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ABSTRACT 
Rapidly growing needs for networking in the Internet and in intranets make network 
management increasingly important in today's computer world.  We propose using 
learning techniques to predict network congestion problems before they start impacting 
the performance of services.  In this paper we focus on using a simple feedforward neural 
network to predict severe congestion in a network.  We also use neural networks to 
predict the source or sources responsible for the congestion, and we design and apply a 
simple control method for limiting the rate of the offending sources so that congestion 
can be avoided. Unlike the usual TCP/IP flow control, the proposed method is applied 
only to selected nodes and converges to the final rate faster. The described techniques set 
the stage for a new wave of network managers that are capable of preventing networking 
problems instead of repairing them. 

KEYWORDS:  congestion control, neural networks, weight pruning, network problem 
prediction, flow rate control  

 

INTRODUCTION 

In the growing world of networking, more and more emphasis is being placed on speed, 
connectivity, and reliability.  Network performance is vital to businesses for inter-business 
operations as well as bringing a product to the consumers through electronic commerce. 
Networking has influenced our everyday lives, as the interconnectivity of families and friends 
has changed the ways in which they communicate and seek information.   

With the growing number of network users, more emphasis is placed on the maintenance and 
reliability of the networks.  When network problems occur, they often catastrophically break the 
service for those enterprises or individuals that depend on the network connection.  Sometimes, 
such breaks of service are just annoying, but for companies and commercial users they often 
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mean lost revenues on the order of thousands, or even millions, of dollars.  Such breaks have 
become a significant problem in all forms of electronic commerce. 

To address this difficulty, a system is needed to insure network availability and efficiency by 
preventing such costly network breakdowns.  The first step towards this end is to create a system 
with the intelligence to recognize, as early as possible, early signs of incoming network service 
difficulties.  If the problem can be recognized in advance, changing network parameters can 
possibly circumvent the problem.  

Today, many companies provide a sophisticated suite of network performance measurement 
tools and alarm-raising systems to try to address the problem.  However, these tools simply give 
the network administrator a great deal of information about the problem after it has happened, 
hoping this will help the administrator find the cause of the problem and suitable solution 
quickly.  None focus on learning from the past breakdowns how to detect the problem 
beforehand. Early detection is of course preferable, because it would allow the administrator or 
the program itself to prevent the problem from ever occurring. 

We propose a system that uses neural networks to detect network congestion before it results 
in a breakdown of the network service and which also identifies the source of the congestion. 
Having the nodes identified, our system applies the flow rate restriction adaptively to the 
identified sources to avoid congestion overflowing the router’s buffers.  It should be noted that 
design and experiments presented in this paper focus on congestion control; however, the 
techniques could be applicable to other network problems. It should also be noted that the 
remedy in the form of flow rate restrictions can be applied directly to the original flow source if 
it is within the domain controlled by our system, or it could be applied to the edge router to the 
domain to which our system is applied. In the latter case, the restriction will result in the packets 
of the restricted flow being dropped at the edge router to the domain. This kind of a solution in 
which the congestion is decomposed and “moved”  from the internal routers to the edge routers is 
becoming increasingly popular in modern traffic management.  Finally, it should be noted that in 
such edge-control techniques the domains controlled by separate systems will collaborate 
through the edge routers.  Dropping packets at the entry edge router of one domain will cause the 
packets to be dropped at the exit router of the neighboring domain which will treat such dropping 
as congestion and then will identify the source of the flow. As a result, our techniques can be 
applied locally at a domain of the decomposed network and their congestion solution will 
iteratively be mapped to the corresponding edge routers of the intermediate domains until the 
source of the flow is found and informed of the need to decrease the traffic. 

Another remark is needed to relate the present work to the differentiated services, methods of 
creating different levels of services for customers willing to pay higher levels.  As more products 
are created to control networks, differentiated services will become very important for the 
Internet.  Identification of sources that can be forced to limit their flow rate can lead to 
accounting for different priorities of traffic and offending flows.  For example, if traffic from a 
certain machine is deemed high priority, the system may restrict other machines, instead of 
slowing down the high priority machine.  Changing the architecture to operate on a flow basis 
instead of a machine basis could also be easily done to account for a variety of traffic from each 
machine, each with a different priority.  Hence, the techniques that we present in this paper are 
directly applicable to the “best effort traffic”  over the Internet, but their extensions to 
Differentiated Services or Quality of Services environments are straightforward. 

 
RELATED WORK 
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Actively managing networks remains an open topic of research with many interesting and 
difficult challenges.  One of the challenges deals with how relevant traffic information is handled 
through the network.  There is a great deal of research being done on ways to have each node 
receive all relevant information as packets go through the network.  Most research and 
development in this area focuses on active networks.  Active networks allow each packet of 
information to contain some computation that is executed on each node that the packet reaches in 
its travel trough the network.  Hence, in active networks, each packet contains both data and 
code.  The code contained in the packet is executed in an execution environment determined by 
the node's operating system.  This code could consist of function calls, or actual code to be 
compiled in the executing environment.  Using active networks, the network can perform 
customized computations on the data flowing through the network [15]. 

Some believe the real power of active networks is not in their computational ability, but in 
communication ability.  These networks may focus on Quality of Service issues and network 
traffic classification.  Active networks with this focus can monitor and regulate themselves with 
every packet flowing through the network.  They can also insure that certain traffic will always 
receive reliable service [6].  Many times these active networks can even be used to augment the 
protocols used to send the data, providing additional efficiency in the data sending process [1].  
Using active networks could certainly afford us the ability to easily optimize the efficiency of the 
network.  However, the cost of an implementation such as active networks is very high.  They 
require resources on every node in the network for every packet that flows through the network.  
Each packet must take time for an execution environment to be designated and its code to be 
executed at every node.  There are also security problems in this approach, because every node in 
the network may execute the code of every packet.  In this case, special security measures would 
have to be taken at every node to avoid executing code from a malicious packet.  

Some implementations of active networks involve limiting the "active nodes" to those 
surrounding special links. Typically, these are links selected because of historically poor 
bandwidth capabilities or tendencies to drop packets.  The purpose, in these cases, is to change 
the traffic (split packets, or send part of flow through different routes.)  These implementations 
are called Transformer Tunnels [3].  Whereas these tunnels do limit the active network 
computational liabilities to a smaller number of nodes, they do not give us the power to look at 
statistics from other locations in the network.  A neural network agent, acting as a controller, can 
gather the necessary statistics and make predictions, while avoiding many of the problems of 
active networks. 

Approaching networking issues with neural networks is not uncommon. A group at Prairie 
View A&M University developed a neural network-based system, which looks at a network's 
traffic pattern and proposes a new physical configuration of the network.  Their goal was to 
reduce the amount of data flowing around the network, thereby decreasing the response time, and 
reducing the error rate [11]. 

Other neural network research has been done in ATM networks with Connection Admission 
Control (CAC) schemes.  In these works, the authors use fast converging neural networks to 
predict cell loss in a switch using data from a cell bouncing between two switches [16].  In ATM 
networks, a switch is a machine which receives data from one interface and quickly forwards it 
to another interface closer to the destination desired.  The cell is simply the name given to the 
piece of data because it is of a uniform size and structure.  This effort involved a degree of loss 
prediction, but offers no solution for determining the problem source or solution. 
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 Another group at the University of Maryland is using neural networks to route traffic in 
Multistage Interconnection Networks [10].  Routing can be static or dynamic.  Static routing 
involves an administrator manually configuring each router to forward packets of a certain 
destination along a certain interface, while dynamic routing usually uses a distributed algorithm 
and special protocols to determine the best routes.  Authors at Maryland use a neural network 
that functions as a very robust parallel computer, dynamically generating routes faster than 
conventional routing approaches.  The robust nature of neural networks was one of the factors 
that attracted the authors to this approach. 

A group at Rensselaer Polytechnic Institute is doing very similar research [17] [18]. They 
detect changes in traffic patterns through the use of a sequential Generalized Likelihood Ratio 
(GLR) test. They first gather time series MIB variable data using SNMP.  This data is then split 
into windows of 2.5 minutes each to create piecewise stationary auto-regressive models.  Using 
these windows, a (GLR) sequential hypothesis test is performed to determine the extent of 
statistical deviation between two adjacent time windows.  Once changes are detected using the 
GLR, the authors explored two ways of correlating the different alarms between values of the 
several MIB variables.  They first try a Bayesian belief network whose model is based on a 
directed graph that spatially represents the hierarchical structure of the MIB variables.  Their 
second technique was a duration filter which would correlate the propagation of many alarms 
with the MIB’s internal variable dependencies during a certain duration period.  Their algorithm 
was "trained" or optimized using five of nine fault data sets, and proved general enough to detect 
three out of the remaining four fault data sets.  However, this group used a hypothesis testing 
method for detecting patterns, while we propose a neural network to learn the patterns leading to 
network faults.  We also focus on predicting problem sources and correcting the problem in a 
timely fashion, whereas their work was just in general detection. 

Another group with similar research goals can be found at the University of Michigan [7].  
There is work being done there in congestion control and mitigation strategies.  However, this 
group uses a queuing theory approach rather than a neural network to guide the mitigation 
efforts.  And their mitigation efforts consist of rerouting the traffic whereas ours focuses on 
implementing a control architecture. 

 Wu Chang Feng, also of the University of Michigan, has developed a neural network 
optimizer for bandwidth allocation in telecommunications networks [9].  In Feng’s work, feed-
forward neural networks were used to quickly optimize bandwidth allocation.  To evaluate the 
performance of the neural network optimizer, the results were compared to results from a linear 
programming optimizer.  Feng removes the real-time control effect from this work, allowing the 
neural network to function more as a traditional optimizer.  Rather than assigning an appropriate 
bandwidth to the nodes across the network using a neural network optimizer, we use a neural 
network predictor as a pure control agent, regulating real-time traffic on the network.  This 
allows the network to function as normal with our neural network watching real-time statistics to 
determine if they indicate the start of a networking problem.  

 Neural networks have also been used to decide if certain requests will satisfy the Quality 
of Service (QoS) parameters set by the network administrators [12].  QoS usually involves 
classifying network traffic and setting certain restrictions on the traffic based on its class.  The 
predictive powers of neural networks are used to predict if QoS standards will be upheld with the 
entry of new traffic.  The authors of [12] do not address predicting congestion causes, nor do 
they need to make any attempt towards correction.  Their solution falls in the category of open-
loop solutions, those that prevent problems by not allowing the network to enter into any state in 
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which a transition into a problem state is possible.  Limiting network activities to states which 
could only transition to positive states can vastly reduce the utilization of the network, given the 
unpredictability of networking traffic. 

 
 
 

ARCHITECTURE 
A high level view of our architecture reveals a network with a control agent existing 

somewhere on a node in that network.  This control agent has both the power to read from and to 
influence network nodes.  The nodes involved would either report the necessary statistics to the 
control agent or the control agent would poll these nodes.   

Data Network 
Optimally, we would have tested the system on a local computer lab or a testing lab put 

together for this purpose.  However, neither of these was available at the time of project 
development.  In the absence of the needed testbed, NS, a discrete-event network simulator 
targeted at networking research, was used to model the network and different scenarios of 
network traffic (NS can by found and downloaded from http://www.isi.edu/nsnam/ns/) [].   NS 
simulates network architectures on a packet by packet basis, giving the user the ability to monitor 
very specific as well as aggregate statistics about all facets of the network.  This, of course, made 
the integration of a control agent easier, but a similar design could be implemented on a real 
network. 

In our example, the network consisted of several nodes in a configuration where all of the 
network nodes were attempting to send data to one node (see Figure 1(a)).  Each node attempts 
to send at a random bit rate.  A random amount of variance is given to each node's rate to better 
represent traffic in a real network and possible traffic coming in from other nodes outside of our 
simulation.  Link capacities between sending nodes were given arbitrary values (described in a 
later section) for testing purposes.  Some links were able to handle much more traffic than other 
links. 

 
 
 

 

Control Agent 
We create a control agent containing a neural network that is trained prior to being placed in 

production.  In our simulation, the control agent is called at a regular interval in part of the 
simulation code.  This enables the agent to easily monitor and influence traffic statistics from 
each node.  The control agent gathers information from each managed node, performs several 
mathematical functions normalizing the values, and makes a decision about where, if anywhere, 
network problems will occur.  With the predicted problem in our grasp, we can take steps to stop 
or prevent it.  
Implementation Details 

The system consists of three separate programs, one implemented in Tcl, the language 
used to run simulations in NS, one implemented in C for file manipulation, and a third actually 
running the neural network.  We use the publicly available MetaNeural Neural Network 
application as our neural network (MetaNeural can be obtained from 
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http://www.drugmining.com/).  MetaNeural is a general-purpose backpropagation program.  
These programs communicate with each other via files to synchronize the running of NS with the 
running of the neural network program, determining if a current network configuration might 
cause a problem.  An illustration of these relationships is shown in Figure 2(a and b). 
The Simulation Network 

The simulated network is arranged such that six sending nodes are connected to one 
receiving node through several links which direct the packets to the destination (Figure 1(a)).   
The sending nodes produce data in a way similar to Universal Datagram Protocol (UDP) agents, 
sending constant bit rate (CBR) traffic with a randomized parameter to add variance to the 
traffic.  In NS, each connection is explicitly stated and each sending agent in each node is 
configured to send to a particular receiving agent.  To determine how fast the sender sends data, 
the packet size and a packet interval are given in the simulation script that defines the simulation 
run.  The sender sends a packet of the designated size at the designated interval. The receiver 
simply has a null agent that receives the data and sends no responses.  NS Queue Monitors are 
attached to the queues to keep track of the status of each queue.  We gather statistics such as 
packets received and the size of the queue during the simulation.  During the simulation, the 
control agent executes at a polling interval, monitoring the traffic and making decisions.  Files 
are created for each node to keep track of that node’s data.  During each run of the network 
simulator, the files are extended with the new data from the latest interval. The most important 
part of the control agent is the neural network prediction module.  For our agent implementation, 
we used a single hidden layer, feed-forward neural network.  This was a compiled application, so 
wrappers were needed to control the input and output dealing with the neural network.  The 
wrapper program was written in C and is called after the data files are updated by the simulator.  
The simulator halts until the C program finishes.   
 
C Wrapper:  As mentioned before, to execute the control agent, a C wrapper is first called.  This 
is where the bulk of the calculations for the neural network program are done.  It first opens the 
files written by the simulator which contain historical and current values for the number of 
packets.  The program uses these values and computes the average number of packets, the 
variance of packets, and the third momentum given the appropriate polling interval.  In the first 
iteration, the average is the current number of packets and the variance and third moment are 
zero.   These values are then normalized for the neural network using a basic normalization 
function. The normalized values are then combined into one input file to the neural network 
package for a decision.  The neural network program is executed using new input files and the 
output is rendered in yet another file.  This file is read by the C wrapper and converted into a 
readable format for the simulator to process. 
 
Neural Network Specifics:  The neural network used by the control agent has 3*n input nodes, 
1 hidden layer containing n nodes, and n nodes in the output layer.  The 3*n input nodes 
correspond to the n traffic generating nodes in the network simulation; there are three input 
nodes for each node in the network simulation corresponding to the average number of packets, 
variance, and third moment for each monitored node.  In our example (Figure 1(a)), n would be 
six because only six nodes were actually contributing traffic to our network. 

To further stress the importance of adjacency relationships between nodes in the data 
network, we placed an additional optimization of the structure of the neural network.  The 
weights were pruned to the point in which the neural network reflected the connectivity of the 
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actual network.  The n nodes in the hidden layer also represent active nodes in the data network.  
Instead of providing a fully connected environment between the input layer and the first hidden 
layer, we only allowed connectivity from input neurons that represent nodes adjacent to 
represented nodes in the hidden layer.  An example is shown in Figures 1(a and b). 

In the model of the neural network in Figure 1(b), the hidden layer is representative of the 
participating nodes in the data network.  The statistical data regarding each node is provided to 
the hidden node representing the actual node as well as to the hidden nodes representing the 
actual node's neighbors.  This is continued for all first layer nodes of the neural network.  As a 
result, the statistical information from node 1 is given to both the hidden node representing node 
1, and the hidden node representing node 5 (1's neighbor.)  This process is important in realizing 
the relationships between adjacent nodes in a data communications network. 

The output of the neural network is a mask representation of which nodes have been 
suspected of causing the problem.  For example, an output of  “010000”  would mean the second 
node in the network was responsible for the network congestion.  An output of  “010100” would 
mean the second and forth nodes were both to blame, and  “000000” would mean no problem 
threat has been detected. 

The neural network was trained off-line, which involved creating a pattern file from which 
the neural network would learn about congestion. Eighty-eight patterns were used to train the 
network; half were samples containing no network problems and half had congestion problems at 
various locations.  In training the neural network, early stopping was used, allowing the training 
to go for about 15000 iterations.  In this case, the least squares error was equal to or less than 
0.04%. 
 
Control from the Agent:  As stated before, in NS, both an interval and a packet size are 
provided for agents sitting at the sending nodes to determine bandwidth used.  The agent will 
send one packet at every interval, therefore the smaller the interval, the higher the bit rate.  If our 
neural network predicts that a particular node will be responsible for congestion, we conclude 
that the predicted problem source is using too many resources.  To correct the predicted cause 
node traffic rate, we add to its sending interval a small ∆t, thus reducing its bit rate.  For example 
if node 1 was predicted as the problem source, Equation 1 would explain how node 1’s bit rate 
would be corrected: 

Interval1= Interval1 + ∆t 

This delta was chosen to be small with respect to the simulation time scale, because we do 
not want to take the chance of over-correcting or even worse, applying a large correction to the 
wrong node if our prediction was wrong. To take into account the small ∆t, the interval in which 
our control agent executes also is relatively small.  Therefore many of these small corrections 
can be applied which corrects a problem slowly without drastically changing any one node's 
level of service.  
TEST CASES 
Testing Environment 

The tests were performed on a Sun Ultra-SPARC 10 running Solaris 5.6.  The packet size 
was set at 500 bytes for each sending node; most of the links between nodes were set to 5 MB/s; 
and the link between nodes 5 and 6 was set at 10 MB/s.  The delay for the links was set at 10ms 
and all queues implemented Stochastic Fair Queuing (Equally Fair Queuing).  The interval was 
varied between 0.00100 and 0.00200 seconds (if the interval is 0.00100, a packet is sent every 

(1) 
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0.001 seconds).  The traffic generated is constant bit rate traffic, but the random parameter was 
set for each sending node so that the traffic would not be totally constant. 

 
RESULTS 

A general breakdown of the results can be found in the graph of Figure 3 which shows our 
current application detects and corrects congestion in about 90% of the cases.  Our tests include 
cases in which corrections to one node are required, corrections to multiple nodes are required, 
and some where no correction is required. Failing includes either missing congestion or 
predicting congestion when there is none. 

We ran thirty-one network simulations.  Roughly 33% of the cases were simulations of a 
network without congestion problems.  In these cases we would want our control agent to realize 
that it does not have to do anything.  The detector realized that there was no correction needed in 
all but 1 case. In this isolated case our agent unnecessarily applied a single small correction to a 
single node.  The correction that the control agent applied was with a single ∆t, and therefore 
was minimal. 

About 66% of the total cases had various levels of congestion in various locations in the 
network.  Of the congested cases, we were able to predict the cause and fix the problems 85% of 
the time.  The times we were able to detect the congestion problems can be found in Figure 4.  
Figure 4 shows that 60% of the time we detected congestion, we were able to fix the problem 
before packets were dropped in the network.  These were truly remarkable results, because the 
congestion was completely eliminated before it occurred.  In the cases that we could not stop 
packets from dropping, we were able to return the network to a stable state within 3.5 seconds 
after packets began to drop. 

Finally, in the cases that our detector missed the threat of congestion there was a common 
characteristic.  The neural network had trouble detecting congestion when a single node in a 
particular part of the data network caused a problem.  This probably can be improved upon close 
examination of the training patterns and structure of the neural network. 
 
COMPARISON TO MODERN TECHNIQUES FOR CONGESTION CONTROL 

To evaluate the advantages of a system like the one we have described, we analyze below the 
current methods of congestion control.  Today, most of the congestion control is handled in the 
transport layer of network communications.  The most often used protocol for network transport 
in today’s applications is TCP (Transmission Control Protocol). TCP uses a combination of 
several algorithms to control congestion but only those that are relevant to our technique will be 
discussed here.     

 
TCP Description 

TCP congestion control is flow-based, meaning that the only information considered by the 
protocol concerns the sender and the receiver of a particular flow.  TCP keeps track of several 
state variables for each connection or flow that it controls, and adjusts the state variables through 
two algorithms, slow start and congestion avoidance. Slow start is used at the beginning of a 
TCP flow, until congestion is detected.  After congestion is found, TCP then switches to 
congestion avoidance. 

The two most important variables that TCP maintains are the congestion window, cwnd, and 
the slow start threshold, ssthresh.  The cwnd controls and limits the sender as to how much data 
the source can send at a given time before an acknowledgement is received.  The ssthresh 
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controls how long TCP will stay in slow start mode (predicted start of congestion). Selection of 
an appropriate value for the cwnd is significant because if it is too high, data can be lost quickly 
but a value that is too small leads to underutilization of the network.  Because of the importance 
of this variable, the TCP source must set the cwnd based on the level of congestion that it 
perceives to exist in the network.  However, the level of congestion in the network can increase 
and decrease with changes in the network.  The short descriptions below show how slow start 
and congestion avoidance, consistantly alter the two variables as congestion changes in the 
network. 
Slow Start:  At the beginning of a connection, the cwnd is set to one segment and the ssthresh is 
set to a large number.  The source sends the number of segments dictated by cwnd, and then 
waits for the segments to be acknowledged by the receiver.  If all segments are acknowledged, 
the value of cwnd effectively doubles.  The congestion window doubles because the source 
thinks there is no congestion in the network and determines it can send more data before waiting 
for an acknowledgement to further utilize the network.  As long as the segments are all 
acknowledged, the cwnd will continue to double until cwnd >= ssthresh.  When this value is 
reached, the source thinks that congestion can happen soon, so it switches to the congestion 
avoidance algorithm.  If a segment is not acknowledged before some timeout occurs, the source 
views this as a significant sign of congestion.  When the acknowledgement timeout has 
happened, ssthresh is set to half the value of cwnd, and cwnd is reset to one.  However, the 
source remains in the slow start  algorithm until the cwnd >= ssthresh. 
Congestion Avoidance: Once cwnd >= ssthresh, TCP switches to the congestion avoidance 
algorithm to advance the cwnd slowly to utilize the network, but not cause congestion.  To this 
end, congestion avoidance uses a process called additive increase/multiplicative decrease.  If all 
segments of a cwnd are acknowledged by the receiver, the cwnd now increases by 1 instead of 
doubling.  This additive increasing of cwnd  continues until an acknowledgement is not received.  
When an acknowledgement timeout occurs, the source believes once again that it has caused 
congestion, sets ssthresh to half the value of cwnd (multiplicative decrease), and resets cwnd to 1 
segment.  Because cwnd would now be less than ssthresh again, TCP reverts back to the slow 
start algorithm until cwnd >= ssthresh [8].    

An interesting point is that in additive increase/multiplicative decrease the source will reduce 
its congestion window much faster than it will increase it.  If the congestion window increases, 
as quickly as it decreases (multiplicative increase/multiplicative decrease) then congestion would 
occur much faster and there would be many more dropped packets.  It has been shown that the 
additive increase strategy is a “necessary condition for a congestion control mechanism to be 
stable.”  [2] 
 
How our application is different:  One of the biggest criticisms of TCP’s method of control is 
that it can determine congestion only when data already have been lost.  Our strategy determines 
that congestion is brewing, often before the congestion has actually happened.   
 Another big difference is revealed in the correction procedures.  When TCP detects 
congestion by dropped packets, it reduces the sender’s congestion window by half.  Situations 
could arise where the node that is actually causing the congestion does not have packet loss, but 
another node along the way that sends out relatively low traffic could be the one to have an 
acknowledgement timeout.  In the case just mentioned, the node for which the congestion 
window already was small becomes even smaller, in effect, punishing the wrong node.  With the 
growing popularity of open source operating systems, users also easily could create “unruly”  
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TCP clients that do not adhere to the protocol rules creating havoc for all other “well-behaved”  
flows in a similar fashion.  However, with our system, correction will be applied to a node or 
group of nodes causing the congestion.  That node will then have a lower threshold placed on its 
traffic rate, forcing it to slow down.     
 
FUTURE WORK 
Extending Architecture 

An extended architecture can be formed to suit the biggest communication networks by 
decomposing these large networks into domains small enough to influence easily.  Most large 
networks are already composed hierarchically of domains that are collections of local networks.  
When the larger networks have been divided, a separate protocol or addition to current protocols 
can be used to determine domain-to-domain agreements.  

As illustrated in Figure 5, the learning Control Agent would be somewhere within each 
domain defined in the network.  Using the forecasting and detective powers of the agent, each 
domain would be regulated and operating at safe levels.  

To negotiate any problems between domains, the control agents communicate with each 
other as to the effects of one domain on another.  The control agents take this information into 
account just as they take the information from local nodes into account.  The inter-domain 
negotiation will promote the same safe state of operations between domains, as it will inside each 
domain.  In particular, a border router between two domains is a source in one and the 
destination in the other. If the flow creates the congestion in the second domain, the agent in 
control of the second domain will apply corrections to the source border router, causing the 
router to drop packets from the flow to enforce the lower rate allocated to the flow. The dropping 
of packets at the border router, which is a destination for the first domain, will be perceived as 
congestion by the agent controlling the first domain. As a result, the agent of the first domain 
will apply correction to the source of the traffic, thereby eliminating congestion. An important 
feature of this architecture is that if the agent has no control over the source, it will apply rate 
correction to the first router under its control causing it to drop packets from the offending flow. 
As a result, our technique will remedy malicious attacks by the “unruly”  tcp sources by dropping 
the packets not responding to the request for the lower rate of traffic from the source. 
 

Broader Detection 

 At present, our system only predicts and detects traffic congestion.  It would be useful to 
create a system that can do the same for other problems.  It would also be of great value to train 
the network over many different types of traffic.   
 Due to the changing nature of networking, it is not unreasonable for the network, at some 
point, not to fit the same mold our neural network learned.  For this reason, it could prove 
beneficial to train the network with a real time recurrent learning algorithm to allow the neural 
network to continue learning after the training period [19].   Alternatively, we can envision an 
architecture in which a current generation of the neural network is used for control while 
simultaneously a new generation is being trained on the current traffic patterns. We believe that 
the period of run/training could be quite infrequent, something like few weeks at a time.  
Different control neural networks could be trained for different times, special events, and other 
cases where specialized traffic needs are noticed. 



 

 11

Application of Positive Corrections to Optimize Network 
 The present system predicts network congestion and takes steps to prevent it by forcing 
nodes to slow the sending rates.  It would be equally beneficial to train the network also to detect 
conditions in which the current bandwidth thresholds are too strict for proper network utilization.  
In these cases, the system should relax the bandwidth threshold for selected nodes.  We formed a 
direct comparison between TCP and our system using the File Transport Protocol (FTP) to 
transfer files from one node to the other.  When transferring small files, our system always beats 
TCP.  When transferring large files, TCP has a chance to take advantage of its additive increase 
and slow start techniques [2], and transfers the information faster than our strategy.  However, 
TCP has the advantage of adding and subtracting until it can find an optimal bandwidth, while 
our present system only subtracts from the current rate.  Therefore, adding a capability of 
applying a positive correction to selected nodes would make our system competitive with TCP 
also for transfer of large files.  

Implementation of the System on a Real Network 

Lastly, it would be most interesting to implement this system on a real network to see if 
similar results can be obtained.  To apply to a real system, we could use Simple Network 
Management Protocol (SNMP) traffic variables [].  SNMP monitors many statistics including 
several on the internet protocol and interface levels for a particular machine.  Our traffic data 
would be functions of current data counts from the routers in the network.   

Several avenues are available to control sources in the network.  Classifications and 
service level agreements (SLAs) or communication pipes could be used to implement the control 
aspect.  If either of SLAs or communication pipes are used, the control agent must reside on a 
node in the network that has access to all nodes being monitored.  The close proximity keeps our 
control agent local and would prohibit implementation in a very large network without changing 
the architecture.  A more interesting choice would be to implement our system as an Active 
Queue Management scheme.   
 In active queuing, some process is used to detect congestion “early.”   When congestion is 
detected, the sending protocol is notified to slow down through TCP’s multiplicative decrease 
feature.  Either a packet is dropped early to make the sender slow down or a process called Early 
Congestion Notification is used to set a special bit in the acknowledgement packet letting the 
sender know that the early congestion detection mechanism has detected early signs of 
congestion.  When the sender gets an acknowledgement packet with this bit set, it will reduce its 
congestion window as if a packet has been dropped.  The advantage of this technique is that it 
uses existing protocol techniques to control the flow without losing any data packets. 
 

CONCLUSIONS 
In this work, we set out to show that a neural network is a viable method of implementing a 

learning mechanism for data communication networks.  We have illustrated, through the use of a 
network simulator, that a neural network can achieve great accuracy in predicting one particular 
network problem, namely congestion.  We realize many more problems exist that for which this 
approach is applicable, but predicting congestion is just the first step towards our research goals.  
We also have shown one situation in which a carefully constructed neural network can achieve 
above average results when structural information about the actual data network is used to form 
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the connections between layers of the neural network.  This special design forces the neural 
network to consider the relationships only of those nodes that we think are important. 

A learning mechanism can be of great value for a network manager.  The generalization 
power of a neural network particularly is appropriate because of the unpredicted variance of 
parameters that the network manager encounters.  Neural networks are an appropriate 
mechanism for decision making in pro-active network management and should be the subject of 
more research. 
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FIGURES 

Figure 1:  (a) left - example of a data communication network.  (b) right - a neural network 
representing the connectivity of the data communications network (a). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1:  This figure depicts the relationship between the data communication network (a) and 
the neural network (b).  The neural network reflects the connectivity of the data network by only 
allowing links between neurons representing adjacent nodes.  For example, statistics from node 1 
are communicated to the hidden layer nodes 1 and 5.  The connection between node 1 in layer 1 
and node 1 in the hidden layer exist because in the data network, they represent the same node.  
However, the connection between node 1 in layer 1 and node 5 in the hidden layer exist because 
in the data network, 1 and 5 are adjacent nodes.                
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Figure 2: Control Agent Architecture 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  This Figure shows the relationship among the different components of our system.  It 

also depicts the flow of information among these components.  All components inside of the 
dashed circle are considered to be part of the Control Agent. 
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Figure 3:  Breakdown of Results 
 

 
Figure 3:  This is the breakdown of the system results over the different cases of congestion.  
This graph shows that the system was able to successfully detect congestion (or detect no 
congestion) in about 90% of the test cases.    
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Figure 4:  Prediction Horizon Graph 
 

 

 

Figure 4:  This graph shows the amount of time it took our system to determine that congestion 
was present.  Note that over 60% of the cases were determined to cause congestion before any 
packet loss had occurred.   
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Figure 5: Extension of the Architecture 
 
 

 
Figure 5:  This figure shows a possible extension of the architecture for managing large 

networks.  As pictured, it involves splitting these large networks into smaller networks.  Each 
smaller network is managed independently with boundary traffic handled by a separate 
protocol between Control Agents.   
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