
Lookahead, Rollback and Lookback:
Searching for Parallelism in Discrete Event Simulation

Gilbert Chen and Boleslaw K. Szymanski
Department of Computer Science
Rensselaer Polytechnic Institute

110 8th Street, Troy, NY 12180, U.S.A.

Keywords: PDES, lookahead, lookback, impact time,
supercriticality

Abstract
We discuss synchronization protocols for Parallel Discrete
Event Simulations. We start with traditional conservative
protocols based on lookahead and optimistic ones
employing rollbacks. Next, we observe that a logical
process may be able to change the simulation past locally
(without involving other logical processes). This ability is
named lookback, and is a basis for a new class of PDES
synchronization protocols, named lookback-based protocols.
Another notion, impact time, is introduced to identify the
maximum amount of lookback. We also show that lookback
is always larger than or equal to lookahead, and lookback-
based protocols can circumvent the execution time limit
imposed by the cumulative execution time of events on the
critical path on traditional conservative protocols and
optimistic protocols with no optimization.

INTRODUCTION

Simulation is the technology that uses special devices,
in most cases digital computers, to replicate the behavior of
the system under investigation. A simulation can, if
constructed correctly, represent the real system with a high
degree of fidelity. The dynamic characteristics of the real
system can then be easily inferred from the results produced
by the simulation.

Discrete event simulation is a special class of
simulations where variables representing physical states are
discretized and change only at a countable number of points
in the simulation time. An event represents a change in the
state variables. The simulation time at which the event
occurs is called the timestamp of the event. Many real
systems can be abstracted in this way, making discrete event
simulation a useful technique in practice.

The goal of Parallel Discrete Event Simulation (PDES)
is to run discrete event simulation on multiple processors, in
order to simulate large-scale complex systems as fast as
possible. Because of the assumption that event granularity is
so small that little benefit can be obtained by parallelizing
single events, the only way of achieving substantial parallel
efficiency is to execute events concurrently on different
processors. However, events executed in parallel cannot

affect each other, hence comes the fundamental problem of
PDES [1]: how do we know that events do not affect each
other without actually performing the simulation?

The research of PDES is largely centered on the
solution of this fundamental problem. Parallel simulation
results match sequential execution results if the causality
between events is preserved during the parallel execution.
Traditional PDES approaches thus focus on synchronization
mechanisms that would not violate the causality constraint.
We realized, however, the preserved causality is merely a
sufficient, not necessary, condition to ensure matching of
the results of parallel and sequential simulations. With
relaxed causality constraint, more parallelism becomes
available.

In this paper, we first give a brief overview of current
PDES research. We then present a new class of
synchronization protocols that differ significantly from
classical PDES protocols. We will also discuss some
fundamental issues in the PDES literature, such as
lookahead, supercriticality, as well as several new concepts,
such as lookback, impact time, which may bring new
insights into the PDES research.

CONSERVATIVE AND OPTIMISTIC

The advent of PDES was marked by the invention of
conservative protocols, the first of which was the null
message protocol, also known as the Chandy/Misra/Bryant
protocol [2,3], developed in 1979. Conservative protocols
require each logical process to broadcast to its neighbors, in
the form of null messages, a lower bound on the timestamp
of events it will send to other logical processes, or Earliest
Output Time (EOT). By listening to the null messages from
all neighbors, each logical process can determine the lowest
timestamp of any events it will receive, or Earliest Input
Time (EIT). If the EIT is larger than the timestamp of the
earliest event in its local event list, the logical process is
certain that this earliest event can be processed without
violating the causality constraint. Otherwise, the logical
process has to block until the earliest local event is safe to
be processed.
 In 1985, Jefferson proposed a new synchronization
protocol, called Time Warp [4]. In the Time Warp and other
optimistic protocols, a logical process is allowed to
aggressively process local events, and to send to other

Bolek
Text Box
Proc. Summer Computer Simulation Conference, San Diego, CA, July 2002

logical processes new messages generated by the event
execution. However, when an event arrives with a
timestamp smaller than the local simulation time, which is
called a straggler, a causality error is triggered. All
processed local events later than the straggler must be
undone, and anti-messages must be sent to other logical
processes to cancel messages sent during the execution of
these events. Ironically, although they are called optimistic,
these protocols are rather pessimistic, because they assume
that every operation is unsafe and subject to a rollback, and
therefore they have to save every change made to the state
variables in order to be able to recover from the erroneous
event execution. The Global Virtual Time (GVT) gives a
lower bound on the timestamp of the earliest unprocessed
event in the simulation. Any event processed with
simulation time earlier than the GVT is committed, in the
sense that it will never be rolled back. For such events, the
logical process can reclaim the memory used to store the
associated state (or state changes if incremental state saving
is used).

Research on PDES has been largely dominated by the
studies of conservative and optimistic protocols and
comparison of their performance. Unfortunately, both types
of protocols have their strengths and weaknesses. Efficiency
of conservative protocols is limited by the amount of
lookahead, which does not exist in many simulation models.
Additionally, null messages required to collaboratively
advance the simulation clock in conservative protocols often
incur significant overhead. As a result, parallelized
execution may be even slower than the sequential one. On
the other hand, optimistic protocols do not depend on
lookahead and null messages. However, state saving usually
requires storing and accessing large amounts of memory.
This negatively impacts the speed of execution because of
the relatively slow improvement in the memory access
speed within the current VLSI technology. The handling of
anti-messages complicates the simulation model
development. Furthermore, as Nicol and Liu pointed out [5],
optimistic models may exhibit unexpected behavior caused
by inconsistent messages resulting from rollback
inconsistencies and stale states.

RELAXED CAUSALITY CONSTRAINT

The causality constraint dictates that events must be
processed in the timestamp order, because otherwise
causality errors might occur, which may lead to incorrect
simulation results. Both conservative and optimistic
protocols obey the causality constraint. Conservative
protocols strictly avoid causality errors, while optimistic
protocols take a detection and recovery approach.

However, causality errors may not always violate
simulation correctness. Events can be processed in any
order, as long as the simulation results are not affected. The
key to ensure the correctness is to use a different event
handler to process events, an event handler that is aware of
the out-of-timestamp status and able to repair the causality
error.

One example that has always been used to illustrate the
importance of preserving the causality constraint is the
missile and tank example. A missile is fired, and the tank is
hit and explodes. One would argue that if the causality
constraint is violated, an observer may see the explosion
first, then the fire. However, if the observer is clever enough
to remember events, he would not be surprised to see the
explosion without missile firing, and can construct the
complete scenario once the fire event is received.

When a logical process is free to process any event, a
natural choice is to select the earliest local event whose
timestamp becomes the current simulation time. What
would happen if later there are events received from other
logical processes? Events with a timestamp larger than the
current simulation time can be simply put into the local
event list for later processing, while events with a timestamp
smaller than the current simulation time, or stragglers, are
better to be processed as soon as possible.

This requires that logical processes must be capable of
processing stragglers correctly, in other words, to change
the past. Optimistic protocols, in fact, are able to process
stragglers, if the rollback and reprocessing of affected
events are viewed as part of the straggler handler. However,
to avoid anti-messages, it must be guaranteed that the
logical process alone is able to handler stragglers, and we
define this ability to change the past locally as lookback [6].

LOOKBACK

Formally, if at simulation time T, a logical process can
process stragglers with timestamp down to T-L, without
sending anti-messages, this logical process is said to contain
a lookback of L. The window [T-L,T] is called the lookback
window, and the lower end of the window, T-L, is referred
to as the virtual lookback time (VLT). The procedure used
to process stragglers that fall in the lookback window is
named the lookback procedure.

Lookback-based synchronization protocols were
originally aimed at reducing the rollback frequency in
optimistic simulation. Stragglers with a timestamp larger
than the virtual lookback time can be processed by the
lookback procedure, thus the rollback and recovery
procedure can be less frequently invoked.

It was found out later that lookback-based protocols can
completely eliminate rollbacks. If logical processes choose
to advance the simulation clock cautiously such that all
stragglers received later would have a timestamp larger than
the virtual lookback time, the lookback procedure alone is
sufficient to handler all stragglers, rendering the rollback
and recovery procedure totally unnecessary. Denoting as
LBTS the lower bound on the timestamp of any events that
will be received later, the constraint that the LBTS must
always be larger than or equal to the virtual lookback time is
referred to as the lookback constraint.
 In order to adhere to the lookback constraint, logical
processes, before processing an event, must determine if the
execution of the event would violate the lookback
constraint. This requires that logical processes be able to

pre-compute the virtual lookback time without executing the
event. The pre-computation may be very fast. For example,
in an FCFS (First-Come-First-Served) server, when a packet
is about to leave the server, the virtual lookback time after
the packet leave is equal to the arrival time of the same
packet, because the departure event cannot be affected by
any other packet arriving later. In this case, the pre-
computation of the virtual lookback time may need just a
few memory references.
 The following gives the main algorithm of the
lookback-based protocols where rollbacks never occur. By
comparing the timestamp of the earliest local event e with
the current simulation time, it can be determined if e is a
normal event or a straggler. Either the normal event handler
or the lookback procedure can then be chosen to process
event e.

while (the termination condition is not met)
 find the earliest local event e
 pre-compute VLT based on e
 if VLT > LBTS
 process e
 else
 update LBTS
 end if

end while

 Depending on the policy adopted to estimate LBTS,
several variants can be derived. LB-GVT uses GVT as the
estimation of LBTS, while LB-EIT approximates LBTS
with EIT. Because the computation of GVT does not take
into account the interconnections between logical processes,
it is a less accurate estimation of the LBTS, but it is also less
sensitive to the topology. In contrast, the LB-EIT protocol
requires that each logical process maintain its own EIT
based on EOTs received from neighbors, thus helping to
improve the accuracy of the estimation. We showed that
LB-GVT is deadlock free, but LB-EIT is prone to deadlock,
when a cycle of logical processes is formed [6]. Every
logical process in the cycle assumes the earliest event will
come from others. Hence, for the LB-EIT protocol we have
developed an algorithm for deadlock detection and recovery
that does not rely on the existence of lookahead.

LOCAL ROLLBACK

The aforementioned lookback procedure attempts to
process stragglers directly. For some simulation models, the
direct lookback procedure may be quite simple. In an FCFS
server, for instance, a straggler packet can be simply
inserted into the proper place in the waiting list, instead of
being appended to the tail of the waiting list. However, it
might be very difficult to implement the direct lookback
procedure, especially if there are more than two types of
events in a logical process, because in such cases the
number of combinations of event arrivals increases
exponentially.

 A universal lookback procedure can be used when the
direct lookback procedure is too complicated to implement.
The universal lookback procedure works almost the same
way as optimistic protocols. Upon arrival of a straggler, the
universal lookback procedure rolls back all processed events
with a timestamp larger than the timestamp of the straggler,
in decreasing timestamp order (no anti-messages are
necessary during this step). Then, it processes the straggler,
and finally re-executes the events that have been rolled
back, in increasing timestamp order.

 It is interesting that lookback-based protocol with the
universal lookback procedure fall into the class of
synchronization protocols known as local rollback [7], the
idea of which is to avoid anti-messages but to allow events
to be aggressively processed. Two such protocols previously
known, SRADS with local rollback [7] and Breathing Time
Window [8] require logical processes to work
collaboratively, by exchanging event information, to avoid
sending any erroneous message. In lookback-based
protocols, however, each logical process alone can
determine whether a message can be sent out (by allowing
or disallowing execution of the corresponding event).

IMPACT TIME

It is evident now that lookback enables a new class of
synchronization protocols for PDES. The subsequent
question is, how do we know whether or not lookback
exists, and, if it does, how large it is?
 Clearly, since lookback is defined as the ability to
change the past locally, it is not unreasonable to believe that
any change made to local state variables can be aggressively
repaired by some means, possibly by the universal lookback
procedure. Because shared variables are usually excluded in
the logical process paradigm, the lookback would be infinite
if no messages have been sent out during the event
execution. If the event execution produces messages, the
lookback may not necessarily be zero. It actually depends
on a property of the message being sent out.
 We define the impact time of a message as the lower
bound on the timestamp of any stragglers that can change or
cancel the message. If the event execution produces exactly
one message, the impact time of the message gives the
largest lookback available. If a straggler comes with a
timestamp smaller than the impact time of the message, this
straggler cannot be processed by the lookback procedure,
because it may change the message, thus requiring an anti-
message to be sent to cancel out the old message, which is
strictly prohibited by the lookback-based protocols. If the
event execution produces more than one message, the
maximum amount of available lookback is equal to the
maximum of the impact times of all messages.
 Besides serving as an indication of how much lookback
is available, the notion of impact time has another practical
use. In optimistic simulation, if a straggler does not affect
the message produced by an event later than the straggler, it
is always beneficial not to deliver a corresponding anti-
message. Lazy cancellation [9] is one of the well-known

techniques that can achieve this goal. Upon receiving a
straggler, it does not immediately cancel out messages
affected by the straggler. Instead it rolls back affected
events, processes the straggler, and re-executes affected
events. In the process, it compares the old messages with the
new ones produced by the re-execution of events. If they are
the same, anti-messages are suppressed. Otherwise, anti-
messages are still required.
 The main problem of the lazy cancellation is that it
delays the sending of the anti-messages. The delay causes
incorrect messages to be more likely processed by other
logical processes. Also, the comparison of messages incurs
some overhead.
 Impact time provides a better method to avoid
unnecessary anti-messages. When a straggler comes,
messages whose impact time is larger than the timestamp of
the straggler need not be cancelled, because by the
definition of impact time it is impossible for the straggler to
affect those messages. Therefore, only a timestamp
comparison is required for anti-message avoidance, and
there is no delay in the propagation of anti-messages.

MESSAGE STRENGTH

What if the impact time of a message is equal to its
timestamp, which means that there is no lookback? In such
cases, there is still a chance we could suppress the sending
of anti-messages. This depends on another property of a
message, strength.
 The strength of a message is defined to be the number
of stragglers needed to affect this message. Since stragglers
with a timestamp larger than the impact time of the message
cannot affect the message by definition, here we only count
the number of stragglers earlier than the impact time.
 With the notion of message strength, a message may
not need to be cancelled even though the straggler has a
timestamp smaller than the impact time. Instead, the
strength of the message is checked first. If it is already zero,
an anti-message must be immediately sent out. Otherwise,
the strength of the message is decremented, and the anti-
message is unnecessary.

LOOKBACK VERSUS LOOKAHEAD

We have introduced the concept of lookback and
presented lookback-based synchronization protocols that
may use either direct lookback procedure or universal
lookback procedure. A question regarding the usefulness of
lookback-based protocols still remains. How frequently
would lookback be found in real world simulation models?
 This question does not seem to have a straight answer.
However, we found that there is a connection between
lookahead and lookback, which justifies the usefulness of
lookback-based protocols.
 Strangely enough, lookahead, informally known as the
ability to predict the future, has no consistent definition. In
Fujimoto’s definition [10], a logical process is said to
contain a lookahead of L at time T if it can schedule events
with timestamp at least T+L. This definition does not

consider the case in which previously scheduled messages
may not have left the logical process. For instance, it is
possible that the next outgoing message that is scheduled
earlier contains timestamp T+L/2. The lookahead now is
L/2, not L.
 Another definition given by Jha and Bagrodia [11]
defines lookahead as the differential between the EIT and
the EOT. This definition does not consider local events. If
the logical process is in the middle of processing a local
event, the lookahead should be the differential between the
timestamp of the local event being processed (which is the
current simulation time) and the EOT. Therefore, a more
accurate definition of lookahead at time T is the difference
between the current simulation time and the EOT.
 At the first glance, lookahead and lookback seem
completely unrelated, because the former deals with the
future, while the latter deals with the past. However, if the
simulation clock is aggressively advanced, future will
suddenly become past. The relationship between lookahead
and lookback is therefore easy to understand.
 We proved that lookback is always larger than or equal
to lookahead [6]. When at time T there is a lookahead of L,
we can aggressively advance the simulation clock to T+L,
and process stragglers, if there are any. The property of
lookahead guarantees that no message with a timestamp no
smaller than T+L can be affected by stragglers earlier than
T, making the lookback at least L.

With careful examination, we can see that by lookahead
a logical process actually makes two guarantees. One
ensures the validity of the message, while the other
promises a lower bound on the timestamp of messages that
will be delivered later. Lookback removes the second
guarantee, therefore it is no surprise that lookback is always
more common than lookahead, and that lookback is exactly
equal to lookahead when the timestamp of the sent message
is also the lower bound on the timestamp of any future
message, i.e., messages are delivered in timestamp order.

SUPERCRITICALITY

It has been generally accepted that conservative
protocols, and even optimistic protocols without any
optimization such as lazy cancellation (or impact time
described above), cannot beat the cumulative execution time
of events on the critical path [12]. In contrast, there are two
cases in which lookback-based protocols can achieve
supercriticality.
 The supercriticality comes from independency, as
observed by Gunter[13]. The property of lookback enables
us to exploit such independency with little overhead. For
instance, when an event is independent of its predecessor
(the preceding event in the same logical process), it can be
processed before its predecessor. The lookback constraint
promises that the predecessor can always be correctly
processed, even though it arrives later, otherwise the event
would not have been executed. Even if event itself is
affected by the predecessor, its messages are not. If the late
arrival of the predecessor invalidates the event, the event

has to be re-executed. However, the message produced
during the first execution of the event is unaffected, which is
guaranteed by the lookback constraint. The net effect is that
the message is produced before the completion of the event
that schedules the message.
 Jefferson and Reiher characterized conservative
protocols as mechanisms that never use “any form of event
undoing, abortion, or rollback” [12]. According to this
definition, lookback-based protocols with direct lookback
procedure are conservative, in which every processed event
is committed. The difference between them and the
traditional conservative protocols is that the state is not
committed.

Jefferson and Reiher proved that conservative protocols
are bound by the critical times of events under the
assumption that all correct conservative simulation
mechanisms must use elementary scheduling, otherwise the
simulation might be incorrect [12].

However, they consider neither mechanisms that ensure
that stragglers can always be executed correctly, nor
mechanisms other than guessing that allow a message to be
sent before the completion of its antecedent. The lookback-
based protocol guarantees that once an event is about to
execute, all predecessors of this event, if there are any, can
also be processed correctly. If it cannot make such a
guarantee, the event processing has to be postponed. Also,
event execution is no longer atomic in lookback-based
protocols. The execution of an event may be composed of
two parts, one by its normal event handler and the other by
the lookback procedure of its predecessor (if it arrives later),
and a message produced by the first execution is guaranteed
to be correct, according to the notion of lookback. If it were
not, the event would fail to be processed by its normal event
handler and its execution would be delayed until the
lookback constraint is satisfied.

CONCLUSION
 We have presented in this paper synchronization
protocols for Parallel Discrete Event Simulation and focused
on the novel lookback-based protocols that are capable of
archiving supercriticality. Lookback, the ability of change
the simulation past locally, has been proven to be always
larger than or equal to lookahead, the ability to predict the
future. This is opposite to the real world, where changing
the past is impossible while the future is more or less
predictable.
 The key idea behind lookback-based protocols is the
relaxed causality constraint. The causality constraint, the
sequencing constraint imposed on simulation by the
physical cause-and-effect relationship, is no longer
necessary if logical processes have more control over the
simulation time, i.e., they are aware of causality errors and
able to aggressively repair the damages by themselves.
Adherence to the lookback constraint, which states that the
virtual lookback time must always be no smaller than the
LBTS, grants logical processes such capabilities.

 Lookback-based protocols have been shown to be both
theoretically and experimentally faster than lookahead-
based conservative protocols [6]. The effectiveness of
impact time and message strength in optimistic simulation
has yet to be proven by extensive experiments.

ACKNOWLEDGEMENT

This work was partially supported by the NSF Grant
KDI-9873139. The content of this paper does not
necessarily reflect the position or policy of the U. S.
Government – no official endorsement should be inferred or
implied.

REFERENCES
[1] Fujimoto, R.M., Parallel Discrete Event Simulation.

CACM, 1990: p. 30-53.
[2] Chandy, K.M. and J. Misra, Distributed Simulation: A

Case Study in Design and Verification of Distributed
Programs. IEEE Transactions on Software Engineering,
1979. SE-5: p. 440--452.

[3] Bryant, R.E., Simulation of Packet Communications
Architecture Computer Systems. 1977, Technical Report
MIT-LCS-TR-188, Massachusetts Institute of
Technology.

[4] Jefferson, D.R., Virtual Time. ACM Transactions on
Programming Languages and Systems, 1985. 7(3): p.
404-425.

[5] Nicol, D. and X. Liu. The Dark Side of Risk (What your
mother never told you about Time Warp). in Proc. of the
1997 Workshop on Parallel and Distributed Simulation.
1997. Austria. p. 188--195.

[6] Chen, G. and B.K. Szymanski, Lookback: A New Way of
Exploiting Parallelism in Discrete Event Simulation, in
Proceedings of the 2002 Workshop on Parallel and
Distributed Simulation. 2002. Washington. p. 153-162

[7] Dickens, P. and P. Reynolds. SRADS with Local
Rollback, in Proc. of the SCS Multiconference on
Distributed Simulation. 1990. p. 161--164.

[8] Steinman, J. Breathing Time Warp, in Proc. of the 7th
Workshop on Parallel and Distributed Simulation. 1993.
San Diego. p. 109--118.

[9] Gafni, A. Rollback Mechanisms for Optimistic
Distributed Simulation, in Proc. of the SCS
Multiconference on Distributed Simulation. 1988.

[10]Fujimoto, R. Performance Measurements of Distributed
Simulation Strategies, in Proc. of the Distributed
Simulation Conference. 1988. p. 14--20.

[11] Jha, V. and R.L. Bagrodia, Transparent Implementation
of Conservative Algorithms in Parallel Simulation
Languages, in Proc. of the 1993 Winter Simulation
Conference. 1993. p. 677-686.

[12]Jefferson, D. and P. Reiher. Supercritical Speedup, in
Proc. of the 24th Annual Simulation Symposium. 1991.
p. 159-168.

[13]Gunter, M.A. Understanding Supercritical Speedup, in
Proc. of the 1994 Workshop on Parallel and Distributed
Simulation. 1994. Edinburgh, Scotland. p. 81--87.

