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Abstract 
We discuss synchronization protocols for Parallel Discrete 
Event Simulations. We start with traditional conservative 
protocols based on lookahead and optimistic ones 
employing rollbacks. Next, we observe that a logical 
process may be able to change the simulation past locally 
(without involving other logical processes). This ability is 
named lookback, and is a basis for a new class of PDES 
synchronization protocols, named lookback-based protocols. 
Another notion, impact time, is introduced to identify the 
maximum amount of lookback. We also show that lookback 
is always larger than or equal to lookahead, and lookback-
based protocols can circumvent the execution time limit 
imposed by the cumulative execution time of events on the 
critical path on traditional conservative protocols and 
optimistic protocols with no optimization. 
 
INTRODUCTION 

Simulation is the technology that uses special devices, 
in most cases digital computers, to replicate the behavior of 
the system under investigation.  A simulation can, if 
constructed correctly, represent the real system with a high 
degree of fidelity. The dynamic characteristics of the real 
system can then be easily inferred from the results produced 
by the simulation. 

Discrete event simulation is a special class of 
simulations where variables representing physical states are 
discretized and change only at a countable number of points 
in the simulation time. An event represents a change in the 
state variables. The simulation time at which the event 
occurs is called the timestamp of the event. Many real 
systems can be abstracted in this way, making discrete event 
simulation a useful technique in practice. 

The goal of Parallel Discrete Event Simulation (PDES) 
is to run discrete event simulation on multiple processors, in 
order to simulate large-scale complex systems as fast as 
possible. Because of the assumption that event granularity is 
so small that little benefit can be obtained by parallelizing 
single events, the only way of achieving substantial parallel 
efficiency is to execute events concurrently on different 
processors. However, events executed in parallel cannot 

affect each other, hence comes the fundamental problem of 
PDES [1]: how do we know that events do not affect each 
other without actually performing the simulation? 

The research of PDES is largely centered on the 
solution of this fundamental problem. Parallel simulation 
results match sequential execution results if the causality 
between events is preserved during the parallel execution. 
Traditional PDES approaches thus focus on synchronization 
mechanisms that would not violate the causality constraint. 
We realized, however, the preserved causality is merely a 
sufficient, not necessary, condition to ensure matching of 
the results of parallel and sequential simulations. With 
relaxed causality constraint, more parallelism becomes 
available. 

In this paper, we first give a brief overview of current 
PDES research. We then present a new class of 
synchronization protocols that differ significantly from 
classical PDES protocols. We will also discuss some 
fundamental issues in the PDES literature, such as 
lookahead, supercriticality, as well as several new concepts, 
such as lookback, impact time, which may bring new 
insights into the PDES research. 
 
CONSERVATIVE AND OPTIMISTIC 

The advent of PDES was marked by the invention of 
conservative protocols, the first of which was the null 
message protocol, also known as the Chandy/Misra/Bryant 
protocol [2,3], developed in 1979. Conservative protocols 
require each logical process to broadcast to its neighbors, in 
the form of null messages, a lower bound on the timestamp 
of events it will send to other logical processes, or Earliest 
Output Time (EOT). By listening to the null messages from 
all neighbors, each logical process can determine the lowest 
timestamp of any events it will receive, or Earliest Input 
Time (EIT). If the EIT is larger than the timestamp of the 
earliest event in its local event list, the logical process is 
certain that this earliest event can be processed without 
violating the causality constraint. Otherwise, the logical 
process has to block until the earliest local event is safe to 
be processed. 
 In 1985, Jefferson proposed a new synchronization 
protocol, called Time Warp [4]. In the Time Warp and other 
optimistic protocols, a logical process is allowed to 
aggressively process local events, and to send to other 
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logical processes new messages generated by the event 
execution. However, when an event arrives with a 
timestamp smaller than the local simulation time, which is 
called a straggler, a causality error is triggered. All 
processed local events later than the straggler must be 
undone, and anti-messages must be sent to other logical 
processes to cancel messages sent during the execution of 
these events. Ironically, although they are called optimistic, 
these protocols are rather pessimistic, because they assume 
that every operation is unsafe and subject to a rollback, and 
therefore they have to save every change made to the state 
variables in order to be able to recover from the erroneous 
event execution. The Global Virtual Time (GVT) gives a 
lower bound on the timestamp of the earliest unprocessed 
event in the simulation. Any event processed with 
simulation time earlier than the GVT is committed, in the 
sense that it will never be rolled back. For such events, the 
logical process can reclaim the memory used to store the 
associated state (or state changes if incremental state saving 
is used). 

Research on PDES has been largely dominated by the 
studies of conservative and optimistic protocols and 
comparison of their performance. Unfortunately, both types 
of protocols have their strengths and weaknesses. Efficiency 
of conservative protocols is limited by the amount of 
lookahead, which does not exist in many simulation models. 
Additionally, null messages required to collaboratively 
advance the simulation clock in conservative protocols often 
incur significant overhead. As a result, parallelized 
execution may be even slower than the sequential one. On 
the other hand, optimistic protocols do not depend on 
lookahead and null messages. However, state saving usually 
requires storing and accessing large amounts of memory. 
This negatively impacts the speed of execution because of 
the relatively slow improvement in the memory access 
speed within the current VLSI technology. The handling of 
anti-messages complicates the simulation model 
development. Furthermore, as Nicol and Liu pointed out [5], 
optimistic models may exhibit unexpected behavior caused 
by inconsistent messages resulting from rollback 
inconsistencies and stale states. 
 
RELAXED CAUSALITY CONSTRAINT 

The causality constraint dictates that events must be 
processed in the timestamp order, because otherwise 
causality errors might occur, which may lead to incorrect 
simulation results. Both conservative and optimistic 
protocols obey the causality constraint. Conservative 
protocols strictly avoid causality errors, while optimistic 
protocols take a detection and recovery approach.  

However, causality errors may not always violate 
simulation correctness. Events can be processed in any 
order, as long as the simulation results are not affected. The 
key to ensure the correctness is to use a different event 
handler to process events, an event handler that is aware of 
the out-of-timestamp status and able to repair the causality 
error. 

One example that has always been used to illustrate the 
importance of preserving the causality constraint is the 
missile and tank example. A missile is fired, and the tank is 
hit and explodes. One would argue that if the causality 
constraint is violated, an observer may see the explosion 
first, then the fire. However, if the observer is clever enough 
to remember events, he would not be surprised to see the 
explosion without missile firing, and can construct the 
complete scenario once the fire event is received. 

When a logical process is free to process any event, a 
natural choice is to select the earliest local event whose 
timestamp becomes the current simulation time. What 
would happen if later there are events received from other 
logical processes? Events with a timestamp larger than the 
current simulation time can be simply put into the local 
event list for later processing, while events with a timestamp 
smaller than the current simulation time, or stragglers, are 
better to be processed as soon as possible.  

This requires that logical processes must be capable of 
processing stragglers correctly, in other words, to change 
the past. Optimistic protocols, in fact, are able to process 
stragglers, if the rollback and reprocessing of affected 
events are viewed as part of the straggler handler. However, 
to avoid anti-messages, it must be guaranteed that the 
logical process alone is able to handler stragglers, and we 
define this ability to change the past locally as lookback [6]. 
 
LOOKBACK 

Formally, if at simulation time T, a logical process can 
process stragglers with timestamp down to T-L, without 
sending anti-messages, this logical process is said to contain 
a lookback of L. The window [T-L,T] is called the lookback 
window, and the lower end of the window, T-L, is referred 
to as the virtual lookback time (VLT). The procedure used 
to process stragglers that fall in the lookback window is 
named the lookback procedure. 

Lookback-based synchronization protocols were 
originally aimed at reducing the rollback frequency in 
optimistic simulation. Stragglers with a timestamp larger 
than the virtual lookback time can be processed by the 
lookback procedure, thus the rollback and recovery 
procedure can be less frequently invoked. 

It was found out later that lookback-based protocols can 
completely eliminate rollbacks. If logical processes choose 
to advance the simulation clock cautiously such that all 
stragglers received later would have a timestamp larger than 
the virtual lookback time, the lookback procedure alone is 
sufficient to handler all stragglers, rendering the rollback 
and recovery procedure totally unnecessary. Denoting as 
LBTS the lower bound on the timestamp of any events that 
will be received later, the constraint that the LBTS must 
always be larger than or equal to the virtual lookback time is 
referred to as the lookback constraint.  
 In order to adhere to the lookback constraint, logical 
processes, before processing an event, must determine if the 
execution of the event would violate the lookback 
constraint. This requires that logical processes be able to 



pre-compute the virtual lookback time without executing the 
event. The pre-computation may be very fast. For example, 
in an FCFS (First-Come-First-Served) server, when a packet 
is about to leave the server, the virtual lookback time after 
the packet leave is equal to the arrival time of the same 
packet, because the departure event cannot be affected by 
any other packet arriving later. In this case, the pre-
computation of the virtual lookback time may need just a 
few memory references. 
 The following gives the main algorithm of the 
lookback-based protocols where rollbacks never occur. By 
comparing the timestamp of the earliest local event e with 
the current simulation time, it can be determined if e is a 
normal event or a straggler. Either the normal event handler 
or the lookback procedure can then be chosen to process 
event e. 
 

while (the termination condition is not met) 
  find the earliest local event e 
  pre-compute VLT based on e 
  if VLT > LBTS 
   process e 
  else 
   update LBTS 
  end if 

end while 
 
 Depending on the policy adopted to estimate LBTS, 
several variants can be derived. LB-GVT uses GVT as the 
estimation of LBTS, while LB-EIT approximates LBTS 
with EIT. Because the computation of GVT does not take 
into account the interconnections between logical processes, 
it is a less accurate estimation of the LBTS, but it is also less 
sensitive to the topology. In contrast, the LB-EIT protocol 
requires that each logical process maintain its own EIT 
based on EOTs received from neighbors, thus helping to 
improve the accuracy of the estimation. We showed that 
LB-GVT is deadlock free, but LB-EIT is prone to deadlock, 
when a cycle of logical processes is formed [6]. Every 
logical process in the cycle assumes the earliest event will 
come from others. Hence, for the LB-EIT protocol we have 
developed an algorithm for deadlock detection and recovery 
that does not rely on the existence of lookahead. 
 
LOCAL ROLLBACK 

The aforementioned lookback procedure attempts to 
process stragglers directly. For some simulation models, the 
direct lookback procedure may be quite simple. In an FCFS 
server, for instance, a straggler packet can be simply 
inserted into the proper place in the waiting list, instead of 
being appended to the tail of the waiting list. However, it 
might be very difficult to implement the direct lookback 
procedure, especially if there are more than two types of 
events in a logical process, because in such cases the 
number of combinations of event arrivals increases 
exponentially. 

 A universal lookback procedure can be used when the 
direct lookback procedure is too complicated to implement. 
The universal lookback procedure works almost the same 
way as optimistic protocols. Upon arrival of a straggler, the 
universal lookback procedure rolls back all processed events 
with a timestamp larger than the timestamp of the straggler, 
in decreasing timestamp order (no anti-messages are 
necessary during this step). Then, it processes the straggler, 
and finally re-executes the events that have been rolled 
back, in increasing timestamp order. 

 It is interesting that lookback-based protocol with the 
universal lookback procedure fall into the class of 
synchronization protocols known as local rollback [7], the 
idea of which is to avoid anti-messages but to allow events 
to be aggressively processed. Two such protocols previously 
known, SRADS with local rollback [7] and Breathing Time 
Window [8] require logical processes to work 
collaboratively, by exchanging event information, to avoid 
sending any erroneous message. In lookback-based 
protocols, however, each logical process alone can 
determine whether a message can be sent out (by allowing 
or disallowing execution of the corresponding event). 
 
IMPACT TIME 

It is evident now that lookback enables a new class of 
synchronization protocols for PDES. The subsequent 
question is, how do we know whether or not lookback 
exists, and, if it does, how large it is? 
 Clearly, since lookback is defined as the ability to 
change the past locally, it is not unreasonable to believe that 
any change made to local state variables can be aggressively 
repaired by some means, possibly by the universal lookback 
procedure. Because shared variables are usually excluded in 
the logical process paradigm, the lookback would be infinite 
if no messages have been sent out during the event 
execution. If the event execution produces messages, the 
lookback may not necessarily be zero. It actually depends 
on a property of the message being sent out. 
 We define the impact time of a message as the lower 
bound on the timestamp of any stragglers that can change or 
cancel the message. If the event execution produces exactly 
one message, the impact time of the message gives the 
largest lookback available. If a straggler comes with a 
timestamp smaller than the impact time of the message, this 
straggler cannot be processed by the lookback procedure, 
because it may change the message, thus requiring an anti-
message to be sent to cancel out the old message, which is 
strictly prohibited by the lookback-based protocols. If the 
event execution produces more than one message, the 
maximum amount of available lookback is equal to the 
maximum of the impact times of all messages. 
 Besides serving as an indication of how much lookback 
is available, the notion of impact time has another practical 
use. In optimistic simulation, if a straggler does not affect 
the message produced by an event later than the straggler, it 
is always beneficial not to deliver a corresponding anti-
message. Lazy cancellation [9] is one of the well-known 



techniques that can achieve this goal. Upon receiving a 
straggler, it does not immediately cancel out messages 
affected by the straggler. Instead it rolls back affected 
events, processes the straggler, and re-executes affected 
events. In the process, it compares the old messages with the 
new ones produced by the re-execution of events. If they are 
the same, anti-messages are suppressed. Otherwise, anti-
messages are still required. 
 The main problem of the lazy cancellation is that it 
delays the sending of the anti-messages. The delay causes 
incorrect messages to be more likely processed by other 
logical processes. Also, the comparison of messages incurs 
some overhead. 
 Impact time provides a better method to avoid 
unnecessary anti-messages. When a straggler comes, 
messages whose impact time is larger than the timestamp of 
the straggler need not be cancelled, because by the 
definition of impact time it is impossible for the straggler to 
affect those messages. Therefore, only a timestamp 
comparison is required for anti-message avoidance, and 
there is no delay in the propagation of anti-messages. 
 
MESSAGE STRENGTH 

What if the impact time of a message is equal to its 
timestamp, which means that there is no lookback? In such 
cases, there is still a chance we could suppress the sending 
of anti-messages. This depends on another property of a 
message, strength. 
 The strength of a message is defined to be the number 
of stragglers needed to affect this message. Since stragglers 
with a timestamp larger than the impact time of the message 
cannot affect the message by definition, here we only count 
the number of stragglers earlier than the impact time. 
 With the notion of message strength, a message may 
not need to be cancelled even though the straggler has a 
timestamp smaller than the impact time. Instead, the 
strength of the message is checked first. If it is already zero, 
an anti-message must be immediately sent out. Otherwise, 
the strength of the message is decremented, and the anti-
message is unnecessary. 
 
LOOKBACK VERSUS LOOKAHEAD 

We have introduced the concept of lookback and 
presented lookback-based synchronization protocols that 
may use either direct lookback procedure or universal 
lookback procedure. A question regarding the usefulness of 
lookback-based protocols still remains. How frequently 
would lookback be found in real world simulation models? 
 This question does not seem to have a straight answer. 
However, we found that there is a connection between 
lookahead and lookback, which justifies the usefulness of 
lookback-based protocols. 
 Strangely enough, lookahead, informally known as the 
ability to predict the future, has no consistent definition. In 
Fujimoto’s definition [10], a logical process is said to 
contain a lookahead of L at time T if it can schedule events 
with timestamp at least T+L. This definition does not 

consider the case in which previously scheduled messages 
may not have left the logical process. For instance, it is 
possible that the next outgoing message that is scheduled 
earlier contains timestamp T+L/2. The lookahead now is 
L/2, not L. 
 Another definition given by Jha and Bagrodia [11] 
defines lookahead as the differential between the EIT and 
the EOT. This definition does not consider local events. If 
the logical process is in the middle of processing a local 
event, the lookahead should be the differential between the 
timestamp of the local event being processed (which is the 
current simulation time) and the EOT. Therefore, a more 
accurate definition of lookahead at time T is the difference 
between the current simulation time and the EOT. 
 At the first glance, lookahead and lookback seem 
completely unrelated, because the former deals with the 
future, while the latter deals with the past. However, if the 
simulation clock is aggressively advanced, future will 
suddenly become past. The relationship between lookahead 
and lookback is therefore easy to understand. 
 We proved that lookback is always larger than or equal 
to lookahead [6]. When at time T there is a lookahead of L, 
we can aggressively advance the simulation clock to T+L, 
and process stragglers, if there are any. The property of 
lookahead guarantees that no message with a timestamp no 
smaller than T+L can be affected by stragglers earlier than 
T, making the lookback at least L. 

With careful examination, we can see that by lookahead 
a logical process actually makes two guarantees. One 
ensures the validity of the message, while the other 
promises a lower bound on the timestamp of messages that 
will be delivered later. Lookback removes the second 
guarantee, therefore it is no surprise that lookback is always 
more common than lookahead, and that lookback is exactly 
equal to lookahead when the timestamp of the sent message 
is also the lower bound on the timestamp of any future 
message, i.e., messages are delivered in timestamp order. 
  
SUPERCRITICALITY 

It has been generally accepted that conservative 
protocols, and even optimistic protocols without any 
optimization such as lazy cancellation (or impact time 
described above), cannot beat the cumulative execution time 
of events on the critical path [12]. In contrast, there are two 
cases in which lookback-based protocols can achieve 
supercriticality. 
 The supercriticality comes from independency, as 
observed by Gunter[13]. The property of lookback enables 
us to exploit such independency with little overhead. For 
instance, when an event is independent of its predecessor 
(the preceding event in the same logical process), it can be 
processed before its predecessor. The lookback constraint 
promises that the predecessor can always be correctly 
processed, even though it arrives later, otherwise the event 
would not have been executed. Even if event itself is 
affected by the predecessor, its messages are not. If the late 
arrival of the predecessor invalidates the event, the event 



has to be re-executed. However, the message produced 
during the first execution of the event is unaffected, which is 
guaranteed by the lookback constraint. The net effect is that 
the message is produced before the completion of the event 
that schedules the message. 
 Jefferson and Reiher characterized conservative 
protocols as mechanisms that never use “any form of event 
undoing, abortion, or rollback”  [12]. According to this 
definition, lookback-based protocols with direct lookback 
procedure are conservative, in which every processed event 
is committed. The difference between them and the 
traditional conservative protocols is that the state is not 
committed. 

Jefferson and Reiher proved that conservative protocols 
are bound by the critical times of events under the 
assumption that all correct conservative simulation 
mechanisms must use elementary scheduling, otherwise the 
simulation might be incorrect [12].  

However, they consider neither mechanisms that ensure 
that stragglers can always be executed correctly, nor 
mechanisms other than guessing that allow a message to be 
sent before the completion of its antecedent. The lookback-
based protocol guarantees that once an event is about to 
execute, all predecessors of this event, if there are any, can 
also be processed correctly. If it cannot make such a 
guarantee, the event processing has to be postponed. Also, 
event execution is no longer atomic in lookback-based 
protocols. The execution of an event may be composed of 
two parts, one by its normal event handler and the other by 
the lookback procedure of its predecessor (if it arrives later), 
and a message produced by the first execution is guaranteed 
to be correct, according to the notion of lookback. If it were 
not, the event would fail to be processed by its normal event 
handler and its execution would be delayed until the 
lookback constraint is satisfied. 
 
CONCLUSION 
 We have presented in this paper synchronization 
protocols for Parallel Discrete Event Simulation and focused 
on the novel lookback-based protocols that are capable of 
archiving supercriticality. Lookback, the ability of change 
the simulation past locally, has been proven to be always 
larger than or equal to lookahead, the ability to predict the 
future. This is opposite to the real world, where changing 
the past is impossible while the future is more or less 
predictable. 
 The key idea behind lookback-based protocols is the 
relaxed causality constraint. The causality constraint, the 
sequencing constraint imposed on simulation by the 
physical cause-and-effect relationship, is no longer 
necessary if logical processes have more control over the 
simulation time, i.e., they are aware of causality errors and 
able to aggressively repair the damages by themselves. 
Adherence to the lookback constraint, which states that the 
virtual lookback time must always be no smaller than the 
LBTS, grants logical processes such capabilities. 

 Lookback-based protocols have been shown to be both 
theoretically and experimentally faster than lookahead-
based conservative protocols [6]. The effectiveness of 
impact time and message strength in optimistic simulation 
has yet to be proven by extensive experiments. 
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