving the domain (cf. Figure 1).

The network in Figure 1 is split into three individual domains, named 1, 2 and 3. Each of the
domain simulations runs concurrently with the others and they exchange information about
the path delays incurred by packets leaving the domain. The interval for exchange of this
information is user configurable (in the Tcl script). For example, each domain may run its
individual simulations for a(n, n + 1) second interval and pause after simulating 1 second
of network traffic. Then, information about delays of packets leaving the domain during
this interval is passed onto the target domain to which thesepackets are directed. If these
delays differ significantly from what was assumed in the target domain, the simulation of the
time interval(n.n + 1) is repeated. Otherwise, the simulation progresses to the time interval
(n + 1, n + 2). The deviation of the current delays from the previous ones under which the
simulation is allowed to progress in time it is set by the user. It dictates the speed of the
simulation progress and the precision of the simulation results.

New event for the ns scheduler,Freezeis defined generically. It pauses the simulation at
intervals defined by the user. During the event execution, itexecutes functions provided by
the user in Freeze definition. On return, Freeze reactivatesthe simulation.

• The ability to record information about the delays and drop rate experienced by the packets
leaving the domain. Each delay measures the time expired from the instance a packet leaves
its source to the time it reaches the domain boundary. Drop rates are computed for each
flow separately. Also recorded is information about each packet source and its intended
destination. Having this information enables us to replicate the source from the original
domain to the boundary of the target domain (sources in skeletons of domains 2 and 3 in
Figure 1) and postpone an arrival of each packet produced by the replicated source at the
domain boundary by the delay measured in the source (and transient, if necessary) domains.
Also, with probability defined by packet drop rates, packetsare randomly dropped during
the passage to the boundary of the destination domain (D boxes in Figure 1).

• The ability to define domain members and identify individualsources within the domain
that generate packets intended for nodes external to the domain. This feature enables us to
directly connect a source to the destination domain to whichit sends packets. We refer to
such replicated source as afake sourceand to the link that connects it to the domain internal
nodes as afake link, as explained below. The domain is defined by the user using a Tcl level
command which takes as its parameters the nodes that the usermarks as belonging to the
domain. Then, the simulation of this domain is created by deactivating all domains external
to the selected domain.

2.2 Details of modifications to ns

2.2.1 Domain definition: Domain is a Tcl-level scripting command that is used to definethe
nodes which are part of the domain for the current simulation. In the first iteration of the

6

simulation the traffic sources outside the domain are inactive. The traffic generated within
the domain is recorded and the statistics calculated. In thefollowing iterations, the sources
active within other domains with a link to the domain in question are activated.

When a domain declaration is made in the Tcl script the nodes defined as a parameter to this
command are stored in the form of a list. Each time a new domainis defined, the new node
list is added to a domain list (a list of lists). The user selected domain is made active. Any
link with one end connected to a node in this domain and the other end connected to a node
in another domain is defined as a cut-link. All packets sent onthese links are collected for
delay and drop rate computation.

Source generators connected to sources outside the active domain are deactivated. This is
done by a new Tcl script statement that attaches an inactive status to nodes outside the active
domain (cf. Traffic Generator description below).

2.2.2 Connector: The connector performs the function of receiving, processing and then deliver-
ing the packets to the neighboring node or dropping the packets. A modification has been
made to this connector class which now has the added functionality of filtering out packets
destined for the nodes outside the domain and storing them for statistical data calculation.

A connector object is generally associated with a link. Whena link is set up, the simulator
checks if this link connects nodes in different domains. If this is the case, this link is classi-
fied as a cross-link and the connector associated with this link is modified to record packets
flowing across it. Each packet is forwarded to the neighboring node or is marked as leaving
the domain based on its destination.

2.2.3 Traffic Generator: TrafficGenerator Classis used to generate traffic flows according to a
timer. This class is modified, so that for the domain simulation, the traffic sources can be ac-
tivated or deactivated. Initially, at the start of the simulation, the traffic generator suppresses
nodes outside the domain from generating any traffic.

2.2.4 Fake Link: Fake links are used to connect the fake sources to a particular cross-link on the
border of the destination domain. When a fake traffic source is connected to a domain by a
fake link, the packets generated by this source are sent intothe domain via the fake link and
not the regular links which are set up by the user network configuration file. The fake link
adds a delay and, with certain probability, drops the packetto simulate packet’s behavior
during passage through the regular route. With the fake traffic sources and fake links, the
statistical data from the simulation of another domain are collected, and the traffic to the
destination domain is regenerated.

When a fake link is built, the source connector and the destination connector must be spec-
ified. A fake link shortens the route between the two connector objects. Each connector is
identified by the nodes on both ends of it. Link connectors aremanaged in the border object
as a link list. The flow id to build up a fake link is specified, one fake link is used for one
flow.

7

FakeLink is used to simulate a particular flow, so when the features (delay, drop-rate) of this
flow change, the fake link object needs to be updated. By updating the parameters of the
fake link object, the performance of the fake link will be updated immediately. Fake links
themselves are managed in the border object as a link list.

2.2.5 Connectors with Fake Targets:In the original version of ns, connectors are defined asan
NsObject with only a single neighbor. But our new ns simulation required this definition to
be changed to build fake links to short cut the routes for different packet flows. Because these
fake links are set up based on flows, each flow from the fake sources will need a fake link.
The flows that go through one source connector may reach different cross-link connectors at
the destination border, so there will be fake links connecting this connector to some different
connectors. Different flows going into one connector are sent to different fake links, which
are defined as fake targets here. Thus, the connector could now be defined asan NsObject
with one neighbor and a list of fake targets. When the fake connection is enabled in a
connector, this connector would have a list of fake links (fake targets), and would classify
the incoming packets by flow id and send them to the correct destinations.

The connector class will maintain a list of fake targets. Once a new fake link is set up from
this connector, it will be added to this connector’s fake target list (this is done by the shortcut
method of the Border class).

2.2.6 Border: Border is a new class added to the ns. It is the most important class in the domain
simulation. A border object represents the active domain inthe current simulation. The main
functionality of the border class includes:

• Initializing the current domain: setting up the current domain id, assigning nodes to
different domains, setting up the date exchange etc.

• Collecting and maintaining information about the simulation objects, such as a list of
traffic source objects, a list of the connector objects and a list of the fake link objects
maintained by the border object.

• Implementing and controlling the fake traffic sources: setting up and updating fake-
links, etc.

The border object is set up first, and its reference are made available to all objects in the
simulation. A lot of other ns classes need to refer to the variables and methods in the border
object. The border class has an array which for each simulation object stores the domain
name to which this object belong. This information is collected from domain description
files that are created by the domain object implementation. The names are created for the
files assigned to each domain to store some persistent data needed for inter-domain data
exchange and restoration of the state from the checkpoint.

All traffic source objects created in the simulation are stored. These traffic sources can be
deactivated or activated using the flow id. All the connectorobjects created in the simulation
are stored. These connectors are identified by the two nodes to which they are connected.
The connector information is used to create fake links.

8

The traffic sources outside the current active domain are deactivated while setting up the
network and domains. When one fake link is set up for a flow, thetraffic source of this flow
will be reactivated. The border class searches the traffic source list to find the object, and
calls the reactivate() method of the matching source objectto reactivate this flow.

When the border receives flow information from other domains, it will set up a fake link
for this flow, and initialize the parameter of the fake link using the received statistical data.
When setting up a fake link, it goes through the connector list to find the source and the
destination connector objects, and then short-cut the route between them by adding a fake
target into the source connector. All the created FakeLink objects are stored in the border as
a linked list for further update.

Figure 2: Progress of Simulation

2.2.7 Checkpointing This feature has been included in ns to enable easy rerun of the simulation
over the same simulation time interval. We chose theDynamite Checkpointing Library[4]
because, unlike some other packages [8], it supports Open Files and does not require modifi-
cations to the kernel or the user program. As shown in Figure 2, at the end of each iteration,
each process either saves its current state or restores the previous state of the simulation.

9

2.2.8 Infrastructure for Distributing Individual Domain S imulations: The infrastructure for dis-
tributing individual domain simulations across multiple processors is based on a client-server
architecture. Multiple clients connect to a single server that handles the message passing.
The server is based on a process oriented approach to avoid the overhead of multiple threads/
processes. The server uses two maps (data structures): one to keep track of the number of
clients that have already supplied the delay data to the destination domain and the other map
is toggled by clients that require to perform checkpointing. All messages to the server are
preceded byMessage Identification Parameterswhich identify the state of the client. A de-
cision whether to checkpoint the current state or restore the saved state is made by the client
based on the comparison of packet delays and losses between two subsequent iterations.

A client indicates to the server whether it requires checkpointing in the contents of the mes-
sage itself. A client which has to checkpoint causes all other clients to block until it has
resent the data to the server and the server has delivered it to the destination domain (in other
words a domain on another machine). This is achieved by exchanging the maps at the end
of each iteration during the simulation freeze.

The steps of collaboration of simulators and the server are shown in Figure 2.

3 Performance

We use two sample network configurations, one with 64 and the other with 27 nodes to test the
performance of our simulation method. Both of these networks are divided into classes of domains.
The rate at which sources generate traffic are varied to generate temporal congestion in the network,
especially at the nodes at the border of the domain. All sources produce packets of 500 bytes.

The 64-node network is designed with a great deal of symmetry. The smallest domain size
is four nodes; there is full connectivity between these nodes. Four such domains together are
considered as a larger domain in which there is full connectivity between the four sub-domains.
Finally, four large domains are fully connected and form theentire network configuration (cf.
Figure 3).

The 27-node network is a PINNI network[1] with a hierarchical structure. Its smallest domain
is composed of three nodes. Three such domains form a larger domain and three large domains
form the entire network (cf. Figure 4).

3.1 64-node network

Each node in the network is identified by three digitsx.y.z, where0 ≤ x, y, z ≤ 3, that identify
domain, subdomain and node rank within the subdomain to which the node belongs.

Each node has nine flows originating from it. In addition, each node also acts as a sink to nine
flows. The flows from a nodex.y.z go to nodes:
x.y.(z + 1)%4 x.y.(z + 2)%4 x.y.(z + 3)%4
x.(y + 1)%4.z x.(y + 2)%4.z x.(y + 3)%4.z

10

Figure 3: 64-node configuration showing flows from a sample node to all other nodes in a network

(x + 1)%4.y.z (x + 2)%4.y.z (x + 3)%4.y.z

Thus, this configuration forms a hierarchical and symmetrical structure on which the simulation is
tested for scalability and speedup.

In a set of experiments, the sources at the borders of domainsproduce packets at the rate of
20000 packets/sec for half of the simulation time. The bandwidth of the link is 1.5Mbps. Thus,
certain links are definitely congested and congestion may spread to some other links as well. For
the other half of the simulation time, these sources produce1000 packets per second. Since such
flows require less bandwidth than provided by the links connected to each source, congestion is not
an issue. All other sources produce packets at the rate of 100packets/sec for the entire simulation.
For these experiments we defined sources that produced only CBR traffic and the speedup was
measured by comparing simulation times of domains to the simulation time of the entire network
(excluding synchronization time).

We conducted experiments with simulation time of 60 seconds(with freeze times of 14.9999
seconds, thus with total of 5 freezes). The simulation speedup with 16 domains (each with size of
four nodes) was approximately 15, as shown in Figure 5.

11

Figure 4: 27-node configuration and the flows from the sample node

3.2 27-node configuration

The network configuration shown in Figure 4, the PINNI network adopted from [1] consists of 27
nodes arranged into 3 different levels of domains containing three, nine and 27 nodes, respectively.
Each node has six flows to other nodes in the configuration and is receiving six flows from other
nodes. The flows from a nodex.y.z can be expressed as:
x.y.(z + 1)%3 x.y.(z + 2)%3
x.(y + 1)%3.z x.(y + 2)%3.z
(x + 1)%3.y.z (x + 2)%3.y.z

In these set of experiments, as above, the sources at the borders of domains produce packets
at the rate of 20000 packets/sec for half of the simulation time. The bandwidth of the link is
1.5Mbps. Thus, congestion is definitely produced on certainlinks shown above and congestion
may be produced on certain other links. For the other half of the simulation, these sources produce
1000 packets which is less than the total bandwidth of the links connected to each of them. For
these experiments we assume that all sources are producing CBR traffic. All other sources produce
packets at the rate of 100 packets/sec for the entire simulation. We conducted experiments with
simulation time of 60 seconds (with freeze times of 14.9999 seconds, thus with total of 5 freezes).

The speedup of simulation with 9 domains was well approximately 5.7 compared with a single
network (sequential) run. The graphs of the results are shown below in Figure 6.

12

Figure 5: Simulation times for the domains of the different size

4 Conclusions and Future Work

The need for scalable and efficient network simulators increases with the rapidly growing com-
plexity and dynamics of the Internet. In this paper we introduced a collaborative on-line simulation
scheme to support real-time on-line collaborative simulators.

Traditional decomposition only splits up the network topology, but the simulation is still exe-
cuted as a whole. Therefore, the decomposed parts have to exchange a lot of information to keep
them synchronized with each other [3]. Our approach is to first execute simulations of the split
parts of the network independently. Then, the split simulations are repeated using the output of the
other parts as their input until there is no significant difference between the results of two consec-
utive iterations. This approach greatly simplifies the synchronization between parallel parts and it
decreases its frequency, thus it can significantly speed up the simulation of large networks. Our
results indicate that the superlinear speedup for the single iteration step is possible and is the result
of the non-linear complexity of the network simulation.

In addition to the speedup, the advantages of the presented method include fault tolerance,
ability to integrate simulations and models in one run and support for truly distributed execution.
When one of the participating processes fails, the rest can use the old delay and packet loss data to
continue a simulation. When the only information availableabout a domain are delays across the
domain and its outflows, the simulation of the other parts of the networks can directly use these
data to perform the simulation. Finally, the scheme can be implemented in the fully distributed
fashion, in which a domain is simulated using computationalresources within itself.

Future work will focus on providing online data collection,to increase the benefit of the real-
time simulation supported by this scheme. It should be notedthat the benefits of the method are
multiplicative in regards to the benefits of any simulator that is employed to simulate individual

13

Figure 6: Simulation times for the domains of different sizes

domains. Hence, the choice of the basic simulation tool is important. In the future experiments,
we plan to replace ns with the ultra-fast and memory efficientROSS [2], to provide several order
magnitude simulation speed improvements over the sequential ns.

Finally, while this paper demonstrates that our approach fits the simulation of non-feedback
based traffic (UDP, CBR, etc.), we plan to verify our implementation on TCP traffic as well.

References

[1] S. Bhatt, R. Fujimoto, A. Ogielski, K. Perumalla, “Parallel Simulation Techniques for Large-
Scale Networks”IEEE Communications Magazine1998.

[2] C. D Carothers, D. Bauer, S. Pearce, “ROSS: A High-Performance, Low Memory, Modu-
lar Time Warp System,” InProceedings of the 14th Workshop on Parallel and Distributed
Simulation, pp. 53–60, May 2000.

[3] R.M. Fujimoto, “Parallel Discrete Event Simulation,”Communications of the ACM, vol. 33,
pp. 31-53, Oct. 1990.

[4] K.A. Iskra, F. van der Linden, Z.W. Hendriske, B.J. Overeinder, G.D. van Albada, P.M.A.
Sloot, “The implementation of Dynamite - an environment formigrating PVM tasks,”Oper-
ating Systems Review, vol. 34, no. 3, pp. 40-55, July 2000.

[5] L.R. Klein, “The LINK Model of World Trade with Application to 1972-1973”, inQuantita-
tive Studies of International Economic Relations, P. Kenen, Ed., Amsterdam: North Holland,
1975.

14

[6] L.A. Law, M.G. McComas, “Simulation Software for Communication Networks: the State
of the Art,” IEEE Communication Magazine, vol. 32, pp. 44-50, 1994.

[7] NS(network simulator). http://www-mash.cs.berkeley.edu/ns.

[8] James S. Planck, Micah Beck, Gerry Kingsley, “Libckpt: Transparent Checkpointing under
Unix,” Proc. USENIX Winter 1995 Technical Conference, January 16-20, 1995.

[9] Y. Shi, N. Prywes, B. Szymanski, A. Pnueli, “Very High Level Concurrent Programming,”
IEEE Trans. Software Engineering, vol. SE-13, pp. 1038-1046, Sep. 1987.

[10] B. Szymanski, Y. Shi, N. Prywes, “Synchronized Distributed Termination,”IEEE Trans. Soft-
ware Engineering, vol. SE-11, pp. 1136-1140, Sep. 1987.

[11] T. Ye, D. Harrison, B. Mo, S. Kalyanaraman, B. Szymanski, K. Vastola, B. Sikdar, H. Kaur,
“Traffic Management and Network Control Using Collaborative On-line Simulation,”Proc.
International Conference on Communication, ICC2001, to appear.

[12] M. Yuksel, B. Sikdar, K. S. Vastola and B. Szymanski, “Workload generation for ns Simula-
tions of Wide Area Networks and the Internet,”Proc. Communication Networks and Dis-
tributed Systems Modeling and Simulation Conference, pp 93-98, San Diego, CA, USA,
2000.

15

