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Abstract: Increasing role of services in developed economies around the world combined with 
ubiquitous presence of computer networks and information technologies result in rapid 
growth of e-services. Markets for e-services often require flexible pricing to be efficient and 
therefore frequently use auctions to satisfy this requirement. However, auctions in e-service 
markets are recurring since typically e-services are offered repeatedly, each time for a specific 
time interval. Additionally, all e-services offered in an auction round must be sold to avoid 
resource waste. Finally, enough bidders must be willing to participate in future auction rounds 
to prevent a collapse of market prices. Because of these requirements, previously designed 
auctions cannot work efficiently in e-service markets. In this chapter, we introduce and 
evaluate a novel auction, called Optimal Recurring Auction (ORA), for e-services markets. 
We present also simulation results that show that, unlike the traditional auctions, ORA 
stabilizes the market prices and maximizes the auctioneer’s revenue in e-service markets. 
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1. INTRODUCTION 

In recent years, expansion of electronic markets (abbreviated as e-
markets) triggered an increase in the role and importance of efficient pricing 
mechanism. In many existing e-markets, fixed pricing or static time-
differential pricing mechanisms are used because of their simplicity. There 
is, however, a natural variation in buyer’s demand over time. For this reason, 
such pricing mechanisms are inefficient as they result in under-utilization of 
resources when demand is low and under-pricing when demand is high.   
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A static time differential pricing mechanism in which two or more tiers of 
on/off peak rates are used can improve efficiency by partially matching 
lower (higher) demand with lower (higher) price. However, this mechanism 
still remains inflexible, since demands of buyers do not follow a step 
function, but rather gradually shift from on- to off-peaks and back15. 
 

A continuously adjustable dynamic pricing mechanism that adapts to 
changing market conditions constantly is more efficient. It maintains high 
resource utilization and the seller’s revenue in variety of market conditions. 
The low price invoked by the adaptive pricing increases competition during 
the low utilization period. High prices imposed during the high demand 
period increase the seller’s revenues. Moreover, with such a mechanism, the 
price itself becomes an important signal for controlling fair allocation of 
resources. Hence, by ensuring that prices match the current market 
conditions, fully adjustable dynamic pricing mechanisms creates optimal 
outcomes for both buyers and sellers. At the same time, this very dynamism 
of pricing makes seller’s pricing decisions and buyers’ budget planning 
difficult. An auction mitigates such difficulties, since prices emerge from the 
buyer’s willingness to pay4. Additionally, using auction as a dynamic pricing 
mechanism in e-markets, thanks to their well defined rules and procedures, 
eases the difficulty and cost of the implementation of the automated 
negotiations in electronic environments3. As a result, the portion of the e-
commerce markets that use auction is rapidly increasing.  

 
Thanks to auction’s inherent negotiation nature, there have been several 

attempts to extend application domain of auctions to newly arising markets 
for e-service, including computational services, bandwidth and network 
resource allocation, Internet advertisements and so on. However, because of 
idiosyncrasies of e-service markets, applying traditional auctions in these 
markets creates several problems. In this chapter we identify such 
idiosyncrasies and discuss their consequences and we introduce a novel 
auction design that addresses these idiosyncrasies. Consequently, the chapter 
is organized as follows. In section 2, we survey existing types of auctions 
and their use in e-markets. Section 3 describes emerging e-service markets 
and analyzes their properties together with the requirements for designing 
optimal auctions for those markets. A novel auction satisfying these 
requirements is introduced in Section 4. The simulation based verifications 
of this mechanism are given in Section 5. We conclude the chapter with the 
summary of its content in Section 6.     
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2. AUCTIONS AND RELATED WORK 

Auctions have been widely used from ancient times have been one of the 
most popular market mechanism used to match supply with demand. They 
achieve this goal by allowing buyer and seller to agree on a price of a 
resource following the well defined rules and procedures4. There are two 
types of players in an auction. One is a bidder and the other is an auctioneer.  
 

Bidder reports bid information to the auctioneer in order to buy or obtain 
the rights for resources traded in auction. The bid information may consist of 
price alone or price combined with other attributes such as quality of goods, 
time of their delivery, etc. Usually, the bid information is mapped onto a 
single value that we will refer to as ‘bid value’. Auctioneer is an agent that 
creates and clears an auction. Hence, auctioneer opens the auction for 
bidding and then collects the bids, closes the auction and then selects the 
winners, and finally distributes resources to the winners and collects the 
payments.  

 
In General Auction, buyers become bidders and the seller is an auctioneer. 

In Reverse Auction this is the single buyer that becomes an auctioneer while 
many sellers become bidders. 

2.1 Classification of auction types 

Based on number of bidding sides, auctions can be classified as single or 
double ones3,6,7. In a single auction, participants can take part only in one 
side of an auction (e.g., as a buyer). In a double auction, participants are free 
to take part in both side of an auction. The single auctions can be further 
subdivided open-cry and sealed bid. For open-cry auctions the common 
types are English and Dutch auctions, while sealed bid auction are further 
classified into First Price (FPSB) and Second Price (SPSB) auctions based 
on pricing. In English, Dutch and FPSB auction, a winner pays his bidding 
price. On the other hand, in SPSB auction, also known as Vickrey auction, a 
winner pays the second highest bidding price. Auctions with multiple units 
of resources traded are classified based on pricing rules differently. In 
Discriminatory Price Sealed Bid (DPSB) auction, winners pay their bid 
price. In Uniform Price Sealed Bid (UPSB) auction, all winners pay the 
same price which is the highest bidding price of losers. Finally, in 
Generalized Vickrey Auction (GVA), the price of a winner k is computed by 
deducting the sum of payments of all other bidders in the current resource 
allocation from the sum of the payments that would be obtained from those 
other bidders in the optimum allocation where the bidder k removed from the 
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allocation18. GVA is an incentive compatible, direct auction in which true 
valuation bidding is a dominant strategy (i.e., the strategy that, when 
followed, maximizes each bidder’s expected utility). 
 

English auction is widely used to sell various tangible resources such as 
art, collectables, electronic devices, and so on. The Dutch auction is used for 
selling traditional perishable resources such as fresh-cut flowers and fish. 
The sealed bid auction type that includes FPSB, SPSB, DPSB, and UPSB 
auctions is widely used in procurement that employs reverse auction. 

 
Double auctions allow multiple buyers and sellers to be present 

concurrently in the market. Thus, double auction must match bid prices on 
both sides of the market. Double auctions can be divided into Call Market 
and Continuous Double Auction (CDA) based on their clearing time and 
bidding methods. In Call Market, bids are collected for a specific time 
interval from both sellers and buyers in a sealed manner. Then, bids are 
matched at the auction clearing time. In contrast, in CDA, auction is 
continuously cleared each time a new bid (which is delivered in an open-
outcry manner) is delivered. The Call Market and CDA are common 
mechanisms for financial markets, such as stock exchange. 
 

All the above auction types use bids that comprise only of price. In 
contrast, Multiple-Attribute Auction, also called Multidimensional Auction, 
allows bidders to bid on various attributes beyond the price. Since the 
auctioneer selects winners based on all bidding attributes, the overall utility 
of a bid must be computed and vast number of utility functions has been 
proposed for such computation. Generic procedures for multi-attribute 
auction in electronic procurement have been described in references 3 and 8.  
 

Finally, so far we discussed the auctions in which each bidder bids for a 
single unit of the resource. In Combinatorial Auction, each bidder offers a 
bid price for a collection of goods (of the bidder's choosing), rather than 
placing a bid on each item separately. This enables the bidder to express 
dependencies and complementarities between goods. The auctioneer selects 
such a set of these combinatorial bids that result in the most revenue without 
assigning any object to more than one bidder. However, the computational 
complexity of optimal winner selection that maximizes auctioneer’s revenue 
is very high9.  
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     Table  2-1. Classification of types of auctions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.2 General procedure of an auction 

A typical auction execution can be described by the six-step processes 
shown in Figure 2-1. 
 
1) Bid Collection and Validation collects the bids that could be either firm 
(i.e., not revisable or cancelable) or changeable under predefined rules. Any 
set of predefined rules can be used for eligibility of the bid and bidder to 
participate in relevant auction, including but not limited to, legal restrictions, 
credit limits on particular bidders, bidders’ budget limits, bid expiry, 
minimum/maximum bid amounts and sizes, etc. Cancellation of bids that do 
not meet such requirements comprises the validation portion of the 
procedure. 
 
2) Auction Close occurs once a specific set of circumstances are met, as 
defined by the auctioneer. These could include time elapsed, receipt of 
sufficient bids, availability of resource, or any other conditions relevant to 
the specific application. Once an auction closes, bids are not be changeable. 
 
3) Valuation and Bid Ranking operates after the auction round closes. The 
bid ranking procedure computes bid value for each bid collected and eligible 
for participation according to any specific rules. The most basic auctions 
equate the bid value with the price of the bid. The final result of this 
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procedure is the list of bidders ranked according to the values assigned to 
their bids. 
 
4) Resource Ranking ranks all resources available for allocation in the given 
round according to their intrinsic value, which may be identical or different 
for each resource. A resource can be placed in any arbitrary order with 
respect to other items from which its intrinsic value cannot be differentiated. 
Although generally, the ranking reflects differences in intrinsic value of each 
individual unit of the resources, any relevant factors can be used to assign 
rank order to the resources based on the specific application. An example is 
a seat in the theater, where the distance from the stage and the visibility of 
the stage impacts the intrinsic value of a seat.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  2-1. General procedures of auction 
 
 

5) Winner Selection defines the way of allocating or mapping ranked 
resources offered in the market with specific bidders based on predefined 
rules. The most general winner selection method is to allocate available 
resources from the highest bid value bidder up to the number of available 
resource in decreasing order of bid values. 
 
6) Pricing computes the payments that are charged to the winners for the 
allocated resources, after the winners are selected in the winner selection 
procedure. As discussed above, the two main variants of pricing method in 
the current state of the art are to pay the bid price (also known as first 
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pricing) or the bid price of the next highest bidder (also known as second 
pricing).  

2.3 Auction design requirements  

One of the important design requirements for the basic auctions is to 
maximize seller’s revenue. An auction that satisfies this requirement is 
called the ‘optimal auction’10. In designing auction for e-markets, the 
following additional requirements should be considered3.   
 
• Incentive compatibility: An auction is incentive compatible if bidding true 

valuation maximizes the expected utility for the bidder (i.e., it is the 
dominant strategy). This property makes implementation of agent-based 
automated negotiations simple.  

 
• Efficiency: In an efficient auction, the resources are allocated to the 

bidders who value them the most.  
 
• Individual rationality: The expected payoff of each bid made by a bidder 

is nonnegative.  
 
• Low cost convergence to the agreement: In an electronic auction, the 

communication overhead of conducting negotiations and arriving at the 
agreement should be minimized. An auction in which a bidder can 
communicate with the auctioneer directly (i.e., via the sealed bids) will be 
called direct. Direct auctions have low communication overhead. 

 
SPSB and UPSB auctions are incentive compatible, efficient and direct, so 

they are well-suited for various applications in e-markets. 

2.4 Auctions in current e-markets 

Recently, a vast number of auctions have been conducted over the 
Internet. Forester Research forecasts that auctions in e-markets will grow 
from $13 billion in 2002 to $54 billion in 200717.  Current e-markets can be 
classified as B2C (Business to Customer), C2C (Customer to Customer), 
B2G (Business to Government), and B2B (Business to Business) markets. In 
B2C and C2C market, English auction is the most popular auction type since 
it provides simple negotiation structure, and is particularly well suited for 
negotiation for short time period. Additionally, bidders enjoy placing bids in 
competition with others, and this entertainment value of the online English 
auction is an important feature in customer oriented markets3. In B2G and 
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B2B markets, sealed bid auction types (i.e., FPSB, SPSB, DPSB, or UPSB 
auctions) are widely used. Those markets rely on a procurement process that 
requires ‘Reverse Auction’.  

 
Typically, resources traded in those e-markets are physical goods such as 

collectibles including antiques, stamp, coins, electronic equipments, real 
estate, used equipments, etc13. 

3. EMERGING E-SERVICE MARKETS 

E-service is defined as a modular, nimble, Internet-based service that most 
often requires various computational resources such as bandwidth, 
computational cycles or memory to guarantee the Quality of Service 
(QoS)15,19,20. Wide-spread access to the Internet and dominance of service-
oriented segment make e-services a fast growing segment of economy. 
Customer-centric nature of e-service19, favors auction as a pricing 
mechanism for e-services markets.      

3.1 Markets for application computing services  

Recently, the interests in and demands for application computing services 
(ACS), including on-demand computing, utility computing, grid computing 
and so on, have been growing rapidly12,21. With the development of grid 
computing infrastructures, the fully implemented application computing 
services provide a transparent access to a wide variety of large scale 
geographically distributed computational resources (i.e., CPU, memory, 
storage, etc.). Hence, markets for ACS are the one of the most important e- 
markets.    
 

The ACS buyers demand desired computing services, and the ACS 
providers temporarily allocate the necessary computer hardware and 
software resources to the buyer’s application to produce the desired results22. 
This is radically different from the traditional approach in which the 
customer buys the hardware and licenses the software for lifetime 
ownership. Hence, application computing services bring new business model 
of outsourcing computer operations. For efficient contracting in such a 
market, the ACS providers need a tool for expressing their pricing polices 
and mechanisms that can maximize their profits and the computational 
resource utilization. Various auction based mechanisms, based either on 
reverse or general auctions, have been proposed for this role11,12.  
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In reverse auction, a ACS buyer (i.e., auctioneer) invites sealed (or open-
outcry) bids from several ACS providers by advertising his desired 
application computing service and the required quality of service, such as  
time constraints, including the deadlines for receiving the results. The buyer 
selects the bid that offers lowest service cost and satisfies all the constraints. 
The selected winner provides the computing service and then returns the 
computing result to the buyer at his bid price.   
 

In general auction, an ACS provider invites bids from many ACS buyers 
(i.e., bidders) for application computing services. Based on the auction 
mechanism used and on the current conditions of distributed computational 
resources, the ACS provider selects the winners and clears the auction. 
Auctions used in this area often require that the bid based proportional 
resource sharing model is followed, in which the amount of computing 
resources allocated to each bidder is proportional to the value of his bid11. 

3.2 Analysis of emerging e-services markets 

Different market structures and properties require different dynamic 
pricing and negotiation mechanisms for efficient resource allocation and 
revenue maximization. Hence analysis and characterization of newly created 
markets is one of the necessary conditions for designing efficient solution. 
 

The e-service markets can be characterized as “recurring markets using 
short-term contracts”, because the resources such as computational and 
network resources are renewable and their allocations to bidders are made 
for specific time only15. Hence, short-term contract is often used in those 
markets. Such short-term contracts are recurring, because when the allocated 
renewable resources become free, the auctioneer needs to offer them to the 
bidders again. Short-term contracts are recurring also from the bidder’s 
perspective, since each bidder repeatedly enters into them for a specific time 
interval. This solution provides financial benefits to both sides. Buyers avoid 
long-term contracts and outsource resources required for service19,20. On the 
other hand, sellers increase resources utilization and increase their revenue 
via dynamic pricing of such short-term contracts. 

 
In addition to recurring nature, time sensitive perishable property of 

traded resources (i.e., the fact that unused resources perish) in e-service 
markets is another important factor. The resources needed for the services 
cannot be stored in warehouse for future sale, and leaving them unused 
decreases their utilization15. Therefore, the e-service markets need a 
mechanism optimizing recurring auction trading perishable resources.    
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The previous designs for auction focus on one-time auction for selling 
physical resources that often can be stored for future sale2,4,5,6,7,8,10. Hence, 
they do not address recurring nature and perishable property of the resources 
in emerging e-service markets. These two features strongly affect the 
bidder’s bidding behavior and the revenue of the auctioneer. Hence, 
application of existing basic auctions to e-service markets may result in the 
following problems.   

3.3 Bidder drop problem 

Prices bid in an auction reflect willingness of each bidder to pay. This 
willingness in turn is limited by the bidder’s (private) true valuation that is 
influenced by each bidder’s wealth. An uneven wealth distribution can cause 
starvation of poor bidders in a recurring auction if their true valuations are 
below winning price. A frequent starvation for the traded resources 
decreases the bidder’s interest in the future auction rounds. In such a 
situation, if some bidders conclude that it is impossible or unlikely that they 
will win at the price that they are willing to pay, they will drop from the 
future auction rounds and find other markets. In a recurring auction, each 
bidder’s drop out of an auction decreases the number of active bidders in the 
future rounds. Reducing the number of bidders gradually decreases the price 
competition because the probability of winning increases for the remaining 
bidders. Hence, their attempts to decrease bidding prices without losing the 
winning position will be successful causing the overall drop of bid prices. In 
the long run, when the number of bidders drops close to the number of 
resources, the revenues of the auctioneer are likely to drop below the 
acceptable level.  

 
This phenomenon is particularly acute in incentive compatible auctions, 

such as SPSB auction or UPSB auctions, in which bidder who lost in the 
previous auction round can easily conclude that his true valuation is not high 
enough to ever become a winner as all bidders bid their true valuations. 
Hence, there is no incentive for the loser of the last auction round to 
participate in the current and future rounds. In fact, continued participations 
would result in negative expected utility to losers who value their time. 
Consequently, the losers will immediately drop out of the auction. These 
dropped bidders decrease the average second highest bid or highest bid of 
losers. Such decrease results in collapse of auctioneer’s revenue. We call this 
phenomenon ‘paradox of incentive compatible mechanism in recurring 
auction’ because by having the bidders bid their true valuations, this kind of 
auction motivates low bidding bidders to drop immediately24. To the best of 



8. Auctions as a dynamic pricing mechanism for e-services    11 
 
our knowledge, the bidder drop problem that is caused by the uneven wealth 
distribution has been first addressed by our work15,16,23,24.  

3.4 Resource waste problem 

In addition to bidder drop problem, the asymmetric balance of negotiation 
power needs to be considered in auction design. The prices bid in a basic 
auction are dependent only on the bidder’s willingness to pay. This means 
that intentions of only bidders, but not the auctioneer, are reflected in the 
auction winning prices. To restore the symmetric balance of negotiating 
power, the reservation price (RPA) and cancelable (CA) auctions were 
proposed10,14. In RPA, only bids higher than the auctioneer’s reservation 
price are considered during winner selection. On the other hand, in CA, if 
the resulting revenue of an auction round does not meet the minimum 
requirement of the auctioneer, the entire auction round is cancelled. By 
providing reservation price or cancellation option to the auctioneer, the 
asymmetric negotiation power problem is resolved. However, when the 
perishable resources are traded, both of these auctions cause resource waste. 
In RPA, the reservation price restricts the number of winners. Hence, the 
resources unused because of this restriction are wasted. In CA, the 
cancellation of an auction round wastes the entire stock of resources that are 
allocated to this auction round. 

4. OPTIMAL RECURRING AUCTION 

Based on the additional requirements for designing auctions for e-services 
markets, we introduce a novel auction called Optimal Recurring Auction 
(ORA). The main idea of this mechanism is based on the demand-supply 
principle of microeconomics1.  

 
In Figure 4-1, D1 and D2 denote demand curves for the traded perishable 

resources while S1 and S2 represent supply levels of the resources. When the 
overall demand decreases (i.e., the entire demand curve changes from D1 to 
D2) during a recurring auction, the minimum market clearing price drops 
from p1 to p2 to maintain the supply at level S1. In such a case, to maintain 
the minimum market clearing price at p1, an auctioneer must decrease the 
supply of resources from q1 to q2. Inversely, when the overall demand 
increases, the auctioneer may increase the supply while keeping the same 
clearing price.  
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When the auctioneer decreases the supply of perishable resources for the 
given time period, the unsold resources are wasted. Thus, to avoid such 
waste we propose to assign the “unsold” perishable resources (q1–q2 in 
Figure 4-1) to the bidders who have high probability of dropping out of the 
forthcoming auction rounds. Such an assignment prevents bidders from 
dropping out of auction thereby keeping enough bidders in the recurring 
auction to maintain the competition for resources strong. Simultaneously, 
using “unsold” perishable resources for bidder drop control resolves the 
resource waste and increases the number of winners.  

 

 
 

 
 
 

 
 
 
 

 
 

Figure  4-1. Demand and supply principle 
 
 

To implement this idea, we introduced two types of ORA mechanisms. 
The first one is the Participation Incentive Optimal Recurring Auction (PI-
ORA) that pursues incentive compatible mechanism, and the second one is 
the Discriminatory Price Optimal Recurring Auction (DP-ORA) that is based 
on a non-incentive compatible mechanism. From the pricing point of view, 
PI-ORA uses a variation of a uniform pricing scheme while DP-ORA uses a 
discriminatory pricing scheme. To describe the proposed auctions, we first 
define here the basic notions of bidders, bidding prices, and resources. 
 
Players: There are 1n +  players, denoted by 0, ...,i n= , including n  bidders, 

1, ...,i n= , and an auctioneer 0i = . An auctioneer and each bidder enter the 
bidding price 0b  and 1 2, , ..., nb b b , respectively, in each auction round. We 

also assume that each bidder is risk neutral and has private true valuation it  
for traded resources. 
 
Resources: There are R  units of perishable resources that are assigned for a 
specific time period in each auction round. We assume that each bidder 
requires one unit of a resource for the desired quality of e-service. Hence, the 
maximum number of possible winners in each auction round is R . 
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4.1 Classification of Bidders in ORA 

The first step of the winner selection strategy in ORA is to define bidder’s 
class based on each bidder’s bidding price ib , where 1, ...,i n=  and 
auctioneer’s bid price (i.e., reservation price) 0b . The auctioneer classifies 
the bidders into the Definitely Winner (DW), Possible Winner (PW), and 
Definitely Loser (DL) classes using the following conditions: 
 

                   i DW∈      if 0  & i ib b r n R≥ > − ,   1, 2, ...,i n= , 

                  i DL∈         if  0ib ≤ ,  1, 2, ...,i n= ,                      (1)                       
                  i PW∈        otherwise , 
 

where ir  denotes the rank of bidder i  in the increasing order of bidding 
prices of all bidders. The numbers of bidders in the DW, PW and DL classes 
are denoted as dwN , pwN and dlN , respectively. Figure 4-2 shows the bidder’s 

classes in ORA and compares them with the classes in the traditional 
auctions where Traditional Losers (TL) and Traditional Winner (TW) classes 
are defined. WPPW represents the Winning Portion of the PW class, and the 
number of winners in the PW class is denoted by wppwN . Hence, 

wppw dwN R N= − .              

 
 
 
 
 
 
 
 
 
 

 
Figure  4-2. Classification of bidders in ORA 

 

 
In each auction round, the DW class bidders become winners without any 

additional considerations, since they bid higher than the bid price of the 
auctioneer and there are enough resources to assign one to all of them. The 
DL class consists of bidders who already dropped out of the auction. Hence 
the DL class bidders become losers in each auction round. The bidders who 
are in the PW class can be winners or losers depending on the bidder drop 
control algorithm applied, described below (see Sections 4.2.1 and 4.3.1). 

Traditional Loser Traditional Winner 

DL DW PW 

R 

WPPW 

Higher bid price Lower bid price 

Winner 

Loser 

0b  



14 Chapter 8
 

The auctioneer’s bidding price 0b  in the ORA mechanisms plays the same 
role as the reservation price does in the Reservation Price Auction. Hence, 
ORA maintains symmetry of the negotiating power from lack of which the 
traditional auctions suffer. 

4.2 Participation Incentive Optimal Recurring Auction 

In PI-ORA, we introduced the following participation incentive bidder 
drop control algorithm to efficiently select winners in PW class. 

4.2.1 Participation Incentive Bidder Drop Control   

Enough bidders of PW class must participate in future auction rounds to 
maintain price competition in the recurring auction. To encourage such 
participation, the Participation Incentive Bidder Drop Control (PI-BDC) 
algorithm rewards bidder’s participation in each auction round using the 
following winning score k

iS  for each bidder i PW∈ : 
 

                                                            
k

k i
i i i

b
S B W

α
= ⋅ −   ,                    (2)  

where Bi and Wi denote the cumulative weighted number of times that bidder 
i  participated in and won, respectively, in auction rounds up to and 
including the current one. The outcome of the current auction round is yet 
unknown and the credit for participation is at most 1. iB is defined 

as 1 , ,

1
min( , )m

ji i j i m

i

B b b
b

== ∑ , where m  represents the current auction round and 

,i jb denotes the bid price of bidder i  in auction round j  (this price is zero in 

rounds that the bidder skips). This definition encourages the bidders to bid 
the same price in each auction round, as this is the only way in which a 
bidder can receive a full credit of 1 for participation in an auction round. 
 

The term ( / )k
i ib Bα ⋅  denotes expected number of wins based on the 

bidding price and the participation in the past rounds. Thus, the winning 
score k

iS  of a bidder i in class PW represents the difference between the 
expected and real number of wins. Hence, the PI-BDC algorithm is based on 
the insight that higher the winning score of a bidder is, higher the probability 
of him dropping out of the future rounds is because more below his 
expectations his winning are. For this reason, the PI-BDC algorithm ranks 
bidders of PW class in the decreasing order of their winning scores and up to 

wppwN  highest ranked bidders are selected as winners of the current auction 
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round. α  in equation (2) is a coefficient that controls the expected number 
of wins (i.e., win frequency). The optimal value of α  depends on seller’s 
strategy and true valuation distributions of the bidders. We set the value of 
α  in such a way that the average value of winning score of all bidders is 
zero. Since in each auction round all bidders in PW class increase their 
winning scores cumulatively by k

j PW jb α∈∑  (assuming that each bidder uses 

the same bid as in the previous round) and at the same time their winning 
scores decrease cumulatively by dwR N−  wins, the balancing value is 

( )k
j PW j dwb R Nα ∈= −∑ . With this value, the win frequency of each bidder 

i PW∈  with bid price ib  is defined as follows: 
 

                                                            
( )k

i dw
i k

j PW j

b R N
w

b∈

⋅ −
=

∑
                 (3) 

 
To differentiate between DW and PW classes, win frequency wi should be 

less than 1 for all bidders in PW class, which restricts the feasible values of k 
and the feasible size of PW class.  

 
As shown in Figure 4-3, in traditional auctions, the win probability of a 

bidder outside the Traditional Winner class is zero. Hence, there is no 
incentive for bidders whose true valuations are in the range of bids of 
member of the Traditional Loser class to participate in the future auction 
round in incentive compatible auctions. However, in PI-ORA, the win 
probabilities of bidders in the PW class, including part of the Traditional 
Loser class, are higher than zero. For this reason, there is an incentive to 
participate for all bidders in the PW class regardless of their true valuations.  

 

 
 

Figure  4-3. Win frequency distribution in PI-ORA 
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4.2.2 Pricing rules and optimal reservation price 

In PI-ORA, winners in the DW and PW classes pay the price 

0( ) min( , )i ip b b bρ= ⋅ , where ρ  denotes payment coefficient. The value of 
the payment coefficient ρ  that leads to incentive compatible mechanism and 
revenue maximization is restricted by the following condition:    
 

                                  
max1 /k

PW

k

k t s
ρ ≤

+ +
         (4)                                

where maxPW is the index of the highest bidder in PW class, 

max ,

k
jj PW j PW

s b
≠ ∈

=∑  and, k  is a constant used in Eq. (2). Hence, based on 

bidder’s bidding price distribution, the auctioneer selects the optimal 
payment coefficient ρ , the auctioneer’s reservation price 0 b  and the constant 
k  that satisfy the payment coefficient condition (4), as well as maximize the 
revenue. Since )1/( +< kkρ , PI-ORA guarantees that each winner pays less 
than his bidding price.  

4.2.3 Optimal strategies for bidders 

The bidder’s optimal strategy involve deciding to participate or not in the 
auction and in participation case, deciding the bidding price. In the reference 
24, we proved that under proper selection of parameters k, b0 and ρ, bidding 
each bidder’s true valuation maximizes his utility in both PW and DW 
classes. Thus, PI-ORA is an incentive compatible auction. Likewise, 
participation incentive bidder drop control algorithm makes participation in 
as many as possible auction rounds a strategy that maximizes the expected 
utility. In conclusion, the bidder’s optimal strategy in PI-ORA is to bid his 
true valuation (making the mechanism incentive compatible) and to 
participate in as many as possible auction rounds (see 24).  

4.3 Discriminatory Price Optimal Recurring Auction 

In DP-ORA, we introduced the following Valuable Last Loser First 
Bidder Drop Control algorithm to select winners in PW class efficiently. 

 

4.3.1 Valuable Last Loser First Bidder Drop Control 

The purpose of selecting winners in the PW class is to encourage them to 
stay in the auction. Hence, those winners should include those bidders in the 
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PW class who are considering dropping out of the auction. This insight is the 
basis for the Valuable Last Loser First Bidder Drop Control (VLLF-BDC) 
algorithm. The algorithm consists of two phases. In the first one, bidders 
who lost in the last auction round but bid in the current round the price 
higher than in the previous one are marked as potential winners. The marked 
bidders are ranked according to their bidding prices and up to wppwN  highest 

ranked marked bidders are selected as winners of the current auction round. 
If the number of the marked bidders is smaller than wppwN , the remaining 

resources are allocated in the second phase of the algorithm in the decreasing 
order of their bidding prices.  

 
The winner selection in the first phase is dictated by the bid price and 

winning record of the previous auction round, so there could be some loss of 
fairness. To compensate for it, in the second phase, the highest bidding 
unmarked bidders in the PW class are selected as winners of the remaining 
resources. By marking only those last losers who bid higher in the current 
round than in the previous one, the algorithm prevents bidders with low 
bidding patterns from becoming winners. 

5. ORA VERIFICATION VIA SIMULATION 

5.1 Simulation Experiments with PI-ORA 

In simulations of PI-ORA, we compare the following four different 
auctions those are all incentive compatible mechanisms. Each one is 
executed 2000 times recurrently.  
 
• UPSB auction: Here, we use the basic uniform price sealed bid auction 

that has no bidder drop control, so bidders are allowed to drop out of 
auction at any time.  

 
• UPSB-NBD auction: This case uses the basic UPSB auction but with 

bidders never dropping from the auction, regardless of their results. 
 
• PI-ORA: As described above, PI-ORA uses PI-BDC algorithm in winner 

selection of PW class.  
 
• PI-ORA-NBD: Here, we use the PI-ORA mechanism with no bidder 

dropping out of auction during recurring auction, regardless of possible 
starvation. 
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The results of simulating UPSB-NBD and PI-ORA-NBD are used only to 
obtain upper bounds on the auctioneer’s revenue since assuming no bidder 
drop is unrealistic. The wealth of each bidder limits her willingness to pay 
defined by the true valuation of a unit of resource. For this reason, we equate 
wealth distribution with a distribution of bidder true valuations. In the 
simulations, we consider three types of those distributions, all with the mean 
of 5: (1) the exponential distribution, (2) the uniform distribution over [0, 
10] range, and (3) the Gaussian distribution. Once the true valuations are 
allocated to bidders, they do not change during recurring auction.  
 

There are 40 bidders in our simulations and 20 units of perishable 
resources are available for allocation. Hence, there are 20 winners in each 
auction round. According to the bidder’s dominant strategy and risk neutral 
assumption, each bidder bids his true valuation in each auction round in 
order to maximize his expected utility. Additionally, bidders participate in 
auction continuously until they drop out of the auction. Once out of the 
auction, the bidder never returns to it.       
 

We define Tolerance of Consecutive Loss, abbreviated as TCL, to 
simulate bidders’ drop out of the auction. The bidder’s TCL denotes the 
maximum number of consecutive losses that a bidder can tolerate before 
dropping out of an auction. TCL of each bidder is uniformly distributed over 
the range of [2, 10]. If consecutive losses of a bidder exceed his TCL, then 
the bidder drops out of the auction and never returns to it. The TCL is set to 
the number larger than the number of auction round simulated for the UPSB-
NBD and PI-ORA-NBD cases.  
 

Our simulations collect data on the auctioneer’s revenue and mechanism 
efficiency and stability in response to bidder drops. We use the average 
payment of winners in each auction round as a measure of auctioneer’s 
revenue. The revenue comparison between original auction and no bidder 
drop assumption case is used only to measure the mechanism stability. We 
also measure the total number of wins of each bidder to gauge the efficiency.  
 

As shown in Figure 5-1, the traditional UPSB auction cannot maintain the 
auctioneer’s desired revenue in a recurring auction because the losers of each 
auction round have no incentive to participate in future rounds so they drop 
out of the auction. This is the result of phenomena that we termed the 
‘paradox of an incentive compatible mechanism in a recurring auction’. 
Since bidders reveal their true valuations in each bid, bidders learn their 
ability to win and those who cannot win drop out the auction. The decreased 
price competition for the remaining winners results in a plunge of the 
auction clearing price (i.e., highest price of losers), which quickly becomes 



8. Auctions as a dynamic pricing mechanism for e-services    19 
 
zero). After 10 auction rounds (that is also the upper bound on the TCL 
value in our simulations), the auction clearing price collapses to 0, since 
every loser dropped out of the auction. Therefore, in the basic UPSB auction, 
the bidder drop problem is the sole cause of the seller’s revenue collapse.  
 

 
 

 
 

Figure  5-1. Average payment of winners in PI-ORA 
 

 

An efficient bidder drop control based on PI-BDC algorithm of the PI-
ORA supports auction participation of bidders in the PW class and therefore 
maintains the price competition between bidders in the DW and PW classes 
permanently. Additionally, by optimally selecting the payment coefficient ρ , 

the optimal auctioneer’s bidding price 0b , and the constant k  from Eq. (2), 
the auctioneer can stabilize and maximize the revenue regardless of the 
bidder true valuation distribution. The resource waste problem never arises, 
because the entire stock of available perishable resources is sold in each 
auction round.  
 

The average payment of winners in PI-ORA and PI-ORA-NBD in each 
auction round are almost the same, as shown in Figure 5-2 (a) for various 
true valuation distributions. This indicates that the efficient bidder drop 
control algorithm makes the PI-ORA stable.  
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                          (a) Stability                                                (b) Efficiency 

 
Figure  5-2. Mechanism stability and efficiency 

 
The simulation results also show that PI-ORA is efficient. As shown in 

Figure 5-2 (b), it distributes the total number of available perishable 
resources proportionally to each bidder’s true valuation. Thus, the bidder 
who has the higher true valuation and, thus, higher actual payment for the 
perishable resource, wins more often than the one with the lower true 
valuation and lower actual payment (under the same participation level). The 
win distributions of Figure 5-2 (b) also show that the bidders whose bidding 
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prices (i.e., true valuations) are too low are eliminated from the auction 
automatically by exceeding the number of consecutive losses defined by 
their TCL. Hence, even though some resources are allocated to the bidders in 
PW class, the truly low bidders do not impact the revenue of PI-ORA. 
 

5.2 Simulation Experiments with DP-ORA 

In simulation of DP-ORA mechanism, we compare the following five 
auctions based on 2000 round recurrent executions: 
 
• DPSB auction: In this case we simulate basic discriminatory price sealed 

bid auction that has no bidder drop control. Hence, bidders drop out of the 
recurring auction as a result of starvation for resource allocation. 

 
• DPSB-NBD: This case represents an idealized DPSB auction in which 

bidders never drop during the recurring auction even if they suffer 
constant consecutive losses.  

 
• Reservation Price Auction (RPA): This is the case of the DPSB auction 

with reservation price. Hence only the bidders who bid price higher than 
reservation price can be winners.  

 
• Cancelable Auction (CA): This is another variant of the DPSB auction in 

which the auctioneer cancels an auction round when the projected revenue 
does not meet his expectation. 

 
• DP-ORA: This case represents DP-ORA with the VLLF-BDC algorithm. 
 

There are 100 bidders in our simulations. The sealed bidding assumption 
makes each bidder’s bidding behavior independent of others. Hence, in a 
recurring auction, the bidding behavior is influenced only by the results of 
the previous auction rounds, i.e., the win/loss decision informed to each 
bidder. Based on the assumption of risk neutral bidders, each bidder will 
attempt to maximize its expected profit. All the above considerations 
motivated us to assume the following bidding behavior. If a bidder lost in the 
last auction round, she increases her bidding price by a factor of 1α >  to 
improve her win probability in the current round. The increase of bidding 
price is limited by the true valuation. If a bidder won in the last auction 
round, she, with equal probability of 0.5, either decreases the bidding price 
by a factor of β  or maintains it unchanged. The decrease attempts to 
maximize the expected profit factor in each bidder’s utility. α  and β  are set 
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in the simulations to 1.2 and 0.8, respectively. The minimum bidding price 
of each bidder is 0.1. If a bidder drops out of an auction, his bidding price is 
set to 0. There are 50 units of perishable resources available for allocation in 
each auction round. Hence, the maximum number of winners in each auction 
round is 50. If the resulting revenue of an auction round is lower than 250, 
the auction round is cancelled in CA. All other aspects of simulation 
scenarios, such as distributions of true valuation or TCL are same as in PI-
ORA scenarios. Hence, we set the reservation price for RPA as 5.0.  
 

The simulations of DP-ORA collect data on the auctioneer revenue and 
resource allocation fairness. The auctioneer’s revenue is proportional to the 
average bidding price of winners in each auction round, so we use the latter 
as a measure of the former. We also measure the number of wins for each 
bidder in 2000 rounds of the recurring auction. The resulting distribution is a 
metric of fairness, because higher bidding bidders should be more frequent 
winners than the lower bidding ones.  

 
Fairness of DPSB-NBD is optimal, because a bidder with the bid higher 

than a winner is also a winner. Additionally, by the no bidder drop 
assumption, DPSB-NBD never looses a bidder with high willingness to pay 
and low TCL. This means that DPSB-NBD prevents the loss of fairness that 
may result from the low TCL. Thus, we can measure the loss of fairness of 
DPSB, RPA, CA and DP-ORA by their degree of deviation from the fairness 
of DPSB-NBD.  

 
As shown in Figure 5-3, under, various wealth distributions (i.e., true 

valuation distributions), DPSB cannot maintain the auctioneer’s desired 
revenue. The inevitable bidders’ drops decrease the price competition 
between bidders who remain in the auction. Accordingly, the remaining 
bidders try to decrease their bidding price in the forthcoming auction rounds 
to maximize their expected profit. In the long run, the revenue of each 
auction round plunges to a very low level (i.e., below 1.0), compared to the 
auctioneer’s desired minimum cost (here 5.0). Therefore, in DPSB, an 
inevitable bidder drop problem is the dominating factor that decreases the 
auctioneer’s revenue, because there are no wasted perishable resources.  

 
In RPA, the revenue of auctioneer is mainly decreased by the resource 

waste problem. The bidder drop effect is small in this case, because the 
reservation price prevents the winners from decreasing their bidding price to 
the very low level. However, RPA does not avoid the resource waste 
problem. 28.6%, 28.0% and 34.2% of resources are wasted during 2000 
recurrent auction rounds in exponential, uniform and Gaussian distributions 
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of true valuation, respectively. As a result, the auctioneer cannot achieve her 
desired revenue in a recurring auction of this type. 

 

 
 

 
 

Figure  5-3. Average bidding price of winners in DP-ORA 

 

 

   CA suffers from the same problem as RPA. By canceling auction, CA 
can prevent remaining bidders from decreasing their bidding price to the 
very low levels. However, in cancelled auction round, the entire 50 units of 
perishable resources that are assigned to the auction round are wasted. 
23.5%, 32.9% and 34.8% of resources are wasted during 2000 recurrent 
auction round in exponential, uniform and Gaussian distribution of true 
valuation, respectively. For this reason, the resources wasted in the cancelled 
auction rounds prevent the auctioneer from achieving the desired revenue. 
Figure 5-4 shows amount of the resource waste in exponential true valuation 
distribution in each auction round of RPA and CA.  
 

DP-ORA is able to maintain price competition permanently in a recurring 
auction thanks to the VLLF-BDC algorithm. Moreover, in DP-ORA, the 
resource waste never arises, because the entire stock of perishable resources 
is sold in each auction round. Therefore, the auctioneer can preserve nearly 
optimal level of the revenue. Additionally, the bidders whose bid prices are 
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too low are eliminated from the auction automatically based on their TCL. 
Hence, even though VLLF-BDC algorithm allocates resources to the PW 
class whose members bid lower than member of the DW class, the low true 
valuation bidders cannot impact auctioneer’s revenue in DP-ORA.  
 

 
 

Figure  5-4. Resource waste in RPA and CA 

 

 

Remarkably, the loss of fairness in DP-ORA is lower than the one 
observed in DPSB, RPA and CA under all simulated wealth distributions of 
bidders. This phenomenon results from the fact that DPSB, RPA and CA 
cannot prevent the loss of fairness caused by high true valuation bidders 
dropping out of an auction as a result of exceeding their TCLs. In other 
words, DPSB, RPA and CA cannot prevent a bidder who is willing to pay 
high prices but has low TCL from dropping out of an auction because he 
may exceeds his TCL at some auction round. In each auction round, DPSB, 
RPA and CA have highest possible fairness, because their winners are 
selected by the current bidding price only. Yet, remarkably, DP-ORA has 
lower loss of fairness over the entire recurring auction because loss of 
fairness that results from TCL is the dominating factor in the long run. The 
specific results measuring the loss of fairness under various bidder wealth 
distributions are provided in Table 5-1. 
 
          Table  5-1. Loss of fairness  

Auctions Exponential Uniform Gaussian 

DPSB 34.6  % 23.9 % 29.4 % 
CA 33.5  % 32.9 % 33.4 % 
RPA 30.0  % 28.9 % 41.8 % 
DP-ORA 9.4 % 6.0 % 11.9 % 

 
We also simulated the more general case of an auction in which a bidder 

who dropped out can return when the winning price becomes sufficiently 
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low. For this case, the simulation results show that the revenue of the 
auctioneer settles somewhere between the revenues of DPSB and DPSB-
NBD because those are the border cases of the general one. The revenue of 
the DPSB case sets the lower bound for the revenues in the general case 
because there are no bidders returning during the recurring auction. The 
revenue of DPSB-NBD sets the upper bound because all bidders return 
immediately to the recurring auction in that case.  

 
In summary, DP-ORA can achieve the increased revenue and the 

decreased loss of fairness in the recurring auction for perishable resources by 
resolving the bidder drop problem and the resource waste problem. 

6. SUMMARY OF THE CHAPTER 

As the current e-market paradigm evolves towards e-service oriented 
markets, auctions used in such e-services markets are recurring and trade 
perishable resources. During such auctions, bidders can drop out of an 
auction at any time. Since an auction relies on a competition based dynamic 
pricing mechanism, keeping bidders interested in participating in the auction 
stabilizes the market by preventing a collapse of the price competition. 
Hence, the bidder drop problem is one of the most important aspects of the 
designing winner selection strategies for the recurring auction. The resource 
waste is another problem that needs to be considered in such context.  
 

In this chapter, we introduced two optimal recurring auctions for e-
services markets: the Participation Incentive Optima Recurring Auction (PI-
ORA) that is incentive compatible, and the Discriminatory Price Optimal 
Recurring Auction (DP-ORA) that is not. In PI-ORA, each bidder’s 
participation is rewarded by increase in his win frequency. In DP-ORA, the 
auctioneer allocates a resource to a bidder before he drops out of the auction. 
Such bidders are identified on the basis of their bid prices and history of 
wins in the recurring auction. Therefore, the ORA mechanisms using bidder 
drop control algorithms encourage participation of bidders in the recurring 
auction and therefore stabilize the e-service markets using short-term 
contracts and increase auctioneer’s revenue in such markets. 
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