Proc. Parallel and Distributed Computing Workshop at 12th Int. Parallel Processing Symposium
(IPPS/SPDP 1998), Orlando, FL, March 1998, LNCS 1388, Springer Verlag, Berlin, 1998, pp. 147-158

Runtime Support for Virtual BSP Computer *

Mohan V. Nibhanupudi and Boleslaw K. Szymanski

Department of Computer Science
Rensselaer Polytechnic Institute
Troy, NY, USA 12180-3590
{nibhanum, szymansk }@cs.rpi.edu

Abstract. Several computing environments including wide area net-
works and nondedicated networks of workstations are characterized by
frequent unavailability of the participating machines. Parallel computa-
tions, with interdependencies among their component processes, can not
make progress if some of the participating machines become unavailable
during the computation. As a result, to deliver acceptable performance,
the set of participating processors must be dynamically adjusted follow-
ing the changes in computing environment. In this paper, we discuss the
design of a run time system to support a Virtual BSP Computer that
allows BSP programmers to treat a network of transient processors as a
dedicated network. The Virtual BSP Computer enables parallel applica-
tions to remove computations from processors that become unavailable
and thereby adapt to the changing computing environment. The run
time system, which we refer to as adaptive replication system (ARS),
uses replication of data and computations to keep current a mapping of
a set of virtual processors to a subset of the available machines. ARS
has been implemented and integrated with a message passing library for
the Bulk-Synchronous Parallel (BSP) model. The extended library has
been applied to two parallel applications with the aim of using idle ma-
chines in a network of workstations (NOW) for parallel computations.
We present the performance results of ARS for these applications.

1 Introduction

Several computing environments are characterized by frequent unavailability of
the participating machines. Machines that are available for use only part of the
time are referred to as transient processors [5]. A transition of the host ma-
chine from an awvailable to a non-available state is considered a transient failure.
Such model of a network of transient processors applies to several computing
paradigms, including wide area networks such as the Internet and local net-
works of nondedicated workstations (NOWs). In the latter case, a workstation
is available for the parallel computation only when it is idle - that is, when it is
not being used by its owner; a part of parallel computation running on a par-
ticular workstation must be suspended when its owner activity resumes. Use of

This work was partially supported by NSF Grant CCR-9527151. The content does
not necessarily reflect the position or policy of the U.S. Government.

Bolek
Text Box
 Proc. Parallel and Distributed Computing Workshop at 12th Int. Parallel Processing Symposium
(IPPS/SPDP 1998), Orlando, FL, March 1998, LNCS 1388, Springer Verlag, Berlin, 1998, pp. 147-158

workstations in this manner allows additional sequential programs to accumulate
work during idle times of the workstations [5]. However parallel programs, with
interdependencies among their component processes, can not make progress if
some of the participating workstations become unavailable during the compu-
tation. Parallel computations in such environments must adapt to the changing
computing environment to deliver acceptable performance.

Bulk-Synchronous Parallel (BSP) model [14] is a universal abstraction of a
parallel computer. By providing an intermediate level of abstraction between
hardware and software, BSP offers a model for general purpose, architecture
independent parallel programming. However the standard libraries for parallel
programming using the BSP model offer only static process management (the
initial allocation of processors cannot be changed while the parallel computation
is in progress) and thus cannot adapt to changing computing environments such
as the ones described above.

In this paper we discuss the design of run time support for Virtual BSP
Computer to enable parallel applications to adapt to the changing computing
environment. We refer to the run time system as the adaptive replication system
(ARS). We describe our approach to adaptive parallel computations in section 2
and compare it to related work in section 3. In sections 4 and 5, we discuss the
design and implementation of the adaptive replication system. In section 6, we
briefly discuss the performance of the adaptive replication system and present
performance results for two applications. Finally, we summarize our work and
conclude in section 7.

2 Adaptive Parallel Computations in Virtual BSP
Computer

2.1 Model of Parallel Computation

In the Bulk-Synchronous Parallel model [14] the parallel computation proceeds
as a series of supersteps comprising of computation and communication opera-
tions. All the participating processors synchronize at the end of the superstep.
In our model of parallel computation based on BSP, the participating processors
are all in a globally consistent state at the beginning of each computation super-
step which eliminates the need for consistent checkpointing. The synchronization
at the end of a superstep also provides a convenient point for checking process
failures. Should some processes fail, surviving processes can start recovery of the
failed processes at this point.

2.2 Replication of Computations to Tolerate Transient Failures

Our approach relies on executing (replicating) the computations of a failed pro-
cess on another participating processor to allow the parallel computation to
proceed. By starting with the state of a failed process at the most recent syn-
chronization point and executing its computations, we are able to recreate the

state of the failed process. This allows the parallel computation to proceed with-
out waiting for the failed process. This approach takes into account the nature of
the computing environment in nondedicated NOWs in which the machine cycles
are relatively inexpensive since we are mainly using idle machine cycles.

Replicating the computations of a failed process is made possible by eagerly
saving the computation state of each process on a peer process at the beginning of
the computation step. We need to communicate only the part of the computation
state that is distinct in each component process, since the common part is readily
available at the process performing the recovery. The part of the computation
state that is distinct in each component process is referred to as the Specific
System State, SSS. That part of the computation state that is common across
the processes is referred to as the Common System State, CSS. The specific
system state needs to be saved on a peer process; the common system state
needs to be saved only if it is modified in the current superstep. However, unlike
the SSS, which must be saved on a backup process, the CSS can be checkpointed
locally on each process. Thus the cost of data replication includes the cost of
communicating the specific system state and the additional memory associated
with the checkpointing of specific and common system states.

Computations in which it is possible to recompute some or all of the com-
putation state can reduce the cost of data replication by specifying the code to
recompute the state. We refer to this code as the Recovery Function. In those
applications, execution of the recovery function is performed after restoring the
computation state (specific and common system states) from the backup. The
recovery function is also useful in applications in which the computation state is
not directly accessible. For example, in an application using a vendor supplied
random number generator, the computation state may include the state of the
random number generator which is encapsulated in the library and not directly
accessible to the user. A recovery function using the function calls from the ven-
dor library will be able to recreate the computation state in such a case. We have
used the recovery function to successfully recompute the computation state in
an application using such a random number generator.

3 Related Work

Piranha [3] is a system for adaptive parallelism based on the tuple-space based
coordination language Linda. Piranha implements master-worker parallelism and
hence is applicable to only coarse grained parallel applications involving inde-
pendent tasks. Synchronous parallel computations with the computation state
distributed among the component processes cannot be modeled with master-
worker parallelism. A limited form of adaptive parallelism can be achieved by
dynamically balancing the load on the participating workstations. Parform [2] is
a system for providing such capability to parallel applications.

Leon et. al. [6] discuss implementation of a consistent checkpointing and roll
back mechanism to transparently recover from individual processor failures. The
consistent checkpoint is obtained by forcing a global synchronization before al-

lowing a checkpoint to proceed. CoCheck [12] tries to blend the resource manage-
ment capabilities of systems like Condor [7] with parallel programming libraries
such as PVM [13] and MPI [4]. Tt provides consistent checkpointing and process
migration mechanism for MPI and PVM applications. Stardust [1] is a system
for parallel computations on a network of heterogeneous workstations. It cap-
tures the state of the computation at the barrier synchronization points in the
parallel program. A major limitation of Stardust’s mechanism of using naturally
occurring synchronization barriers is that it limits the number of points where
an application can be stopped and migrated.

Our approach allows for a component process executing on a user’s machine
to be suspended at any point during the computation. This makes our approach
much less intrusive to the individual owners of the workstations and encour-
ages them to contribute their workstations for additional parallel computations
during their idle times. For synchronous parallel applications, our approach pro-
vides a less expensive alternative to checkpointing on the disk by replicating
the computation state of component processes of the parallel computation on
peer processes, which can be considered a form of diskless checkpointing. In ad-
dition, our approach to replicating computations of a failed process can easily
be extended to work across heterogeneous architectures by providing automatic
conversion of data representations.

4 Design of the Adaptive Replication System

The Adaptive Replication System is designed within the framework of the BSP
model [14] and developed using the Oxford BSP Library [8]. ARS consists of dy-
namic extensions to the Oxford BSP library and the adaptive replication scheme.
The adaptive replication scheme is designed in two levels of abstraction: replica-
tion layer and user layer. The replication layer implements the functionality of
the adaptive replication scheme including the protocol for recovery and replica-
tion, as a set of primitives. However, these primitives are not directly accessible
to the applications; the functionality provided by the replication layer can be
accessed only through the user layer. By designing the runtime support in two
layers, we intend to insulate the applications from changes in the implemen-
tation. By implementing the replication layer for other architectures, we can
maintain the portability of applications using our library.

4.1 Extensions to the Oxford BSP Library

The Oxford BSP Library implements a simplified version of the Bulk-Synchronous
Parallel model. It is simple, yet robust and was successfully used by us for im-
plementing plasma simulation on a network of workstations [9]. We extended
the Oxford BSP Library to provide dynamic process management and virtual
synchronization as described in [10]. The extensions include the following fea-
tures: the component processes can be terminated at any time; new processes
can be created to join the computation; and component processes can perform
synchronization for one another.

4.2 Protocol for Replication and Recovery

For the prototype under implementation we make the following assumptions. The
supersteps that make use of adaptive replication contain computation only. This
is not overly restrictive, since a superstep containing computation and communi-
cation can always be expressed as a sequence of computation and communication
supersteps. This assumption greatly simplifies the design of the protocol for the
recovery of failed processes. We assume a reliable network, so a message that is
sent by a process will always be received at the destination. We further assume
that one of the processes is on a host owned by the user and hence this process
is immune to transient failures. We refer to this reliable process as the master
process. The master process coordinates recovery from transient failures without
replicating for any of the failed processes.

The participating processes other than the master process are organized into
a logical ring topology in which each process has a predecessor and a successor.
Each process in the ring communicates its specific system state to one or more
of its successors, called backup processes, before starting its own computations,
where it is stored as a backup copy (SSS-BACKUP). Each process also saves the
common system state as a local checkpoint (CSS-BACKUP). When a process fin-
ishes with its computations, it sends a message indicating successful completion
to each of its backup processes. The process then checks to see if it has received
a message of completion from each of its predecessors whose computation state
it holds. Not receiving a message in a short timeout period is interpreted as
the failure of the predecessor. The process then creates new processes - one for
each of the failed predecessors and restores the computation state of each new
process to that of the corresponding failed predecessor at the beginning of each
computation step. Restoring the computation state of the failed process involves

— restoring specific system state from the backup copy received from that pro-
cess (SSS-BACKUP),

— restoring common system state from local checkpoint (CSS-BACKUP), and

— executing the user supplied recovery function.

Each of the newly created processes performs the computations on behalf
of a failed process and performs synchronization on its behalf to complete the
computation step. In general, such a newly created process assumes the iden-
tity of the corresponding failed process and can continue participating in the
parallel computation as a legitimate member. However, for the sake of better
performance, this restored process is migrated to a new host if one is available.

4.3 Adaptive Replication Scheme: Replication Layer

The replication layer implements the functionality of the adaptive replication
scheme, including the protocol for replication and recovery. It provides the fol-
lowing functionality for a component process:

— Replicate the specific system state on the backup process as determined by
the replication protocol.

— Checkpoint the common system state locally on the same process.

— Detect the failure of the process whose computation state is replicated on
this process.

— Create a new process to execute the computations of a failed process. The
new process is created as a child of the process performing the recovery.

— Restore the computation state of the newly created process from the backup
copies of the specific and local system states.

— Execute the recovery function supplied by the user.

— Perform synchronization on behalf of a failed process.

— Terminate lagging processes whose computations have been successfully repli-
cated.

— Migrate the process to another available host.

The replication layer allows a process to detect and replicate for failed pro-
cesses. However functionality of this layer is not directly accessible to the user,
but only through the user layer.

4.4 Adaptive Replication Scheme: User Layer

The user layer provides the application programming interface (API) for the
Adaptive Replication System. It includes primitives that transparently allow
access to the functionality of the replication layer. The user layer provides the
following constructs:

— Constructs to specify data to be replicated and to specify memory manage-
ment for the replication data.
The construct bsp_replication data (see Figure 1 for the full syntax) al-
lows the user to specify data to be replicated. The user can specify static
storage for replication data by specifying a valid location for the store pa-
rameter. When no storage is explicitly specified by the user (by passing a
0 value), automatic memory management is assumed and the system allo-
cates dynamic storage for the replication data. It keeps track of the dynamic
storage across process replications.

— Constructs to specify computation state.
A predefined structure BspSystemState can be used to declare variables that
hold specific or common system state. The function bsp_init_system state
can be used to initialize a BspSystemState variable. Using the function
bsp_set_system state, the state variable can be made to hold variables
that comprise the computation state (specific or common system state). The
specific system state can be specified for a computation superstep using the
construct bsp_specific_system state and the common system state using
the construct bsp_common_system_state.

— Constructs to specify a computation superstep.
The constructs bsp_comp_sstep and bsp_comp_sstep_end are used to de-
limit a computation superstep. The replication and recovery mechanism is
embedded into these constructs; the process of data replication, detection of
failures and recovery is transparent to the user.

— Recovery Function.
The predefined function RecoveryFunction is executed after restoring the
computation state of a failed process from the backup. The user must supply
the code required for any operations required for recovering the computation
state of a failed process. Specification of the recovery function is optional.

Figures 1 - 4 illustrate the use of BSP constructs for adaptive parallelism.
These examples were taken from a C++ implementation of a plasma simulation
using the adaptive replication system. Figure 1 shows the constructs provided
by the user layer described above. Figure 2 illustrates the use of these constructs
to specify replication data. Figure 3 illustrates the use of the constructs to spec-
ify the computation state of a component process. Figure 4 illustrates the use
of the extended BSP construct for the computation superstep. The specific and
local system states must be specified for each computation superstep. The com-
putation superstep requires no additional constructs; adaptive replication and
recovery of failed computations is done transparently.

/* Constructs to specify a computation superstep */
bsp_comp _sstep(int sstepid);
bsp_comp_sstep_end(int sstepid);

/* Constructs to specify replication data and allocate storage */
bsp_replication_data(void* data, long nbytes, void* store,

char* tag, int subscript);
bsp_setup_replication_environment();

/* Constructs to specify Computation State */
struct BspSystemState;
bsp_init_system_state(BspSystemState* bss);
bsp_reset_system_state(BspSystemState* bss);
bsp_set_system_state(BspSystemState* bss);
bsp_specific_system_state(BspSystemState* bss);
bsp_common_system_state(BspSystemState* bss);

RecoveryFunction();

Fig. 1. Adaptive parallel extensions to the Oxford BSP Library (User Layer)

5 Implementation of the Adaptive Replication System

We have implemented the adaptive replication system as additional layers on top
of the Oxford BSP library. The ARS is available as a library of C functions and

/* case (a): (static) storage available for replication data */
bsp_replication_data((void*) &plasma region, sizeof(plasma. region),
(void*) &plasma. region_backup,
“PLASMA REGION”, -1);

/* case (b): storage to be allocated by the BSP library */
bsp_replication_data((void*) elec_pos,
PTMAXNP * sizeof(ChargedParticle),
0,“PLASMA _POS”, -1);

/* case (c): A 2 dimensional array, with no static storage available
for replication data */
for(i=0; i < SYSLEN_MX; i++)
bsp_replication_data((void*) ForceFieldX[i],
SYSLEN_Y*sizeof(Scalar),
0,“FORCE_FIELD X”, i);

Fig. 2. Use of extended-BSP constructs to specify replication data

BspSystemState* plasmaState = new BspSystemState;
bsp_init_system state(plasmaState);
/* Specify the data for the state variable, using symbolic names */
bsp_set_system _state(specific, “PLASMA_REGION”, -1);
bsp_set_system _state(specific, “PLASMA_POS”, -1);
for(i=0; i < SYSLEN_MX; i++)

bsp_set_system _state(specific, “FORCE_FIELD_X", i);

Fig. 3. Use of extended-BSP constructs to specify computation state

can be used by parallel applications in the same way a BSP library is used. In
implementing the prototype, we have assumed a replication level? of one. That is,
a process can act as a backup for its immediate predecessor only. The prototype
is implemented on Sun Sparcstations using the Solaris (SunOS 5.5) operating
system. It makes use of the checkpoint based migration scheme of Condor [7]
for process migration. It should be noted that our protocol for adaptive replica-
tion scheme can be applied to other message passing libraries such as MPI [4].

% Replication level is the number of processes on which the computation state of a
process is replicated. It defines the maximum number of successive (transient) pro-
cessor failures (according to the order of the processes in the logical ring topology,
see section 4.2) that the adaptive replication system can tolerate. Refer to [10] for
more details.

bsp_specific_system_state(plasmaState);
bsp_local_system state(localCharge);

bsp_comp_sstep(bsp_step);
CalcEField(vpm, energy);
InitChargeDensity();

energy.ke(0.0);

Advance(elec_pos, elec_vel);
bsp_comp_sstep_end(bsp_step);

Fig.4. A BSP computation superstep with adaptive replication.

The only requirement is that the application be written in the BSP-style, as a
sequence of computation and communication supersteps.

5.1 Failure Detection and Replication of Computations

In the adaptive replication scheme, a process starts replicating for its predecessor
when it concludes that its predecessor has failed. Failure detection is a tricky
issue in distributed system design as there is no way to distinguish between a
failed process and a process that is simply slow. In a heterogeneous network
the computations on individual workstations often proceed at different speeds
owing to differences in processor speed, characteristics of work load on the in-
dividual machines, etc. Due to the coarse grain nature of the applications, gang
scheduling [11] is not required. To compensate for the differences in processing
speed, a grace period can be used to allow a slow predecessor to complete its
computations before concluding that the predecessor has failed. However, using
a grace period also delays replicating for the predecessor when required. Our
implementation allows the user to specify the grace period. However, based on
experimental results, we have not used a grace period with the applications that
we tested. A process starts replicating for its predecessor if it has not received
a message of successful completion from the predecessor by the time it finishes
its own computations. However, to avoid unnecessary migrations, we abort the
replicated process and allow the predecessor to continue if the predecessor fin-
ishes its computations before the replicated process or before the synchronization
is complete. This results in a nice property of the adaptive replication scheme
- any processor that is twice as slow as its successor and slower than all other
processes is automatically dropped from the parallel computation and a new
available host is chosen in its place. This allows the application to choose faster
machines for execution from the currently available machines.

5.2 Coordination of Distributed Events

The adaptive replication system uses a combination of signals, messages and
locking to coordinate and control events that occur at the component processes.
Following is a list of events that are handled by ARS.

— Completion of the computation by a component process is communicated to
the successor by a message indicating successful completion.

— Migration of a process to another available host is achieved by checkpoint-
ing the process and restarting the process from the checkpoint on the target
host. The process can restart only after the checkpointing is complete. Co-
ordination of these events is handled through file locking.

— A process delayed due to a transient failure of its host and whose computa-
tions have been successfully replicated needs to be terminated. Termination
of a lagging process is done by sending the process a SHUTDOWN message.

— A newly created process replicating for a delayed process needs to be termi-
nated if the delayed process manages to finish its computations before the
new process. Termination of the replicated process is done by the parent
process which created the new process.

6 Performance of Adaptive Replication System

The cost of data replication includes the additional memory required for the
replicated data and the cost of communicating the computation state to the
backup processes. To minimize overhead during normal execution, our approach
seeks to overlap communication associated with data replication with the com-
putation. Overhead incurred by data replication depends on the characteristics
of the application as well as the characteristics of the communication medium
such as the network bandwidth, latency of communication protocols, ability of
the network to overlap communication with computation, etc. Applications in
which the data replication can be done without a significant delay to computa-
tion are referred to as computation dominant applications. Applications in which
the data replication incurs a significant overhead are referred to as data replica-
tion dominant applications. We are testing our adaptive replication scheme using
simulated transient processors with exponential available and non-available pe-
riods. A timer process maintains the state of the host machine. Transitions of the
host machine from an available state to a nonavailable state and vice versa are
transmitted to the process via signals. The process is suspended immediately if
it is performing a computationally intensive task such as a computation super-
step. Otherwise, the host is marked as unavailable and the process is suspended
before entering a computationally intensive task.

The Adaptive replication system has been applied to two different applica-
tions that illustrate the performance of the scheme for computation dominant
applications and data replication dominant applications. Figure 5 shows the per-
formance of the adaptive replication system for computation dominant and repli-
cation dominant application respectively. For computation dominant application

the performance of ARS is comparable to that of dedicated processors. In the
maximum independent set problem, there is no data to be replicated and the
overhead of adaptive runs is due to replication of failed computations and migra-
tion of processes. For replication dominant applications, the adaptive replication
system incurs the overhead of replication of computation state. In plasma sim-
ulation, data replication accounts for about 50% of the execution time of the
adaptive runs and recovery of failed computations accounts for 25%. Even in
this case, execution time of the parallel application when using the adaptive
replication is significantly less than the execution time on transient processors
without using adaptive replication. For large computations that do not fit on a
single machine, adaptive replication ensures that the parallel runs using transient
processors complete in a reasonable time. These measurements were obtained us-
ing Sun Sparc 5 machines connected by a relatively slow 10 Mbits/s Ethernet.
With a faster communication network, the overhead due to data replication will
be smaller and the performance of data replication dominant applications will
be correspondingly higher.

30000 T T T T 30000

25000 4 25000

20000 |- 4 20000 |- X

Dedicated Processors ——
Adaptive Replication --- -
Transient Processors -

2
Eg Dedicated Processors --—+--
Ee Adaptive Replication ------
§8 15000 | Transient Processors - |

10000 4 10000 -

5000 [. 4 5000 [

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

9 8
Degree of Parallelism Degree of Parallelism

Fig. 5. Plot illustrating the performance of adaptive replication system for (a)
computation dominant application (maximum independent set problem) and
(b) replication dominant application (plasma simulation). The plot shows the
execution times on transient processors using adaptive replication, on transient
processors without adaptive replication and on dedicated processors. Execution
time on a single processor is shown for comparison purposes.

7 Conclusions

We have designed a run time system to support a Virtual BSP Computer that
allows a BSP programmer to treat a network of transient processors as a dedi-
cated network. The runtime system is based on an adaptive parallelism approach
using eager replication of computation state and replication of computations.

The adaptive replication system is applicable to parallel applications written
in BSP-style and is developed as a set of layers on top of the Oxford BSP li-
brary. By separating the implementation of the adaptive replication scheme from
the application programming interface, our design allows for extensibility and
portability. The Virtual BSP Computer can be ported to other message passing
libraries such as MPI by reimplementing the replication layer, while providing
the same interface to application programmers. The run time system has been
successfully applied to two different parallel applications using idle machines in
a network of workstations.

References

1.

10.

11.

12.

13.

14.

Gilbert Cabillic and Isabelle Puaut. Stardust: an environment for parallel pro-
gramming on networks of heterogeneous workstations. J. Parallel and Distributed
Computing, 40(1), Jan 1997.

Clemens H. Cap and Volker Strumpen. Efficient Parallel Computing in Distributed
Workstation Environments. Parallel Computing, pages 1221-1234, 1993.

Nicholas Carriero, Eric Freeman, Gelernter, and David Kaminsky. Adaptive Par-
allelism and Piranha. Computer, 28(1):40-49, January 1995.

Message Passing Interface Forum. MPI: A Message Passing Interface Standard.
Technical report, Message Passing Interface Forum, May 5, 1994.

L. Kleinrock and W.Korfhage. Collecting Unused Processing Capacity: An Anal-
ysis of Transient Distributed Systems. IEEE Transactions on Parallel and Dis-
tributed Systems, 4(5), May 1993.

J. Leon, Allan L. Fischer, and Peter Steenkiste. Fail-safe PVM: A portable package
for distributed programming with transparent recovery. Technical report, School
of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, Feb 1993.
Michael J. Litzkow, Miron Livny, and Matt W. Mutka. Condor - A Hunter of Idle
Workstations. In Proc. 8th Intl. Conf. Distributed Computing Systems, San Jose,
California, June 13-17, 1988.

Richard Miller. A Library for Bulk-synchronous Parallel Programming. In British
Computer Society Workshop on General Purpose Parallel Computing, Dec 1993.
M. V. Nibhanupudi, C. D. Norton, and B. K. Szymanski. Plasma Simulation On
Networks Of Workstations Using The Bulk-Synchronous Parallel Model. In Proc.
Intl. Conf. on Parallel and Distributed Processing Techniques and Applications
(PDPTA’95), Athens, Georgia, Nov 1995.

M. V. Nibhanupudi and B. K. Szymanski. Adaptive Parallelism In The Bulk-
Synchronous Parallel model. In Proceedings of the Second International Euro-Par
Conference, Lyon, France, Aug 1996.

J. K. Ousterhout. Scheduling techniques for concurrent systems. In Proc. Third
Intl. Conf. Distributed Computing Systems, Oct 1982.

G. Stellner. CoCheck: Checkpointing and process migration for MPI. In Proceed-
ings of the International Parallel Processing Symposium, April 1996.

V. S. Sunderam. PVM: A Framework for Parallel Distributed Computing. Con-
currency: Practice and Ezperience, 2(4):315-339, 1990.

Leslie G. Valiant. A Bridging Model for Parallel Computation. Communications
of the ACM, 33(8):103-111, August 1990.

This article was processed using the IXTEX macro package with LLNCS style

