Proc. 5th IEEE Int. Workshop on Distributed Simulation and Real-Time Applications,
Cincinnati, OH, August 2001, IEEE CS Press, 2001

Real-time On-line Network Simulation

Boleslaw Szymanski, Yu Liu, Anand Sastry, Kiran Madnani
Department of Computer Science, RPI, Troy, NY 12180, USA
email: {szymansk,liuyu6,sastra,madnak.rpi.edu

Abstract

The complexity and dynamics of the Internet is driving thendad for scalable and effi-
cient network simulation. This paper describes a collab@an-line simulation scheme that
supports real-time on-line collaborative simulators.

The major difficulty in simulating large networks at the petlevel is the enormous com-
putational power needed to execute all events that commatimicpackets undergo in the net-
work. The needed computational resources can only be oy the parallel computation
involving a large number of processors. However, parailgdi simulation at packet level
does not work efficiently and therefore do not scale to langmlmer of processors because of
tight synchronization between network components. Toame this problem we designed a
method in which a large network is decomposed into parts aold part is simulated indepen-
dently and concurrently with the others. These parts exgdhanmformation periodically about
the packet delays and losses along the paths within eachEpach part iterates over the se-
lected simulated time interval until the exchanged infdiorachanges less than the prescribed
tolerance.

Each decomposed part may represent a subnet or a subdomtie ehtire network,
thereby mirroring the network structure in the simulatiasidn. The proposed method is
independent of the specific simulator technique employednsimulators of the parts of the
decomposed network. Hence, it is a general method for effigiarallelization of network
simulation based on convergence to the fixed point solutfanter-part traffic. The method
can be used in all applications in which the speed of the sitiaul is of essence, such as: on-
line network simulation, network management, ad-hoc ngkvaesign, emergency network
planning, large network simulation or network protocolifieation under extreme conditions
(large flows).

The described method can also be used to simulate netwdrlks titan computer and
communication networks, like distribution network of gsaghd products, road traffic, etc.

In the paper, we provide the description of the proposed oge#ind its implementation
based on ns simulator, and we present the simulation andesgts of experiments on the
sample communication networks.

Bolek
Text Box
Proc. 5th IEEE Int. Workshop on Distributed Simulation and Real-Time Applications,
 Cincinnati, OH, August 2001, IEEE CS Press, 2001

1 Introduction

The major difficulty in simulating large networks at the petlevel is the enormous computational
power needed to execute all events that packets undergoetiv@nk [6]. The usual approach

to providing such vast computational resources relies oallptization of an application to take

advantage of a large number of processors concurrenthh Saiallelization does not work effi-

ciently for network simulations at packet level becausagifttsynchronization between network
components [3]. To overcome this difficulty, we designed dhom@ described in this paper, in

which a large network is decomposed into parts and eachgantiulated independently and si-
multaneously with the others. Each part represents a sobmetubdomain of the entire network.
These parts are connected to each other through edgesphegert communication links existing
in the simulated network.

In the initial (zero) iteration of the simulation procesack part assumes on its external in-
links either no traffic or traffic equivalent to the one thameasured in the monitored network
when on-line simulation is used. Then, each part simulaseisiternal traffic, and computes the
resulting outflow of packets through its out-links.

In the subsequerit > 0 iteration, the inflow into each part from the other parts wélgener-
ated based on the outflow measured by each part in the iteratiol. Once the inflows to each
part in iterationk are close enough to their counterparts in the iteratien1, the iteration stops
and the simulation either progresses to the next simuldtie interval or completes execution
and produces the final results.

More formally, consider a network = (N, L), whereN is a set of nodes anfl (a subset
of Cartesian produclv x N), a set of unidirectional links connecting them (bidireatl links
are simply represented as a pair of unidirectional linkgx (LVy, ..., IV,) be a disjoint partitioning
of the nodes, each partition modeled by a simulator. For sabket/V;, we can define a set of
external out-links and in-links as well as local links addais:

Oi = [/(g(f]\fZ X (N — Nl), IZ = L&(N — Nz) X Nia andLZ‘ = [/(g(f]\fZ X Ni'

The purpose of a simulatdi;, that models partitionV; of the network, is to characterize traffic on
the links in its partition in terms of a few parameters chagglowly compared to the collaborative
simulation time step. In the implementation presentedismphper, we characterize each traffic as
an aggregation of the flows, and each flow is represented kacthaty of its source and the packet
delays and losses on the path from its source to the bound#mgatopart. Since the dynamics of
the source can be faithfully represented by the copy of thecsoreplicated to the boundary, the
traffic is characterized by the packet delays and losseseoretvant paths. Thanks to queuing at
the routers and the aggregated effect of many flows on theo$ithe queues, the path delays and
packet dropping rates change more slowly than the trafdfits

It should be noted that we are also experimenting with thectlimethod of representing the
traffic on the external links as a self-similar traffic defingda few parameters. These parameters
can be used to generate the equivalent traffic using on#afictgenerator described in [12]. No
matter which characterization is chosen, based on suchdieaization, the simulator can find the
overall characterization of the traffic through the nodegtubnet. Let, (M) be a vector of

2

traffic characterization of the links in séf in k-th iteration. Each simulator can be thought of as
defining a pair of functions:

8e(0i) = [fi(€r-1(1i)), &e(Li) = gi(&—1(13))

(or, symmetrically&.(1;), £x(L;) can be defined in terms ¢f_,(0;)).
Each simulator can then be run independently of othersgusameasured or predicted values
of &(1;) to compute its traffic. However, when the simulators aredihkogether, then of course
&) = UL &(0:) = UL, fi(&—1(L;)), so the global traffic characterization and its flow is
defined by the fixed point solution of the equation.

q

U sz([z') = F(

1=1 %

=

(&r—1(L3)), 1)

1

where F(UL_, (&-1(1;)) is defined adJ’, fi(&x—1(1;)). The solution can be found iteratively
starting with some initial vectafy(Z;), which can be found by measuring the current traffic in the
network.

We believe that communication networks simulated that wdlyoonverge thanks to mono-
tonicity of the path delay and packet dropping probabsits the function of the traffic intensity
(congestion). For example, if in an iteratiéra part/N; of the network receives more packets than
the fixed point solution would deliver, then this part wilbgiluce fewer packets than the fixed point
solution would. These packets will create inflows in theatemk -+ 1. Clearly then, the fixed point
solution will deliver the number of packets that is boundeaf above and below by the numbers
of packets generated in two subsequent iteratigrend 7, ;. Hence, in general, iterations will
produce alternately too few and too many packets in the irgflonoviding the bounds for the num-
ber of packets in the fixed point solution. By selecting thedie of each bound, the number of
steps needed to convergence can be limited to the order afitlogn of the needed accuracy, so
convergence is expected to be fast. In the initial implelewgmts of the method, the convergence
for UDP traffic and small networks was achieved in 2 to 3 ifers.

It should be noted that the similar method has been used folementation of the flow of
imports-exports between countries in the project LINK [by the economics Noble Laureate,
Lawrence Klein. The implementation [9] included distriddtnetwork of processors located in
each simulated country and it used global convergenceieritar termination [10].

One issue of great importance for efficiency of the describethod is frequency of synchro-
nization between simulators of parts of the decompose mi&tw8Bhorter synchronization time
limits parallelism but decreases also the number of itenatnecessary for convergence to the so-
lution because changes to the path delays are smaller. n¢ariaf the path delay of each flow
can be used to adaptively define the time of the synchrooizédr the subsequent iteration or the
simulation step.

The efficiency of our approach is based on the following priypaf network simulation:

The simulation time of a network grows faster than linearihwhe size of the network.

Theoretical analysis indicates that for the network sizemfer O(n), the simulation time
contains terms which are of ordéx(n x log(n)), that correspond to sorting event queue, of order

3

O(n?), that result from packet routing, and even of ordgr?), that are incurred while building
routing tables. Some of our experiments [11] indicate thatdominant term is of orded(n?)
even for small networks. Using the least squared method tioefiexperiment results of execution
time and network size, we got the following approximate folafor star-interconnected networks:

T(n) = 3.49 + 0.8174 x n + 0.0046 x n? 2)

whereT is the execution time of the simulation, ands the number of nodes in the simulation.
From the above, we can see that the execution time of a nesunildation may hold a quadratic

relationship with the network size. Therefore, it is poksilo speed up the network simulation
more than linearly by splitting a large simulation into shaapieces and parallelizing the execution
of these pieces.

As we demonstrate later in the experiment section, a net@edomposed into 16 parts will
require less than 1/16 of the time of the entire sequentislork simulation (so also less computa-
tional power, because there are 16 parts each needing &s%/t6 of the computational power of
the sequential simulator), despite the overhead intratlbgeexternal sources added to each part
and synchronization and exchange of data between partseli&ith modest number of iterations
the total execution time can be cut an order of magnitude aemo

Another advantage of the proposed method is that it is inudg® of the specific simulator
technique employed to run simulators of the parts of the posed network. Rather, it is a
scheme for efficient parallelization based on convergeadkd fixed point solution of inter-part
traffic which is measured by a set of parameters necessatyatacterize this traffic rather then
flow of packets. Our primary application is the use of the ioe-simulation for network man-
agement [11] to which the presented method fits very well amdbe combined with the on-line
network monitoring. The simulations in this applicatioregicts changes in the network perfor-
mance caused by tuning network parameters. Hence, the fotetigolution found by our method
is with high probability the point into which the real netwawill evolve. However, this is a still
an open issue under what conditions we can guarantee thfateékepoint solution is unique, and
if it is not, when the solution found by the method is the sam¢ha point that the real network
reaches.

The method can be used in all applications in which the spé#dtesimulation is of essence,
such as:

e on-line network simulation,

ad-hoc network design,

emergency network planning,

large network simulation,

network protocol verification under extreme conditionsgéflows).

2 Implementation

Our current simulation platform is thes network simulator [7]. A simulations is defined in ns
by Tcl scripts which can also be used to interface the cordefsimulator. The kernel of the

simulation system is written in C++. The ease of adding esiters and rich suite of the net-
work protocols made ns a popular and common, albeit not tii@esft, platform for research in

networking. Hence, we believe that by implementing our métithin ns will enable others to

experiment with our system.

Our extensions to ns enable collaboration among indivighaads into which the simulated
network is divided. Since network domains are convenieagles for such partitioning, we will
refer to these parts asmulations domainsr domainsin short. Each domain is simulated by a
separate copy of ns running on a unique processor. The ingplation specifics are described in
the sections below.

2.1 New Features Added to ns

To accomplish per processor based domain simulation thenfiolg extension were added to ns.

Border router/source/destination
Domain 1 O

Internal router/source/destination

o

Packet delay/drop functionality

]

External out-link

—_— = - >

External in-link

Local link

/' Skeleton of

Skeleton of Domain 2 | Domain 3

Figure 1: Active Domain with Connections to Other Domains

e The ability to suspend the simulation to enable exchangataf dn path delays using mes-
sage passing between processors simulating individuakoh@m During the simulation

5

freeze, each individual simulation domain exchanges métion on packets generated and
dropped along links leaving the domain (cf. Figure 1).

The network in Figure 1 is split into three individual domsinamed 1, 2 and 3. Each of the
domain simulations runs concurrently with the others amy #xchange information about
the path delays incurred by packets leaving the domain. fiteevial for exchange of this
information is user configurable (in the Tcl script). For exde, each domain may run its
individual simulations for dn,n + 1) second interval and pause after simulating 1 second
of network traffic. Then, information about delays of paskigtaving the domain during
this interval is passed onto the target domain to which tipesg&ets are directed. If these
delays differ significantly from what was assumed in thegadpmain, the simulation of the
time interval(n.n + 1) is repeated. Otherwise, the simulation progresses tortreeititerval
(n+ 1,n + 2). The deviation of the current delays from the previous omekeuwhich the
simulation is allowed to progress in time it is set by the udedictates the speed of the
simulation progress and the precision of the simulationltes

New event for the ns scheduldireezeis defined generically. It pauses the simulation at
intervals defined by the user. During the event executicgxetutes functions provided by
the user in Freeze definition. On return, Freeze reactivhgesimulation.

e The ability to record information about the delays and diate experienced by the packets
leaving the domain. Each delay measures the time expiredtfie instance a packet leaves
its source to the time it reaches the domain boundary. Drtgs rare computed for each
flow separately. Also recorded is information about eactkg@asource and its intended
destination. Having this information enables us to repdidhe source from the original
domain to the boundary of the target domain (sources in skedeof domains 2 and 3 in
Figure 1) and postpone an arrival of each packet producetidyeplicated source at the
domain boundary by the delay measured in the source (ansléranif necessary) domains.
Also, with probability defined by packet drop rates, packets randomly dropped during
the passage to the boundary of the destination domain (DsboXégure 1).

e The ability to define domain members and identify individsaurces within the domain
that generate packets intended for nodes external to thaidomhis feature enables us to
directly connect a source to the destination domain to whisknds packets. We refer to
such replicated source asake sourceind to the link that connects it to the domain internal
nodes as #ake link as explained below. The domain is defined by the user usirg laviel
command which takes as its parameters the nodes that thenasks as belonging to the
domain. Then, the simulation of this domain is created bytisting all domains external
to the selected domain.

2.2 Details of modifications to ns

2.2.1 Domain definition: Domain is a Tcl-level scripting command that is used to defhree
nodes which are part of the domain for the current simulatiorthe first iteration of the

simulation the traffic sources outside the domain are imecfihe traffic generated within
the domain is recorded and the statistics calculated. Ifofl@ving iterations, the sources
active within other domains with a link to the domain in qu@stare activated.

When a domain declaration is made in the Tcl script the nodésell as a parameter to this
command are stored in the form of a list. Each time a new domsaiefined, the new node
list is added to a domain list (a list of lists). The user seldadomain is made active. Any
link with one end connected to a node in this domain and therahd connected to a node
in another domain is defined as a cut-link. All packets senthese links are collected for
delay and drop rate computation.

Source generators connected to sources outside the aotivaid are deactivated. This is
done by a new Tcl script statement that attaches an ina¢titiesto nodes outside the active
domain (cf. Traffic Generator description below).

2.2.2 Connector: The connector performs the function of receiving, progesaind then deliver-
ing the packets to the neighboring node or dropping the packe modification has been
made to this connector class which now has the added fumditipiof filtering out packets
destined for the nodes outside the domain and storing thestdtstical data calculation.

A connector object is generally associated with a link. Whéimk is set up, the simulator
checks if this link connects nodes in different domainshi$ is the case, this link is classi-
fied as a cross-link and the connector associated with tiksdimodified to record packets
flowing across it. Each packet is forwarded to the neighlgoniode or is marked as leaving
the domain based on its destination.

2.2.3 Traffic Generator: TrafficGenerator Classs used to generate traffic flows according to a
timer. This class is modified, so that for the domain simalatthe traffic sources can be ac-
tivated or deactivated. Initially, at the start of the siatidn, the traffic generator suppresses
nodes outside the domain from generating any traffic.

2.2.4 Fake Link: Fake links are used to connect the fake sources to a partmss-link on the
border of the destination domain. When a fake traffic sos@nnected to a domain by a
fake link, the packets generated by this source are senthiatdomain via the fake link and
not the regular links which are set up by the user network gardition file. The fake link
adds a delay and, with certain probability, drops the patkaimulate packet’s behavior
during passage through the regular route. With the fakéidredurces and fake links, the
statistical data from the simulation of another domain aected, and the traffic to the
destination domain is regenerated.

When a fake link is built, the source connector and the datin connector must be spec-
ified. A fake link shortens the route between the two conmeaigects. Each connector is
identified by the nodes on both ends of it. Link connectors@eaged in the border object
as a link list. The flow id to build up a fake link is specified,eofake link is used for one
flow.

FakeLink is used to simulate a particular flow, so when theufea (delay, drop-rate) of this
flow change, the fake link object needs to be updated. By upgl#te parameters of the
fake link object, the performance of the fake link will be apeld immediately. Fake links
themselves are managed in the border object as a link list.

2.2.5 Connectors with Fake Targets:In the original version of ns, connectors are definedmas
NsObject with only a single neighhoBut our new ns simulation required this definition to
be changed to build fake links to short cut the routes foedéiht packet flows. Because these
fake links are set up based on flows, each flow from the fakeceswrill need a fake link.
The flows that go through one source connector may reachliffeross-link connectors at
the destination border, so there will be fake links conmertinis connector to some different
connectors. Different flows going into one connector are sedifferent fake links, which
are defined as fake targets here. Thus, the connector cowith@alefined aan NsObject
with one neighbor and a list of fake target&Vhen the fake connection is enabled in a
connector, this connector would have a list of fake link&éféargets), and would classify
the incoming packets by flow id and send them to the correcirdg®ons.

The connector class will maintain a list of fake targets. ©amew fake link is set up from
this connector, it will be added to this connector’s fakgéatist (this is done by the shortcut
method of the Border class).

2.2.6 Border: Border is a new class added to the ns. It is the most importass in the domain
simulation. A border object represents the active domaihercurrent simulation. The main
functionality of the border class includes:

e Initializing the current domain: setting up the current égamid, assigning nodes to
different domains, setting up the date exchange etc.

e Collecting and maintaining information about the simwatobjects, such as a list of
traffic source objects, a list of the connector objects ardtaft the fake link objects
maintained by the border object.

e Implementing and controlling the fake traffic sources: isgtup and updating fake-
links, etc.

The border object is set up first, and its reference are maaiéahle to all objects in the
simulation. A lot of other ns classes need to refer to theabdes and methods in the border
object. The border class has an array which for each siroulatbject stores the domain
name to which this object belong. This information is caiecfrom domain description
files that are created by the domain object implementatidre fames are created for the
files assigned to each domain to store some persistent datkechdor inter-domain data
exchange and restoration of the state from the checkpoint.

All traffic source objects created in the simulation areediorThese traffic sources can be
deactivated or activated using the flow id. All the conneotajects created in the simulation

are stored. These connectors are identified by the two nodekith they are connected.

The connector information is used to create fake links.

8

The traffic sources outside the current active domain aretgeted while setting up the
network and domains. When one fake link is set up for a flowtridéic source of this flow
will be reactivated. The border class searches the trafficcgdist to find the object, and
calls the reactivate() method of the matching source olbgectactivate this flow.

When the border receives flow information from other domainwill set up a fake link
for this flow, and initialize the parameter of the fake linkngsthe received statistical data.
When setting up a fake link, it goes through the connectortdidind the source and the
destination connector objects, and then short-cut theerbetween them by adding a fake
target into the source connector. All the created FakeLbjkas are stored in the border as
a linked list for further update.

Simulation i Simulation
Time | Time-
> Freeze- | resumed
. . . ' Yes *
Simulation ;
D1 > time stopped 4 >

Inter-
-»| D2 > F ----p| domain |.. -pomnt S I >
data required?
V4 exchange
’
l"
I'
'I
F4 Farmer \
’ co-ordinates <4
D3 » co-o s 0 S >
Information
exchange
between
domains . .
Simulation imulation
frozen resumes

Legend:
. . . L Domain (workers)
* In this case, say domain 2 requires check-pointing
@ Farmer

Figure 2: Progress of Simulation

2.2.7 Checkpointing This feature has been included in ns to enable easy rerure @iittulation
over the same simulation time interval. We chose@yaamite Checkpointing Librarj4]
because, unlike some other packages [8], it supports Opendfid does not require modifi-
cations to the kernel or the user program. As shown in Figuag the end of each iteration,
each process either saves its current state or restoresetfieys state of the simulation.

9

2.2.8 Infrastructure for Distributing Individual Domain S imulations: The infrastructure for dis-
tributing individual domain simulations across multiplepessors is based on a client-server
architecture. Multiple clients connect to a single sert@t handles the message passing.
The server is based on a process oriented approach to aemsddhhead of multiple threads/
processes. The server uses two maps (data structures)o &aep track of the number of
clients that have already supplied the delay data to théna@gisin domain and the other map
is toggled by clients that require to perform checkpointiddl messages to the server are
preceded byessage Identification Parametesshich identify the state of the client. A de-
cision whether to checkpoint the current state or rest@es#ved state is made by the client
based on the comparison of packet delays and losses betwesnlbsequent iterations.

A client indicates to the server whether it requires chealpa in the contents of the mes-
sage itself. A client which has to checkpoint causes all rothients to block until it has
resent the data to the server and the server has delivecetthé@ tlestination domain (in other
words a domain on another machine). This is achieved by exgthg the maps at the end
of each iteration during the simulation freeze.

The steps of collaboration of simulators and the servertaoe/s in Figure 2.

3 Performance

We use two sample network configurations, one with 64 and ther avith 27 nodes to test the
performance of our simulation method. Both of these netwark divided into classes of domains.
The rate at which sources generate traffic are varied to genmporal congestion in the network,
especially at the nodes at the border of the domain. All ssipcoduce packets of 500 bytes.

The 64-node network is designed with a great deal of symmé@the smallest domain size
is four nodes; there is full connectivity between these sodEour such domains together are
considered as a larger domain in which there is full conmaggtbetween the four sub-domains.
Finally, four large domains are fully connected and form émtire network configuration (cf.
Figure 3).

The 27-node network is a PINNI network[1] with a hierarch&taucture. Its smallest domain
is composed of three nodes. Three such domains form a laogeaid and three large domains
form the entire network (cf. Figure 4).

3.1 64-node network

Each node in the network is identified by three digitg.z, where0 < z,y, z < 3, that identify
domain, subdomain and node rank within the subdomain tolwthie node belongs.

Each node has nine flows originating from it. In addition,Feaode also acts as a sink to nine
flows. The flows from a node.y.z go to nodes:
ry.(z+1)%4 2y(z4+2)%4 zy.(z+3)%4
z.(y+1)%4.2 z.(y+2)%4.2 x.(y+ 3)%4.2

10

64 —node Network configuration

A sample source for flows
Sinks for the chosen source
Flows from the given source to its respective sinks

Figure 3: 64-node configuration showing flows from a sampterto all other nodes in a network

(x+1)%4.y.2 (x+2)%4.y.2 (x+3)%4.y.2
Thus, this configuration forms a hierarchical and symmaltstructure on which the simulation is
tested for scalability and speedup.

In a set of experiments, the sources at the borders of dorpadaice packets at the rate of
20000 packets/sec for half of the simulation time. The badtwof the link is 1.5Mbps. Thus,
certain links are definitely congested and congestion megesito some other links as well. For
the other half of the simulation time, these sources prod0&® packets per second. Since such
flows require less bandwidth than provided by the links ceoteteto each source, congestion is not
an issue. All other sources produce packets at the rate gbd€Kets/sec for the entire simulation.
For these experiments we defined sources that produced &Rytaffic and the speedup was
measured by comparing simulation times of domains to thalsition time of the entire network
(excluding synchronization time).

We conducted experiments with simulation time of 60 secqnith freeze times of 14.9999
seconds, thus with total of 5 freezes). The simulation speedth 16 domains (each with size of
four nodes) was approximately 15, as shown in Figure 5.

11

A sample source for flows
Sinks for the chosen source
Flows

Figure 4: 27-node configuration and the flows from the samptken

3.2 27-node configuration

The network configuration shown in Figure 4, the PINNI netaadopted from [1] consists of 27
nodes arranged into 3 different levels of domains contgitiinee, nine and 27 nodes, respectively.
Each node has six flows to other nodes in the configurationsareteiving six flows from other
nodes. The flows from a nodey.z can be expressed as:
zy.(z+1)%3 zy.(z 4+ 2)%3
z.(y + 1)%3.2 z.(y +2)%3.2
(x+1)%3.y.2 (x+2)%3.y.2
In these set of experiments, as above, the sources at therbafldomains produce packets
at the rate of 20000 packets/sec for half of the simulatioreti The bandwidth of the link is
1.5Mbps. Thus, congestion is definitely produced on celtaks shown above and congestion
may be produced on certain other links. For the other hali®@simulation, these sources produce
1000 packets which is less than the total bandwidth of tHeslsonnected to each of them. For
these experiments we assume that all sources are produBRdraffic. All other sources produce
packets at the rate of 100 packets/sec for the entire siranlatWe conducted experiments with
simulation time of 60 seconds (with freeze times of 14.9389%ads, thus with total of 5 freezes).
The speedup of simulation with 9 domains was well approxaiydi.7 compared with a single
network (sequential) run. The graphs of the results are stm@low in Figure 6.

12

Distributed Domain Simulation (Speedup) - 64 node
configuration

70
»
'§ 60 /
8 50 —— Single Domain -
% / Single Processor
E 40 / —— 4 Domain - 4
IE 30 Processor
K= / 16 Domain - 16
& 20 / Processor
=
E 10
7 /

0 T T T T
(0] 1000 2000 3000 4000 5000
Real Time(Seconds)

Figure 5: Simulation times for the domains of the differamés

4 Conclusions and Future Work

The need for scalable and efficient network simulators emxs with the rapidly growing com-
plexity and dynamics of the Internet. In this paper we introet] a collaborative on-line simulation
scheme to support real-time on-line collaborative sinuukat

Traditional decomposition only splits up the network tagpl, but the simulation is still exe-
cuted as a whole. Therefore, the decomposed parts haveharege a lot of information to keep
them synchronized with each other [3]. Our approach is to éxecute simulations of the split
parts of the network independently. Then, the split sinioitet are repeated using the output of the
other parts as their input until there is no significant dédfece between the results of two consec-
utive iterations. This approach greatly simplifies the $yonization between parallel parts and it
decreases its frequency, thus it can significantly speedagimulation of large networks. Our
results indicate that the superlinear speedup for theesiteglation step is possible and is the result
of the non-linear complexity of the network simulation.

In addition to the speedup, the advantages of the presenggidbchinclude fault tolerance,
ability to integrate simulations and models in one run angpsut for truly distributed execution.
When one of the participating processes fails, the rest sarthe old delay and packet loss data to
continue a simulation. When the only information availadib®ut a domain are delays across the
domain and its outflows, the simulation of the other partshefrietworks can directly use these
data to perform the simulation. Finally, the scheme can amented in the fully distributed
fashion, in which a domain is simulated using computatioesburces within itself.

Future work will focus on providing online data collectidn,increase the benefit of the real-
time simulation supported by this scheme. It should be ntitatithe benefits of the method are
multiplicative in regards to the benefits of any simulatattits employed to simulate individual

13

Distributed Domain Simulation (Speedup) - 27 node
configuration

70
= 60 / —Single Domain-Single
é 50 / Processor
(2]
i- 2 40 // ——3 Domain-3
S 8 30 Processor
=% 20 / 9 Domain-9
E 10 Lot Processor
n ;J//
0 &= \
0 5000 10000

Real Time in Seconds

Figure 6: Simulation times for the domains of different size

domains. Hence, the choice of the basic simulation tool oirtant. In the future experiments,
we plan to replace ns with the ultra-fast and memory effidR@ES [2], to provide several order
magnitude simulation speed improvements over the sel@isti

Finally, while this paper demonstrates that our approashtiié simulation of non-feedback
based traffic (UDP, CBR, etc.), we plan to verify our implenation on TCP traffic as well.

References

[1]

[2]

[3]

[4]

[5]

S. Bhatt, R. Fujimoto, A. Ogielski, K. Perumalla, “PdetlSimulation Techniques for Large-
Scale NetworksTEEE Communications Magaziri®98.

C. D Carothers, D. Bauer, S. Pearce, “ROSS: A High-Pertorce, Low Memory, Modu-
lar Time Warp System,” IfProceedings of the 14th Workshop on Parallel and Distridute
Simulation pp. 53-60, May 2000.

R.M. Fujimoto, “Parallel Discrete Event Simulatiol@ommunications of the ACMol. 33,
pp. 31-53, Oct. 1990.

K.A. Iskra, F. van der Linden, Z.W. Hendriske, B.J. Ovader, G.D. van Albada, P.M.A.
Sloot, “The implementation of Dynamite - an environmentragrating PVM tasks,Oper-
ating Systems Reviewol. 34, no. 3, pp. 40-55, July 2000.

L.R. Klein, “The LINK Model of World Trade with Applicatin to 1972-1973”, irQuantita-
tive Studies of International Economic RelatipRsKenen, Ed., Amsterdam: North Holland,
1975.

14

[6]

[7]
[8]

[9]

[10]

[11]

[12]

L.A. Law, M.G. McComas, “Simulation Software for Commiaation Networks: the State
of the Art,” IEEE Communication Magazineol. 32, pp. 44-50, 1994.

NS(network simulatoy. http://www-mash.cs.berkeley.edu/ns.

James S. Planck, Micah Beck, Gerry Kingsley, “Libckptaifsparent Checkpointing under
Unix,” Proc. USENIX Winter 1995 Technical Conferenganuary 16-20, 1995.

Y. Shi, N. Prywes, B. Szymanski, A. Pnueli, “Very High Le\Concurrent Programming,”
IEEE Trans. Software Engineeringol. SE-13, pp. 1038-1046, Sep. 1987.

B. Szymanski, Y. Shi, N. Prywes, “Synchronized Disttikbd Termination,IEEE Trans. Soft-
ware Engineeringvol. SE-11, pp. 1136-1140, Sep. 1987.

T. Ye, D. Harrison, B. Mo, S. Kalyanaraman, B. SzymangkiVastola, B. Sikdar, H. Kaur,
“Traffic Management and Network Control Using Collaborat®n-line Simulation,Proc.
International Conference on Communication, ICC20@lappear.

M. Yuksel, B. Sikdar, K. S. Vastola and B. Szymanski, “#kload generation for ns Simula-
tions of Wide Area Networks and the InternePfoc. Communication Networks and Dis-

tributed Systems Modeling and Simulation Conferemge 93-98, San Diego, CA, USA,
2000.

15

