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Abstract - We describe the use of machine learning for 
pattern recognition in magnetocardiography (MCG) that 
measures magnetic fields emitted by the 
electrophysiological activity of the heart. We used direct 
kernel methods to separate abnormal MCG  heart patterns 
from normal ones. For unsupervised learning, we 
introduced Direct Kernel based Self-Organizing Maps. For 
supervised learning we used Direct Kernel Partial Least 
Squares and (Direct) Kernel Ridge Regression. These 
results are then compared with classical Support Vector 
Machines and Kernel Partial Least Squares. The hyper-
parameters for these methods were tuned on a validation 
subset of the training data before testing. We also 
investigated the most effective pre-processing, using local, 
vertical, horizontal and two-dimensional (global) 
Mahanalobis scaling, wavelet transforms and 
experimented with variable selection by filtering. The 
results, similar for all three methods, were encouraging, 
exceeding the quality of classification achieved by the 
trained experts. 

Keywords: Classification, pre-processing, direct kernel 
methods, support vector machines, self-organized maps. 

1 Introduction 
In this paper, we describe the use of direct-kernel 

methods and support vector machines for pattern 
recognition in magnetocardiography (MCG) that measures 
magnetic fields emitted by the electrophysiological activity 
of the human heart. A SQUID-based measuring device for 
MCG that can be used in regular, magnetically unshielded 
hospital rooms is currently under development. The 
operation of the system is computer-controlled and largely 
automated. Proprietary software is used for precise 24-bit 
control and data acquisition followed by filtering, 
averaging, electric/magnetic activity localization, heart 
current reconstruction, and derivation of diagnostic scores.  

The interpretation of MCG recordings remains a 
challenge since there are no databases available from which 
precise rules could be educed. Hence, we studied the 
methods to automate interpretation of MCG measurements 
to minimize human input for the analysis. In this paper, we 

report our results on detecting ischemia, a condition arising 
in many common heart diseases that may result in heart 
attack, the leading cause of death in the United States. 

The paper is organized as follows. We start with a 
discussion of data acquisition and preprocessing in the next 
section. We discuss what kind of preprocessing is suitable 
to different learning methods. Section 3 presents the core of 
our results: the comparison of performance of different 
machine learning techniques for our problem, and 
methodologies for assessment of prediction quality and for 
the regularization parameter selection. Section 4 discusses 
feature selection. The final section provides conclusions 
and outlines the future work in this area. 

2 Data acquisition and pre-processing 
 MCG data are acquired at 36 locations above the torso by 
making four sequential measurements in mutually adjacent 
positions. In each position the nine sensors measure the 
cardiac magnetic field for 90 seconds using a sampling rate 
of 1000 Hz leading to 36 individual time series. For 
diagnosis of ischemia, a bandwidth of 0.5 Hz to 20 Hz is 
needed, so a hardware low pass filter at 100 Hz using 6th-
order Bessel filter characteristics is applied, followed by an 
additional digital low pass filter at 20 Hz using the same 
characteristics, but a higher order. To eliminate remaining 
stochastic noise components, the complete time series is 
averaged using the maximum of the R peak of the cardiac 
cycle as a trigger point. For automatic classification, we 
used data from a time window between the J point and T  
peak [5] of the cardiac cycle in which values for 32 evenly 
spaced points were interpolated from the measured data. 
The training data consist of 73 cases that were easy to 
classify visually by trained experts. The testing was done 
on a set of 36 cases that included patients whose 
magnetocardiograms misled or confused trained experts 
doing visual classification. 
Data were preprocessed in this case by first subtracting the 
bias from each signal. Then, we investigated the most 
effective pre-processing for our multi-variate time-series 
signals, including local, vertical, horizontal and two-
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dimensional (global) Mahanalobis scaling, and wavelet 
transforms. An important consideration was preservation of 
data locality, which was achieved by applying the 
Daubechies-4 wavelet transform to each signal [3]. It was 
chosen, because of the relatively small set of data (32) in 
each of the interpolated time signals. Only SOM and K-
PLS methods that observe data locality in input did not 
require this transformation. Next, we Mahalanobis scaled 
the data, first on all 36 signals and then (for all except SOM 
based methods) vertically. A typical dataset for 36 signals 
that are interpolated to 32 equally spaced points in the ST 
segment [5] and after Mahalanobis scaling on each of the 
individual signals is shown in Fig. 1. 

 

Figure 1. Filtered and averaged temporal MCG traces over 
one cardiac cycle collected in 36 channels (the 6x6 grid). 

3 Predicitive modeling for MCG data 
classification   

We investigated both unsupervised and supervised learning 
methods. For the former, we used Direct Kernel (DK)-
SOMs, since SOMs are often applied for novelty detection 
and automated clustering. Our DK-SOM has a 

189× hexagonal grid with unwrapped edges. For 
supervised learning, we used four kernel-based regression 
algorithms: classical Support Vector Machines effective in 
extracting relevant parameters from complex data spaces, 
kernel partial least square K-PLS, as proposed by Rosipal 
[10], direct kernel partial least square (DK-PLS), and 
Least-Squares Support Vector Machines (i.e., LS-SVM, 
also known as kernel ridge regression).   

Support Vector Machines or SVMs have proven to be 
formidable machine learning tools because of their 
efficiency, model flexibility, predictive power, and 

theoretical transparency [2,11,15]. While the nonlinear 
properties of SVMs can be exclusively attributed to the 
kernel transformation, other methods, such as self-
organizing maps or SOMs [9], are inherently nonlinear 
because they incorporate various neighborhood-based 
manipulations. Unlike SVMs, the prime use for SOMs is 
often as a visualization tool [4] for revealing the underlying 
similarity/cluster structure of high-dimensional data on a 
two-dimensional map, rather than for regression or 
classification predictions.  

We used the Analyze/StripMiner software package, 
developed in-house for the analysis [14], but made use of 
SVMLib [1] for the SVM model. Using the training set, we 
optimized the values for the parameters in DK-SOM, SVM, 
DK-PLS and LS-SVM before testing. The results are 
similar to the quality of classification achieved by the 
trained experts and similar for all tested methods, even 
though they use different data preprocessing. This is 
important because it indicates that there was no over-
training in any of the tested methods. The agreement 
between DK-PLS, SVMLib, and LS-SVM is particularly 
good, and there are no noticeable differences between these 
methods on these data. The results are shown in Tables 1-2. 
Table 1 lists the number of correctly classified patterns and 
the number of misses for the negative and positive cases. 
Table 2 provides additional mesaures of quality of 
prediction. 

Table 1. Numbers of correct patterns and  misses (for 
negative and positive cases on 36 test data) as well as 

execution times  for magnetocardiogram data. SVMLib and 
K-PLS used time domain and the remaining methods used 

D-4 wavlet domain. 

 

After tuning, σ for SVM was chosen as 10. The 
regularization parameter, C, in SVMLib was set to 1/ λ as 
suggested in [10]. Based on our experience with other 
applications [14] and scaling experiments, the value of 
λ was determined from the following equation: 

Method %correct #misses time (s) 

SVMLib 74 4+5 10 
K-PLS 74 4+5 6 

DK-PCA 71 7+3 5 
PLS 63 2+11 3 

K-PLS 80 2+5 6 
DK-PLS 83 1+5 5 
SVMLib 80 2+5 10 
LS-SVM 80 2+5 0.5 

SOM 63 3+10 960 
DK-SOM 71 5+5 28 

DK-SOM 77 3+5 28 
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The  agreement between the direct kernel methods (DK-
PLS and LS-SVM), K-PLS, and the traditional kernel-
based SVM (SVMLib) indicates a near-optimal choice for 
the ridge parameter resulting from this formula. 

3.1 Metrics for Assessing the Model Quality 

For a regression problem, another way to capture the 
error is by the Root Mean Square Error index or RMSE, 
which is defined as the average value of the squared error 
(either for the training set or the test set) according to: 
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While the root mean square error is an efficient way to 
compare the performance of different prediction methods 
on the same data, it is not an absolute metric in the sense 
that the RMSE will depend on how the response for the data 
was scaled. In order to overcome this handicap, we also 
used additional error measures that are less dependent on 
the scaling and magnitude of the response value. A first 
metric that we used for assessing the quality of a trained 
model is r2, which is defined as the squared coefficient of 
correlation between target values and predictions for the 
response according to: 
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where ntrain represents the number of data points in the 
training set.  r2 takes values between zero and unity, and 
the higher the r2 value, the better the model. An obvious 
drawback of using r2 for assessing the model quality is that 
it only expresses a linear correlation, indicating how well 
the predictions follow a line if ŷ is plotted as function of y. 

While one would expect a nearly perfect model when r2 is 
unity, this is not always the case. A second, and more 
powerful measure to assess the quality of a trained model is 
the so-called “Press r squared” , or R2, often used in 
chemometric modeling [6], where R2 is defined as [7]: 
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We consider R2 a better measure than r2, because it 
accounts for the residual error as well. Just like r2, R2 
ranges between zero and unity, and higher the value for R2, 
better the model. The R2 metric is generally smaller than r2. 
For large datasets, R2 tends to converge to r2, and the 
comparison between r2 and R2 for such data often reveals 
hidden biases. 

Table 2. Quality measures for different methods for creating 
predictive models for magneto-cardiogram data. 

Method q2 Q2 RMSE 

SVMLib 0.767 0.842 0.852 
K-PLS 0.779 0.849 0.856 

DK-PCA 0.783 0.812 0.87 
PLS 0.841 0.142 1.146 

K-PLS 0.591 0.694 0.773 
DK-PLS 0.554 0.662 0.75 
SVMLib 0.591 0.697 0.775 
LS-SVM 0.59 0.692 0.772 

SOM 0.866 1.304 1.06 
DK-SOM 0.855 1.0113 0.934 
DK-SOM 0.755 0.859 0.861 

  

For assessing the quality of the validation set or a test 
set, we introduce similar metrics, q2 and Q2, where q2 and 

Q2 are defined as 21 r− and 21 R− , respectively, for the 
data in the test set. For a model that perfectly predicts on 
the test data we would expect q2 and Q2 to be zero. The 
reason for introducing metrics that are symmetric between 
the training set and the test set is actually to avoid 
confusion. Q2 and q2 values apply to a validation set or a 
test set, and we would expect these values to be quite low 
in order to have a good predictive model. R2 and r2 values 
apply to training data, and it is easy to notice that if the 
predictions are close to actual values, they both are close to 
unity. Hence, any of them significantly different from 1 

indicates a model with poor predictive ability. 

Linear methods, such as partial-least squares, result in 
inferior predictive models as compared to the kernel 
methods. For K-PLS and DK-PLS, we chose 5 latent 
variables, but the results were not critically dependent on 
the exact choice of the number of latent variables. We also 
tried Direct Kernel Principal Component Analysis (DK-
PCA), the direct kernel version of K-PCA [11-12,16], but 
the results were more sensitive to the choice of the number 
of principal components and not as good as the ones 
obtained using other direct kernel methods. 

Typical prediction results for the magnetocardiogram 
data based on wavelet transformed data and DK-PLS are 
shown in Fig. 2. We can see from this figure that six data 



points are misclassified altogether in the predictions (one 
healthy or negative case and five ischemia cases). These 
cases were also difficult to identify correctly for the trained 
expert, based on a 2-D visual display of the time-varying 
magnetic field, obtained by proprietary methods. 
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Figure 2. Error plot for 35 test cases, based on K-PLS for 
wavelet-transformed data. 

For medical data, it is often important to be able to make 
a trade-off between false negative and false-positive cases, 
or between sensitivity and specificity (which are different 
metrics related to false positives and false negatives). In 
machine-learning methods, such a trade-off can easily be 
accomplished by changing the threshold for interpreting the 
classification. For example, in Fig. 2, rather than using zero 
as the discrimination value, one could shift the 
discrimination threshold towards a more desirable level, 
hereby influencing the false positive/false negative ratio.  

 

Figure 3. ROC curve showing possible trade-offs between 
false positive and false negatives. 

A summary of all possible outcomes of such changes in 
the discrimination value can be displayed in an ROC curve, 

as shown in Fig. 3 for the above case. The concept of ROC 
curves (or Receiver Operator Characteristics) originated 
from the early development of the radar in the 1940’s for 
identifying airplanes and is summarized in [13]. 

Figure 4 displays a projection of 73 training data, based 
on (a) Direct Kernel Principal Component Analysis (DK-
PCA), and (b) Direct Kernel PLS (DK-PLS). Diseased 
cases are shown as filled circles. Figure 4b shows a clearer 
separation and wider margin between different classes, 
based on the first two components for DK-PLS as 
compared to results of DK-PCA that are shown in Figure 
4a. The test data, originally shown on these pharmaplots as 
dark and light crosses, shows an excellent separation 
between healthy and diseased cases for both methods. 

 

Figure 4. Projection of 73 training data, based on (a) 
Direct Kernel Principal Component Analysis (DK-PCA), 
and (b) Direct Kernel PLS (DK-PLS). Diseased cases are 

shown as filled circles (the test data are not shown). 

 
A typical 189× self-organizing map on a hexagonal grid 

in wrap-around mode, based on the direct kernel SOM, is 
shown in Figure 5. The wrap-around mode means that the 
left and right boundaries (and also the top and bottom 
boundaries) flow into each other, and that the map is an 
unfurling of a toroidal projection. The dark hexagonals 
indicate diseased cases, while the light hexagonals indicate 
healthy cases. Fully colored hexagons indicate the positions 
for the training data, while the white and dark-shaded 
numbers are the pattern identifiers for healthy and diseased 
test cases. Most misclassifications actually occur on 
boundary regions in the map. The cells in the map are 
colored by semi-supervised learning, i.e., each data vector, 
containing 36x32 or 1152 features, is augmented by an 
additional field that indicates the color. The color entry in 
the data vectors are updated in a similar way as for the 
weight vectors, but they are not used to calculate the 
distance metrics for determining the winning cell. The 
resulting maps for a regular SOM implementation are very 
similar to those obtained with the direct kernel DK-SOM. 



The execution time for generating DK-SOM on a 128 MHz 
Pentium III computer was 28 seconds, rather than 960 
seconds required for generating the regular SOM, because 
the data dimensionality dropped to effectively 73 (the 
number of training data) from the original 1152, after the 
kernel transformation on the data. The fine-tuning for the 
SOM and DK-SOM was done in a supervised mode with 
learning vector quantization [9]. While the results based on 
SOM and DK-SOM are still excellent, they are not as good 
as those obtained with the other kernel-based methods 
(SVMLib, LS-SVM, and K-PLS). 

 

Figure 5. Test data displayed on a self-organizing map 
based on a 189×  DK-SOM in wrap-around mode. The dark 

hexagonals indicate diseased cases, while the light 
hexagonals indicate healthy cases. Fully colored hexagons 
indicate the positions for the training data, while the red 

and blue numbers are the pattern identifiers for healthy and 
diseased test cases. Negative numbers correspond to pre-

stress and positive number to post-stress measurements for 
each patient. 

4 Feature selection 
The results presented in the previous section were 

obtained using all 1152 ( 3236 × ) descriptors. It would be 
most informative to the domain expert, if we were able to 
identify where exactly in the time or wavelet signals and for 
which of the 36 magnetocardiogram signals that were 
measured at different positions for each patient the most 
important information necessary for good binary 
classification is located. Such information can be derived 
by feature selection.  

Feature selection, i.e., the identification of the most 
important input parameters for the data vector, can proceed 
in two different ways: the filtering mode and the wrap-
around mode. In the filtering mode, features are eliminated 

based on a prescribed, and generally unsupervised 
procedure. An example of such a procedure could be the 
elimination of descriptor columns that contain four σ 
outliers, as is often the case in PLS applications for 
chemometrics. It is also common to drop “cousin”  
descriptors in a filtering mode, i.e., features that show more 
than 95% correlation with another descriptor. Depending 
on the modeling method, it is often common practice to 
drop the cousin descriptors and only retain the descriptors 
that (i) either show the highest correlation with the response 
variable, or (ii) have the clearest domain transparency to 
the domain expert for explaining the model. 

The second mode of feature selection is based on the 
wrap-around mode. One wants to retain only the most 
relevant features necessary to have a good predictive 
model. Often, the modeling quality improves after the 
proper selection of the optimal feature subset. Determining 
the right subset of features can proceed based on different 
concepts, and the resulting subset of features is often 
dependent on the modeling method. Feature selection in a 
wrap-around mode generally proceeds by using a training 
set and a validation set, and the validation set is used to 
confirm that the model is not over-trained by selecting a 
spurious set of descriptors. Two generally applicable 
methods for feature selections are based on the use of 
genetic algorithms and sensitivity analysis.  

The idea with the genetic algorithm approach is to be 
able to obtain an optimal subset of features from the 
training set, showing a good performance on the validation 
set as well. 

The concept of sensitivity analysis [8] exploits the 
saliency of features, i.e., once a predictive model has been 
built, the model is used for the average value of each 
descriptor, and the descriptors are tweaked, one-at-a time 
between a minimum and maximum value. The sensitivity 
for a descriptor is the change in predicted response. The 
premise is that when the sensitivity for a descriptor is low, 
it is probably not an essential descriptor for making a good 
model. A few of the least sensitive features can be dropped 
during one iteration step, and the procedure of sensitivity 
analysis is repeated many times until a near optimal set of 
features is retained. Both the genetic algorithm approach 
and the sensitivity analysis approach are true soft 
computing methods and require quite a few heuristics and 
experience. The advantage of both approaches is that the 
genetic algorithm and sensitivity approach are general 
methods that do not depend on the specific modeling 
method. 

5 Conclusions 
The binary classification of MCG data represents a 

challenging problem for various reasons: the quantity of the 
data is low, the quality of the data varies from hospital to 



hospital, and the patient classification by the “gold 
standard”  is not 100% correct. Applying standard machine 
learning techniques such as SOM and SVM already 
exceeds the predictive accuracy of a standard ECG in these 
cases (74% vs. 50%). The break-through, though, was 
achieved by first transforming the data into the wavelet 
domain, and then, additionally, applying a kernel 
transformation to wavelet coefficients (this increased the 
predictive accuracy to 83% vs. 74% achieved by the 
standard methods and the original 50% achieved by ECG).   

The agreement of the results between kernel PLS (K-
PLS) as proposed by Rosipal [10], direct kernel PLS (DK-
PLS), support vector machine (SVMLib), and least square 
SVM (LS-SVM) is generally excellent. In this case, DK-
PLS gave a superior performance, but the differences 
between kernel-based methods are not significant. This 
excellent agreement shows the robustness of the direct 
kernel methods. It could only be achieved if the selection of 
the ridge parameter by Eq. (1) was nearly optimal. This 
selection defines also the regularization parameter, C, in 
support vector machines, when C is taken as 1/ λ.  

 The obtained results are meaningful for medical 
community. With DK-PLS we reached a sensitivity of 92% 
and a specificity of 75% for the detection of ischemia 
defined by coronary angiography. It is of notice that MCG 
is a purely functional tool that is sensitive for abnormalities 
in the electrophysiology of the heart and, therefore, can 
only diagnose the effect of a disease. The gold standard 
(coronary angiography), however, is a purely anatomical 
tool and diagnoses the cause of ischemic heart disease. 
Since MCG detects abnormalities that are not visible to the 
gold standard, it will always produce “ false positives” , 
which explains the comparatively low specificity in this 
application.  

The continuation of this work will include three 
directions. First, we will develop feature selection 
techniques based on large number of patients. For ischemia, 
we will attempt to recognize where the source of blockage 
causing ischemia is located in the body of a patient. Finally, 
we will also investigate a multi-class problem in which 
different heart diseases, not just ischemia, will be classified 
by our machine learning methods. Such multi-class 
problems are particularly challenging for SVM based 
method when the classes are non-ordinal, as is the case for 
heart diseases.  
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